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Abstract

The main aim of the present note is to generatize the Siciak’s result to

separately locally holomorphic functions on the crosses.
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The classical Hartogs Theorem states that every separately holomorphic func-
tions on products of domains in complex Euclidian spaces is holomorphic. This
famous theorem was generalized by several authors (see for example [AZ], [JP],
[Si1], [Si2]). Recently Siciak [Si2] and after Blocki [BL] have considered the above
theorem for separately real analytic sets. For example in [Si2] Siciak has proved
that if f is a separately real analytic set in the product U × V in R

p × R
q, the

set of points at which f is not analytic is pluripolar in C
p × C

q.
Namely in notions of §1 we prove the following

Theorem A: Let K and L be connected non-pluripolar sets of type Fσ in

C
p and C

q respectively, E ⊂ K and F ⊂ L be non-pluripolar. Let f : (E ×
L) ∪ (K × F ) → C be a separately locally holomorphic function. Then there

exist pluripolar sets E′ ⊂ E and F ′ ⊂ F such that f is locally holomorphic on

((E \ E′) × L) ∪ (K × (F \ F ′)).

Theorem B: Let K and L be non-pluripolar convex sets in C
p and C

q re-

spectively, E ⊂ K and F ⊂ L be non-pluripolar. Let f : (E × L) ∪ (K × F ) →
C be separately locally holomorphic. Then there exist pluripolar sets E′ ⊂ E

and F ′ ⊂ F such that f is extended holomorphically to a neighbourhood of

((E \ E′) × L) ∪ (K × (F \ F ′)).
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1 Preliminaries

In this section we recall some notions used in complex analysis and complex
pluripotential theory.

1.1. Let f : X → C, where X ⊂ C
p. We say that f is locally holomorphic on

X if for every x ∈ X there exist a neighbourbood U of x on C
p and a holomorphic

function f̃ on U such that f̃ = f on U ∪X. By Ω(f) we denote the set of points
of X at which f is holomorphic. The set S(f) := X \ Ω(f) is called the singular
set of f .

1.2. Let E ⊂ K ⊂ C
p and F ⊂ L ⊂ C

q be arbitrary subsets. The set

W (E,F,K,L) = (E × L) ∪ (K × F )

is called the cross of E,F,K and L. The function f : W (E,F,K,L) → C is said
to be locally holomorphic if

i) For every x ∈ E, the function fx(y) := f(x, y) is locally holomorphic on L

ii) For every y ∈ F , the function fy(x) = f(x, y) is locally holomorphic on K.

1.3. Let Ω be an open set in C
p. By PSH(Ω) we denote the set of all plurisub-

harmonic (psh) functions on Ω. A subset X of C
p is called pluripolar if for every

z ∈ X there exist a neighbourbood U of z and ϕ ∈ PSH(U), ϕ 6= −∞ such that

X ∩ U ⊂ {z′ ∈ U : ϕ(z′) = −∞}.

It is well known that X is pluripolar if and only if there exists
ϕ ∈ PSH(Cp), ϕ 6= −∞ such that

X ⊂ {z ∈ C
p : ϕ(z) = −∞}.

1.4. Let K ⊂ Ω with Ω is an open set in C
p. We denote uK,Ω the relatively

extremal function of the couple (K,Ω) defined by

uK,Ω(z) = sup{u(z) : u ∈ PSH(Ω), u 6 −1 on K and u 6 0 on Ω}.

Let ω(.,K,Ω) := uK,Ω be the upper-semicontinous regularization of uK,Ω:

ω(z,K,Ω) = lim
Ω∋z′→z

uK,Ω(z′), z ∈ Ω.

The point a ∈ Ω is called the pluri-regular point of K if a ∈ K ∩Ω and ω(a,K ∩
U,U) = 0 for all neighbourbood U of a in Ω. Denote K∗ the set of all pluri-
regular points of K (in Ω). If K is not pluripolar, then Theorem 7.1 in [BT]
implies that K \ K∗ is pluripolar.
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2 Proof of the Theorem A

Let {Kj}j>1 and {Lj} be increasing sequences of compact sets, Kj and Lj in K

and L respectively such that K =
∞⋃

j>1

Kj and L =
∞⋃

j>1

Lj . We may assume that

Kj and Lj are non-pluripolar. For each x ∈ E and y ∈ F , put

εj
x = inf

y∈Lj

{ry : fx ∈ Hol(B(y, ry)}

εj
y = inf

x∈Kj

{rx : fy ∈ Hol(B(x, rx)},

where

ry = sup{r > 0 : fx ∈ Hol(B(y, r)}

and

rx = sup{r > 0 : fy ∈ Hol(B(x, r)}.

B(y, ry) ⊂ C
q, B(x, rx) ⊂ C

p are balls centered at y and x with radius ry and rx

in C
p and C

q respectively.
Moreover Hol(B(y, ry)) and Hol(B(x, rx)) denote the spaces of holomorphic

functions on B(y, ry) and B(x, rx) respectively. It is easy to see that εj
x > 0

and εj
y > 0 for x ∈ E and y ∈ F and j > 1 because if fx ∈ Hol(B(y, r)) and

fy ∈ Hol(B(x, r)) then fx ∈ Hol(B(y′,
r

2
)) for ||y′−y|| <

r

2
and fy ∈ Hol(B(x′,

r

2
))

for ||x′ − x|| <
r

2
. For j > 1, put

Aj
n =

{
x ∈ E : εj

x >
1

n

}

and

Bj
n =

{
y ∈ F : εj

y >
1

n

}
.

Then E =
∞⋃

n=1
Aj

n and F =
∞⋃

n=1
Bj

n. Since E and F are non-pluripolar sets, we

can find n > 1 such that Aj := Aj
n and Bj := Bj

n are non-pluripolar. For x ∈ A∗
j

and y ∈ B∗
j consider

W =
(
(A∗

j ∩ B
(
x,

1

n
)
)
× B

(
y,

1

n

))
∪

(
B

(
x,

1

n

)
×

(
B∗

j ∩ B
(
y,

1

n

)))

and f̂ : W → C defined by

f̂(x′, y′) =





f̂x′(y′) for (x′, y′) ∈ (A∗
j ∩ B

(
x,

1

n
)
)
× B

(
y,

1

n

)

f̂y′

(x′) for (x′, y′) ∈ B
(
x,

1

n

)
×

(
B∗

j ∩ B
(
y,

1

n

)
).
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It follows that f̂ is separately holomorphic on W . Theorem 2.2.4 in [AZ] implies

that
(
x × B

(
y,

1

n

))
∪

(
B

(
x,

1

n

)
× y

)
⊂ Ω(f). Thus

⋃

x∈A∗

j
, y∈B∗

j

[(
x × B

(
y,

1

n

))
∪

(
B

(
x,

1

n

)
× y

)
] ⊂ Ω(f).

For x ∈ Ã :=
∞⋃

j=1

A∗
j ,

Gx = {y ∈ L : (x, y) ∈ Ω(f)}.

Since K is not pluripolar by a result of Bedford - Taylor (see theorem 7.1 [BT])

Ã 6= ∅ and hence Gx 6= ∅ are open. Given y ∈ ∂Gx ∩ L, take j > 1 such that
x ∈ A∗

j , y ∈ Lj and y′ ∈ Gx ∩ B(y, εj
x). Then there exists δ > 0 such that f is

holomorphic on B(x, δ) × B(y′, δ). Consider the cross

M = (A∗
j ∩ B(x, δ) × B(y, δ)) ∪ (B(x, δ) × B(y′, δ)).

Theorem 2.2.4 in [AZ] implies that y ∈ Gx. By the connectedness of L we deduce

that Gx = L and hence Ã × L ⊂ Ω(f). Similary K × B̃ ⊂ Ω(f). Thus

( ⋃

(j,n)∈I

(Aj
n)∗ × L

)
∪

(
K ×

⋃

(j,n)∈I

(Bj
n)∗

)
⊂ Ω(f)

where
I = {(j, n) : Aj

n and Bj
n are non-pluripolar}.

Put
E′ =

⋃

(j,n)∈I

(Aj
n \ Aj∗

n ) and F ′ =
⋃

(j,n)∈I

(Bj
n \ Bj∗

n ).

Then E′, F ′ are pluripolar and

(E \ E′) ∪ (K × (F \ F ′)) ⊂ Ω(f).

The theorem is proved.

3 Proof of the Theorem B

By Theorem A we can find pluripolar sets E′ ⊂ E and F ′ ⊂ F such that

W (E \ E′, F \ F ′,K, L) ⊂ Ω(f).

By the convexity and non-pluripolarity of L every fx, x ∈ E \ E′ has a holo-

morphic extension f̂x to a convex neighbourhood Ox × Vx of x × L. Similarly
every fy, y ∈ F \F ′ has a holomorphic extension f̂y to a convex neighbourhood
Uy ×Gx of K ×y. Let x1, x2 ∈ E \E′ with Ox1

∩Ox2
6= ∅. Then E∩Ox1

∩Ox2
is
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not pluripolar. Since E is convex and non-pluripolar, it follows that E is locally
non-pluripolar. This yields that

(E \ E′) ∩ Ox1
∩ Ox2

6= ∅.

For y ∈ L and x ∈ (E \ E′) ∩ Ox1
∩ Ox2

we have

f̂x1
(x, y) = f̂x2

(x, y).

This implies by the non-pluripolarity of (E \ E′) ∩ Ox1
∩ Ox2

that

f̂x1
(x, y) = f̂x2

(x, y)

for x ∈ Ox1
∩ Ox2

.

Again by the non-pluripolarity of L we have

f̂x1
(x, y) = f̂x2

(x, y)

for x ∈ Ox1
∩Ox2

and y ∈ Vx1
∩Vx2

. Thus the family of holomorphic functions

{f̂x}x∈E\E′ defines a holomorphic function h on O × L, where

O =
⋃

{Ox : x ∈ E \ E′} such that h = f on (E \ E′) × L.

Since L is compact and convex, it follows that h can be extended to a holo-
morphic function ĥ on a neighbourhood O × V of O × L, where V is a convex
neighbourhood of L.

Similarly the family {f̂y}y∈F\F ′ defines a holomorphic function ĝ on a neigh-
bourhood U × G of K × G, where U × G a convex neighbourhood of K and
G =

⋃
{Gy : y ∈ F \ F ′}. By the connectedness of Ox ∩ U × Gy ∩ V and the

non-pluripolarity of Ox ∩K, Gy ∩L, x ∈ E \E′, y ∈ F \ F ′ and by h = f = g on

Ox ∩ K × Gy ∩ L, it follows that ĥ = ĝ on Ox ∩ U × Gy ∩ V. Hence ĥ = ĝ on

⋃
{Ox ∩ U × Gy ∩ V : x ∈ E \ E′, y ∈ F \ F ′}.

Consequently ĥ and ĝ define a holomorphic extension of f to (O× V )∪ (U ×G),
a neighbourhood of W (E \ E′, F \ F ′,K, L). The theorem is proved.
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