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Asymptotic behavior of discrete and continuous

semigroups on Hilbert spaces∗
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Abstract

Let φ : [0,∞) → [0,∞) be a nondecreasing function with φ(t) > 0 for
all t > 0, H be a complex Hilbert space and let T be a bounded linear
operator acting on H. Among our results is the fact that T is power stable
(i.e. its spectral radius is less than 1) if

∞
X

n=0

φ(|〈T n
x, x〉|) < ∞

for all x ∈ H with ||x|| ≤ 1.

In the continuous case we prove that a strongly continuous uniformly
bounded semigroup of operators acting on a Hilbert space H is spectrally
stable (i.e. the spectrum of its infinitesimal generator lies in the open left
half plane) if and only if for each x ∈ H and each µ ∈ R one has:

sup
s≥0

˛

˛

˛

˛

Z s

0

e
−iµt〈T (t)x, x〉dt

˛

˛

˛

˛

< ∞.
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ous semigroups, uniform exponential stability, Orlicz space.
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1 Introduction

Let X be a complex Banach space and X∗ be its dual. The resolvent set and the
spectrum of a linear operator T (acting on X) will be denoted respectively by
ρ(T ) and σ(T ). When T is bounded, the spectrum radius of T is given by the
formula

r(T ) = sup{|λ| : λ ∈ σ(T )} = lim
n→∞

||Tn||1/n.

∗The research of the first author was partially supported by the Grant CNCSIS 546 (2007)
of the Romanian Ministry of Education and Research.
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Jan van Neerven ([13]) has shown that r(T ) < 1 if there exists a Banach function
space E over N with

lim
n→∞

||χ{0,1,...,n−1}||E = ∞ (1.1)

such that for each x ∈ X and x∗ ∈ X∗ the map n 7→ |〈Tnx, x∗〉| belongs to E. By
applying this result to an appropriate Orlicz space E, he also able to show that
r(T ) < 1 if there exists a non-decreasing function φ : [0,∞) → [0,∞) such that
φ(t) > 0 for all t > 0 and

∞
∑

n=0

φ(|〈Tnx, y〉|) < ∞. (1.2)

for all x ∈ X and y ∈ X∗. The particular case where φ(t) = tp for some
(1 ≤ p < ∞) has been noticed by G. Weiss ([21]). It is worth to mention the
contribution of K. L. Przyulski ([18]) who considered the case where φ(t) = t, in
the context of weakly sequentially complete Banach spaces. The similar topics
in the continuous case started with a question raised by A. J. Pritchard and
J. Zabczyk [20]. Precisely, they asked whether any weakly-Lp-stable semigroup
is necessarily uniformly exponentially stable. See the next section for relevant
definitions. An account on the research related to this question can be found in
[7], [22], [13].

The aim of this paper is to prove the following.

Theorem 1. Let T be a bounded linear operator acting on a complex Hilbert space
H and let φ : [0,∞) → [0,∞) be a nondecreasing function such that φ(t) > 0 for
all t > 0 and

∞
∑

n=0

φ(|〈Tnx, x〉|) < ∞. (1.3)

for every x ∈ H. Then r(T ) < 1.

Theorem 2. Let T = {T (t)}t≥0 be a strongly continuous semigroup on a complex
Hilbert space H and let φ : [0,∞) → [0,∞) be a non-decreasing function with
φ(t) > 0 for all t > 0. If T is uniformly bounded (that is, sup

t≥0
||T (t)|| < ∞) and

for each x ∈ H, one has:
∫ ∞

0

φ(|〈T (t)x, x〉|)dt < ∞, (1.4)

then the semigroup T is uniformly exponentially stable, that is, its uniform growth

bound ω0(T) := inf
t>0

ln ||T (t)||
t is negative.

Theorem 3. Let T = {T (t)}t≥0 be a strongly continuous semigroup on a complex
Hilbert space H. If for each x ∈ H one has

sup
µ∈R

sup
s≥0

∣

∣

∣

∣

∫ s

0

e−iµt〈T (t)x, x〉dt

∣

∣

∣

∣

= M(x) < ∞ (1.5)
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then the semigroup T is uniformly exponentially stable.

Theorem 4. Let T = {T (t)}t≥0 be a strongly continuous and uniformly bounded
bounded semigroup on a complex Hilbert space H. The following five statements
are equivalent:

1. The semigroup T is spectrally stable (that is, the spectrum of its infinites-
imal generator σ(A) lies in the open left half plane C− := {z ∈ C : ℜ(z) < 0.})

2. For each µ ∈ R and each x ∈ H, we have that

sup
s≥0

∥

∥

∥

∥

∫ s

0

e−iµtT (t)xdt

∥

∥

∥

∥

= L(µ, x) < ∞. (1.6)

3. For each µ ∈ R and each x ∈ H, one has:

sup
s≥0

∣

∣

∣

∣

∫ s

0

〈e−iµtT (t)x, x〉dt

∣

∣

∣

∣

= M(µ, x) < ∞.

4. σ(A) ∩ iR = ∅.
5. For each µ ∈ R and each x ∈ X the solution of the inhomogeneous Cauchy

Problem
u̇(t) = Au(t) + eiµtx, u(0) = 0, (A,µ, x)

is bounded.

To the best of our knowledge these results are new even if the proofs are not
very difficult. The proof of the Theorem 1 is based on a technical lemma stated
in the third section of our paper. In fact, if combining this Lemma with the proof
of Theorem 3.3 from [13], originally given by Jan van Neerven, we obtain that
the our condition (1.3) and condition (1.2) are equivalent.

If in addition to (1.3) assume that the discrete semigroup (Tn) is strongly
asymptotically stable (i.e. Tnx tends to 0 when n → ∞ for any x ∈ H) then
we can give a completely different proof for Theorem 1 using a very recent result
from the operator theory, originally given by V. Müller, see [12].

If φ is the identity map and (1.3) is fulfilled then the formal series (
∑

Tnx)
is convergent in the norm of H, so in particular (Tn) is strongly asymptotically
stable. This result remain true even if put Tn instead of Tn, where Tn is an
arbitrary bounded linear operator acting on H, such as is stated in Proposition
1 from the third section of this paper.

The paper is organized as follows. Section 2 contains the results in the case
of self-adjoint operators. In the Section 3 we prove Theorem 1 and consider
some natural consequences, while the last section is devoted to the proof of the
Theorems 2, 3 and 4.

2 The case of self-adjoint operators

In this section consider the case when the semigroups are self-adjoint and φ is the
identity map. We begin with the following well-known lemma. See for example
[2] for a proof.
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Lemma 1. Let S be a bounded linear operator acting on a Banach space X and
µ be a real number such that

sup
N∈N

∥

∥

∥

∥

∥

N
∑

n=0

e−iµnSn

∥

∥

∥

∥

∥

= Mµ < ∞.

Then S is power bounded and eiµ ∈ ρ(T ).

Theorem 5. Let T be a self-adjoint operator acting on a complex Hilbert space
H. If

sup
||x||≤1

∞
∑

n=0

|〈Tnx, x〉| := K < ∞

then the spectral radius of T is less then 1.

Proof: For every integer number k and any positive integer number n the ope-
rator e−iknπTn is self-adjoint. Then using a well-known result ([23], Theorem 3,
page 201) we get:

∥

∥

∥

∥

N
∑

n=0
e−iknπTn

∥

∥

∥

∥

= sup
||x||≤1

|∑N
n=0 e−iknπ〈Tnx, x〉|

≤ sup
||x||≤1

∞
∑

n=0
|〈Tnx, x〉| = K < ∞.

Then the operator T is power bounded and its spectral radius is less than or
equal 1. On the other hand the spectrum of T is real. The spectral radius of T

is less than 1 because in according with Lemma 1 above, the set {−1, 1} belongs
to ρ(T ).

Let 1 ≤ p < ∞. In order to introduce similar results in the continuous case
we recall that a strongly continuous semigroup T = {T (t)}t≥0 on a Hilbert space
H is called weakly-Lp-stable if for each x ∈ H and y ∈ H one has

∫ ∞

0

|〈T (t)x, y〉|pdt < ∞.

It is known ([7]), [22]) that every weakly-Lp-stable semigroup T is uniformly
exponentially stable, that is, its uniform growth bound

ω0(T) := inf
t>0

ln ||T (t)||
t

is negative. A possible new proof of this result in the case p = 1 can be stated as
follows.
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Lemma 2. Let T = {T (t)}t≥0 be a strongly continuous semigroup on a Banach
space X. If for each x ∈ X one has

sup
t≥0

∥

∥

∥

∥

∥

∥

t
∫

0

T (s)xds

∥

∥

∥

∥

∥

∥

:= M(x) < ∞ (2.1)

then the half-plane {ℜ(λ) > 0} lies in ρ(A). Moreover 0 ∈ ρ(A) and if

M := sup
t≥0

∥

∥

∥

∥

∫ t

0

T (s)ds

∥

∥

∥

∥

L(X)

then ||R(0, A)|| ≤ M.

Proof: See [16].

We remark that if (2.1) holds with e−iµtT (t) instead of T (t) for all µ ∈ R,

then there exists a positive constant L such that

sup
Re (λ)≥0

||R(λ,A)|| = L < ∞.

Combining this with the Gerhart-Prüss theorem (see e.g. [17], [7]) we get the
following well known result ([16]):

Corollary 1. Let T = {T (t)}t≥0 be a strongly continuous semigroup on a Hilbert
space H. If for each x ∈ H one has

sup
µ∈R

sup
t≥0

∥

∥

∥

∥

∫ t

0

e−iµsT (s)xds

∥

∥

∥

∥

:= N(x) < ∞

then the semigroup T is uniformly exponentially stable.

Suppose now that the semigroup T acts on the Hilbert space H and it is
weakly-L1-stable. Then for all x ∈ H, y ∈ H with ||x|| ≤ 1 and ||y|| ≤ 1 one has:

∥

∥

∥

∥

∫ t

0

e−iµsT (s)ds

∥

∥

∥

∥

≤
∫ ∞

0

|〈T (s)x, y〉|ds ≤ Constant < ∞.

From the Corollary 1 above follows that the semigroup T is uniformly exponen-
tially stable.

Theorem 6. Let T = {T (t)}t≥0 be a strongly continuous and self-adjoint ope-
rator semigroup on a Hilbert space H. If

sup
||x||≤1

∫ ∞

0

|〈T (t)x, x〉|dt = K < ∞,

then the semigroup T is uniformly exponentially stable.
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Proof: First remark that the above inequality (2.1) holds. Indeed:

sup
t≥0

∥

∥

∥

∥

∫ t

0

T (s)ds

∥

∥

∥

∥

L(H)

= sup
t≥0

sup
||x||≤1

|〈
∫ t

0

T (s)xds, x〉|

≤ sup
||x||≤1

∫ ∞

0

|〈T (s)x, x〉|ds ≤ K.

From the above Lemma 2 follows that the spectrum of A lies in the interval
(−∞, 0). On the other hand

sup
ℜ(λ)>0

||R(λ,A)|| ≤ sup
ℜ(λ)>0

sup
||x||≤1

∫ ∞

0

e−ℜ(λ)t|〈T (t)x, x〉|dt ≤ K.

Now we can apply the Gerhart-Prüss theorem.

3 Proof of Theorem 1 and some natural consequences

We recall some well-known facts about Orlicz spaces. For further details we refer
to [9], [10], [11], [4] and references therein. Let Φ : [0,∞) → [0,∞] be a convex,
non-decreasing function such that Φ(0) = Φ(0+) = 0, and Φ is not identically
with 0 or with ∞ on (0,∞). Let Z+ be the set of all non-negative integers. For
each scalar-valued sequence a = (aν)ν∈Z+

let us consider MΦ(a) :=
∑

n∈Z+

Φ(|an|)

and the set LΦ of all sequences (aν) for which there exists a positive real number
λ such that IΦ(λa) < ∞. The space LΦ can be endowed with the Luxemburg
norm, given by:

||a||LΦ := inf{λ > 0 : MΦ(λ−1a) ≤ 1}.
The Orlicz spaces over R+ can be defined by a similar manner. Precisely in

this case LΦ is the set of all complex valued measurable functions f defined on
R+ for which there exists a positive λ such that

∫ ∞

0
Φ(λ|f(t)|)dt < ∞.

The Luxemburg norm of a function f ∈ LΦ is defined by

ρΦ(f) := inf{k > 0 :

∫ ∞

0

Φ(k−1|f(t)|)dt ≤ 1}.

Some useful identities are collected in the next Lemma.

Lemma 3. Let H be a complex Hilbert space, x and y in H, µ be a real number,
T be a bounded linear operator acting on H and T = {T (t)}t≥0 be a strongly
continuous semigroup of bounded linear operators on H. For each t ≥ 0 let
ρµ(t) := e−iµtT (t). The following identities are fulfilled:

〈Tx, y〉 = 1
2i [(1 − i)(〈Tx, x〉 + 〈Ty, y〉)+

+ i〈T (x + y), x + y〉 − 〈T (x + iy), x + iy〉] (3.1)
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and
∫ s

0

〈ρµ(t)x, y〉dt =
1

2i
(1 − i)

(
∫ s

0

〈ρµ(t)x, x〉dt +

∫ s

0

〈ρµ(t)y, y〉dt

)

+

+
1

2

∫ s

0

〈ρµ(t)(x + y), x + y〉dt +
1

2i

∫ s

0

〈ρµ(t)(x + iy), x + iy〉dt. (3.2)

Proof of the Theorem 1
Using the identity (3.1) it is easily to establish the following inequality:

|〈Tnx, y〉| ≤
√

2

2
(|〈Tnx, x〉| + |〈Tny, y〉|)+

+
1

2
(|〈Tn(x + y), x + y〉| + |〈Tn(x + iy), x + iy〉|). (3.3)

In view of (1.3) follows that for each x ∈ H, φ(|〈Tnx, x〉|) tends to 0 when n

tends to ∞ and then |〈Tnx, x〉| tends to 0 as well. As a consequence, the maps
n 7→ |〈Tnz, z〉| with z ∈ {x, y, x + y, x + iy} are bounded and moreover them
belong to a same Orlicz space E satisfying the condition (1.1), see the proof of
Theorem 3.3 by [13]. In view of (3.3), and using the fact the every Orlicz space
has the ideal property, follows that for each x and y in H the map n 7→ |〈Tnx, y〉|
belongs to E. Now we can apply van Neerven’s theorem, which was reminded in
the beginning of our paper, in order to obtain that r(T ) < 1.

In particular, from (1.3) follows that ||Tnx|| decays to 0 for any x ∈ H. In the
case when φ is the identity map, we generalize the latter result, as follows:

Proposition 1. Let (Tn) be a sequence of bounded linear operators acting on a
complex Hilbert space H. The following two statements are equivalent:

(i) For each x ∈ H the series (
∑

n≥0 |〈Tnx, x〉|) is convergent.
(ii) For each x ∈ H and each y ∈ H the series (

∑

n≥0 |〈Tnx, y〉|) is conver-
gent.

Moreover, these statements imply the fact that the (formal) series (
∑

n≥0 Tnx)
is convergent in the norm of H.

Proof:

|〈Tnx, y〉| ≤
√

2

2
(|〈Tnx, x〉| + |〈Tny, y〉|)+

+
1

2
(|〈Tn(x + y), x + y〉| + |〈Tn(x + iy), x + iy〉|).

Now, it is clear that the statement (ii) is a consequence of (i). On the other
hand by the inequality

|
∑

n≥0

〈Tnx, y〉| ≤
∑

n≥0

|〈Tnx, y〉|
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and the statement (ii) follows that any subseries of the series

(
∑

n≥0

〈Tnx, y〉)

is convergent. Then the latter assertion follows by the Orlicz-Pettis theorem, see
[5], page 22.

We are very grateful to Nigel Kalton for pointing out of the above result [8].

With the supplementary hypothesis that ||Tnx|| decays to 0 for any x ∈ H

we can give another proof of Theorem 1. We use a recent result of V. Müler,
[12], which reads as follows: Let T be a linear and bounded operator acting on a
complex Hilbert space H such that 1 ∈ σ(T ) and ||Tnx|| decays to 0 for all x ∈ H.

Let (an)∞n=1 be a non-increasing sequence with limn→∞ an = 0 and sup an < 1.

Then there exists x ∈ H of norm one such that Re 〈Tnx, x〉 > an for all n ≥ 1.

In such circumstances the operator T is power bounded hence its spectral radius
r(T ) is less than or equal one. Suppose for the contrary that r(T ) = 1. Then
there exists µ ∈ R such that eiµ ∈ σ(T ). In order to apply the above result we
may suppose that 1 ∈ σ(T ). Indeed, if it is not true, put S := e−iµT instead of T.

It is clear that φ(0) = 0. We may suppose that φ(1) = 1 and that φ is a strictly
increasing and continuous function on R+. If not, put a multiple of φ̄ instead of
φ, where

φ̄(t) :=

∫ t

0

φ(s)ds if 0 ≤ t ≤ 1 and φ̄(t) :=
at

at + 1 − a
if t > 1.

Here a :=
∫ 1

0
φ(s)ds. Let us consider an := φ−1

(

1
n+1

)

. Then as stated in the

above Müler result, there exists a x0 ∈ H, of norm one, such that

∞
∑

n=1

φ(|〈Tnx0, x0〉|) ≥
∞
∑

n=1

φ(an) = ∞

which is a contradiction.

We can complete the result from Theorem 1 in the following way:

Proposition 2. Let T be a bounded linear operator acting on a complex Hilbert
space H. The following two statements are equivalent:

(i) There exists ε > 0 such that for all positive integer n there is a norm one
vector x ∈ X such that

card {k = 0, 1, . . . : |〈T kx, x〉| ≥ ε} ≥ n.
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(ii) For every non-decreasing function φ on R+, with φ(t) > 0 for all t > 0,

there exists a norm one vector x ∈ X such that

∞
∑

k=1

φ(|〈T kx, x〉|) = ∞.

Proof: (i) ⇒ (ii) Follows using the inclusion:

{k ∈ N : |〈T kx, x〉| ≥ ε} ⊂ {j ∈ N : φ(|〈T jx, x〉|) ≥ φ(ε)}.

(ii) ⇒ (i) Assume the contrary. For each n = 1, 2, · · · let us consider

wn := sup
||x||=1

card {k ∈ N : |〈T kx, x〉| ≥ 1

2n
}.

The function φ : R+ → R+ given by φ(0) = 0 and

φ(t) =
1

w1
1[ 1

2
,∞)(t) +

∞
∑

n=1

1

2n+1wn
1[ 1

2n+1 , 1
2n )(t)

for t > 0 is non-decreasing, φ(t) > 0 for each t > 0, and for each norm one vector
x ∈ H, one has:

∞
∑

n=1

φ(|〈Tnx, x〉|) ≤ 1.

This is a contradiction.

It is clear that if r(T ) ≥ 1 then the above statements (i) and (ii) are fulfilled.

In particular, follows that if T is an isometry on a complex Hilbert space H

and φ : [0,∞) → [0,∞) is a non-decreasing function with φ(t) > 0 for all t > 0
then there exists a norm one x ∈ H such that:

∞
∑

n=0

φ(|〈Tnx, x〉|) = ∞.

We can compare this result with a similar one given by Jan van Neerven in
[14] which states that if T is a non-unitary isometry on a real or complex Hilbert
space H then for all ε > 0 and all α ∈ c0 of norm one, there exists a norm one
vector x such that

|〈Tnx, x〉| ≥ (1 − ε)|αn| ∀n ∈ N.

This result do not holds for unitary isometry, (cf. [14], Example 2.4).
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4 Proofs of the Theorems 2, 3 and 4

Proof of the Theorem 2. Applying (3.1) with T (t) instead of T we get the
following inequality.

|〈T (t)x, y〉| ≤
√

2

2
(|〈T (t)x, x〉| + |〈T (t)y, y〉|)+

+
1

2
(|〈T (t)(x + y), x + y〉| + |〈T (t)(x + iy), x + iy〉|).

In view of (1.3), and using the Lemma 3.2 from [13], it follows that the
maps t 7→ |〈T (t)z, z〉| with z ∈ {x, y, x + y, x + iy} belong to the same Orlicz
space E over R+ which satisfies the condition lim

t→∞
||1[0,t]||E = ∞. Then the map

t 7→ |〈T (t)x, y〉| belongs to E and the desired assertion follows immediately. See
also [15], Theorem 4.6.3 (ii).

Remarks:
1. We leave open the question whether the uniform boundedness condition

on the semigroup can be dropped.
2. Under the different assumptions on the function φ the uniform boundedness

condition on the semigroup can be dropped, see [3].
3. If the semigroup T acts on the finite dimensional space Cn then the

uniform boundedness condition can be dropped.

Proof of the Theorem 3.
In view of (3.2) and (1.4) we get:

|
∫ s

0

〈ρµ(t)x, y〉dt| ≤
√

2

2
[|

∫ s

0

〈ρµ(t)x, x〉dt| + |
∫ s

0

〈ρµ(t)y, y〉dt|]+

+
1

2
[|

∫ s

0

〈ρµ(t)(x + y), x + y〉dt| + |
∫ s

0

〈ρµ(t)(x + iy), x + iy〉dt|]

≤ M ||x||||y|| < ∞.

Now we obtain

sup
µ∈R

sup
s≥0

∥

∥

∫ s

0
e−iµsT (s)xds

∥

∥ ≤ sup
||y||≤1

sup
s≥0

|
∫ s

0
〈e−iµtT (t)x, y〉dt|

≤ M ||x|| < ∞
and we can apply Corollary 1 to end the proof.

Proof of Theorem 4. The implication 1. ⇒ 2. was stated in [19] without
the assumption of uniform boundedness on T. A proof of 2. ⇒ 1. can be found
in [1]. In fact by the identity

∫ s

0

e−iµtT (t)(A − iµI)(A − iµI)−1x = T (s)(A − iµI)−1x − (A − iµI)−1x
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follows that

sup
s≥0

∥

∥

∥

∥

∫ s

0

e−µtT (t)xdt

∥

∥

∥

∥

≤ ||(A − iµI)−1||(1 + sup
s≥0

||T (s)||)||x||.

It is clear that the second statement implies the third one. On the other hand
from (3.2) follows that for each µ ∈ R and each x, y ∈ H have that

sup
s≥0

∣

∣

∣

∣

〈
∫ s

0

e−iµtT (t)xdt, y〉
∣

∣

∣

∣

= N(µ, x, y) < ∞,

and then (1.6) is fulfilled. The equivalences between 1. and 4. and between 2.
and 5. are obvious.

The semigroup T = {T (t)}t≥0, or its infinitesimal generator A, is called
strongly stable if lim

t→∞
T (t)x = 0 for every x ∈ X. The point spectrum of A,

denoted by σp(A) is the set of all complex scalars λ for which there exists a non-
zero vector x such that Ax = λx, while that the residual spectrum of A, denoted
by σr(A), is the set of all scalar λ ∈ σ(A) such that the range of (λI − A) is not
dense in X. As consequence of the Hahn-Banach theorem σp(A

∗) = σr(A). In
particular, the punctual spectrum of A∗ is a subset of σ(A). We recall here the
very famous and well-known stability theorem of Arendt-Batty-Lyubich-Vũ.

Theorem 7. Let T = {T (t)}t≥0 be a strongly continuous and uniformly bounded
semigroup on a Banach space X and let A its infinitesimal generator. If

(i) σ(A) ∩ (iR) is a countable set and

(ii) σp(A
∗) ∩ (iR) = ∅, then the semigroup T is strongly stable.

Combining this theorem with the Theorem 4 above, shall obtain:

Corollary 2. Let T = {T (t)}t≥0 be a strongly continuous uniformly bounded
semigroup on a complex space H and let A its infinitesimal generator. If σ(A)∩
(iR) = ∅ or if for each x ∈ H and each µ ∈ R one has:

sup
s≥0

∣

∣

∣

∣

∫ s

0

〈e−iµtT (t)x, x〉dt

∣

∣

∣

∣

= M(µ, x) < ∞,

then the semigroup T is strongly stable.
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