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Abstract

We prove a Filippov type existence theorem for solutions of a second

order differential inclusion with mixed boundary conditions by the applica-

tion of the contraction principle in the space of the derivatives of solutions

instead of the space of solutions.
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1 Introduction

In this note we study the second-order differential inclusion

x′′ ∈ F (t, x), a.e. (I) (1.1)

with boundary conditions of the form

x(0) − k1x
′(0) = c1,

x(1) + k2x
′(1) = c2,

(1.2)

where I = [0, 1], F (., .) : I × R → P(R) and ki ∈ R+, ci ∈ R, i = 1, 2.
In the theory of ordinary differential equations (i.e., when F is a single valued

map) problem (1.1)-(1.2) is well known as a bilocal problem with mixed boundary
conditions.

The present note is motivated by a recent paper of Belrabi and Benchohra ([1])
in which several existence results concerning second order nonlinear boundary
value problems with integral conditions are obtained via fixed point techniques.
The aim of our paper is to provide a Filippov type result concerning the exis-
tence of solutions of problem (1.1)-(1.2). Recall that for a differential inclusion
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defined by a lipschitzian set-valued map with nonconvex values, Filippov’s theo-
rem consists in proving the existence of a solution starting from a given almost
solution.

Our approach is different from the one in [1] and consists in applying the
contraction principle in the space of derivatives of solutions instead of the space
of solutions. The idea of applying the set-valued contraction principle due to
Covitz and Nadler ([6]) in the space of derivatives of the solutions belongs to
Kannai and Tallos ([7]) and it was already used for other results concerning
differential inclusions ([3,4,5] etc.).

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

In this short section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space and consider a set valued map T on X with

nonempty closed values in X. T is said to be a λ-contraction if there exists
0 < λ < 1 such that:

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X,

where dH(., .) denotes the Pompeiu-Hausdorff distance. Recall that Pompeiu-
Hausdorff distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
If X is complete, then every set valued contraction has a fixed point, i.e. a

point z ∈ X such that z ∈ T (z) ([6]).
We denote by Fix(T ) the set of all fixed points of the set-valued map T .

Obviously, Fix(T ) is closed.

Proposition 2.1.([8])Let X be a complete metric space and suppose that
T1, T2 are λ-contractions with closed values in X. Then

dH(Fix(T1), F ix(T2)) ≤
1

1 − λ
sup
z∈X

d(T1(z), T2(z)).

By AC1 we denote the space of differentiable functions x(.) : (0, 1) → R whose
first derivative x′(.) is absolutely continuous and by L1 we denote the Banach
space of Lebesgue integrable functions x(.) : [0, 1] → R endowed with the norm

||u(.)||1 =
∫ 1

0
|u(t)|dt.

A function x(.) ∈ AC1 is said to be a solution of (1.1)-(1.2) if there exists a
function v(.) ∈ L1 with v(t) ∈ F (t, x(t)), a.e. (I) such that x′′(t) = v(t), a.e. (I)
and x(.) satisfies conditions (1.2).
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The next statement is well known (e.g. [1]).

Lemma 2.2. If v(.) : [0, 1] → R is an integrable function then the problem

x′′(t) = v(t) a.e. (I)
x(0) − k1x

′(0) = c1,

x(1) + k2x
′(1) = c2,

has a unique solution x(.) ∈ AC1 given by

x(t) = Pc(t) +

∫ 1

0

G(t, s)v(s)ds,

where if c = (c1, c2) ∈ R2 we denote

Pc(t) =
(1 − t + k2)c1 + (k1 + t)c2

1 + k1 + k2

(2.1)

and

G(t, s) =
−1

1 + k1 + k2

{

(k1 + t)(1 − s + k2) if 0 ≤ t < s ≤ 1
(k1 + s)(1 − t + k2) if 0 ≤ s < t ≤ 1

(2.2)

is the Green function of the problem.

Note that if a = (a1, a2), b = (b1, b2) ∈ R2 we put ||a|| = |a1| + |a2| and

|Pa(t) − Pb(t)| ≤ ||a − b||.

On the other hand, it is well known that supt,s∈I |G(t, s)| = 1+k1+k2

4
.

In what follows we impose the following conditions on F .

Hypothesis 2.3. (i) F (., .) : I ×R → P(R) has nonempty closed values and
for every x ∈ X F (., x) is measurable.

(ii) There exists L(.) ∈ L1 such that for almost all t ∈ I, F (t, ·) is L(t)-
Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x − y| ∀ x, y ∈ R

and d(0, F (t, 0)) ≤ L(t) a.e.(I).

3 The main result

We are now ready to prove the main result of this paper.

Theorem 3.1. Assume that Hypothesis 2.3 is satisfied, λ := supt,s∈I

|G(t, s)| ·
∫ 1

0
L(s)ds < 1 and let y(.) ∈ AC1 be such that there exists q(.) ∈ L1
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with d(y′′(t), F (t, y(t))) ≤ q(t), a.e. (I). Denote c̃0 = y(0) − k1y
′(0), c̃1 =

y(1) + k2y
′(1) and c̃ = (c̃1, c̃2).

Then for every ε > 0 there exists x(.) a solution of (1.1)-(1.2) satisfying for
all t ∈ I

|x(t) − y(t)| ≤
1

1 − λ
||c − c̃|| +

supt,s∈I |G(t, s)|

1 − λ

∫ 1

0

q(t)dt + ε,

Proof: For u(.) ∈ L1 and define the following set valued maps:

Mu(t) = F (t, Pc(t) +

∫ 1

0

G(t, s)u(s)ds), t ∈ I,

T (u) = {φ(.) ∈ L1; φ(t) ∈ Mu(t) a.e. (I)}.

It follows from the definition and Lemma 2.2 that x(.) is a solution of (1.1)-
(1.2) if and only if x′′(.) is a fixed point of T (.).

We shall prove first that T (u) is nonempty and closed for every u ∈ L1. The
fact that that the set valued map Mu(.) is measurable is well known. For example

the map t → P (t) +
∫ 1

0
G(t, s)u(s)ds can be approximated by step functions and

we can apply Theorem III. 40 in [2]. Since the values of F are closed with the
measurable selection theorem (Theorem III.6 in [2]) we infer that Mu(.) admits
a measurable selection φ. One has

|φ(t)| ≤ d(0, F (t, 0)) + dH(F (t, 0), F (t, Pc(t) +

∫ 1

0

G(t, s)u(s)ds) ≤

≤ L(t)(1 + |Pc(t)| + sup
t,s∈I

|G(t, s)|

∫ 1

0

|u(s)|ds),

which shows that φ ∈ L1 and T (u) is nonempty.
On the other hand, the set T (u) is also closed. Indeed, if φn ∈ T (u) and

||φn − φ||1 → 0 then we can pass to a subsequence φnk
such that φnk

(t) → φ(t)
for a.e. t ∈ I, and we find that φ ∈ T (u).

We show next that T (.) is a contraction on L1.
Let u, v ∈ L1 be given, φ ∈ T (u) and let δ > 0. Consider the following

set-valued map:

H(t) = Mv(t) ∩ {x ∈ R; |φ(t) − x| ≤ L(t)|

∫ 1

0

G(t, s)(u(s) − v(s))ds| + δ}.

From Proposition III.4 in [2], H(.) is measurable and from Hypothesis 2.2
ii) H(.) has nonempty closed values. Therefore, there exists ψ(.) a measurable
selection of H(.). It follows that ψ ∈ T (v) and according with the definition of
the norm we have

||φ − ψ||1 =

∫ 1

0

|φ(t) − ψ(t)|dt ≤

∫ 1

0

L(t)(

∫ 1

0

|G(t, s)|.|u(s) − v(s)|ds)dt+
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∫ 1

0

δdt =

∫ 1

0

(

∫ 1

0

L(t)|G(t, s)|dt)|u(s) − v(s)|ds + δ ≤ λ||u − v||1 + δ.

Since δ > 0 was chosen arbitrarly, we deduce that

d(φ, T (v)) ≤ λ||u − v||1.

Replacing u by v we obtain

dH(T (u), T (v)) ≤ λ||u − v||1,

thus T (.) is a contraction on L1.
We consider next the following set-valued maps

F1(t, x) = F (t, x) + q(t)[−1, 1], (t, x) ∈ I × R,

Pc̃(t) =
(1 − t + k2)c̃1 + (k1 + t)c̃2

1 + k1 + k2

,

M1
u(t) = F1(t, Pc̃(t) +

∫ 1

0

G(t, s)u(s)ds), t ∈ I, u(.) ∈ L1,

T1(u) = {ψ(.) ∈ L1; ψ(t) ∈ M1
u(t) a.e. (I)}.

Obviously, F1(., .) satisfies Hypothesis 2.3.
Repeating the previous step of the proof we obtain that T1 is also a λ-

contraction on L1 with closed nonempty values.
We prove next the following estimate

dH(T (u), T1(u)) ≤ ||c − c̃||

∫ 1

0

L(t)dt +

∫ 1

0

q(t)dt (3.1)

Let φ ∈ T (u), δ > 0 and define

H1(t) = M1
u(t) ∩ {z ∈ R; |φ(t) − z| ≤ L(t)|Pc(t) − Pc̃(t)| + q(t) + δ}.

With the same arguments used for the set valued map H(.), we deduce that
H1(.) is measurable with nonempty closed values. Hence let ψ(.) be a measurable
selection of H1(.). It follows that ψ ∈ T1(u) and one has

||φ − ψ||1 =

∫ 1

0

|φ(t) − ψ(t)|dt ≤

∫ 1

0

[L(t)|Pc(t) − Pc̃(t)| + q(t) + δ]dt ≤

∫ 1

0

L(t)|Pc(t) − Pc̃(t)|dt +

∫ 1

0

q(t) + δ ≤ ||c − c̃||

∫ 1

0

L(t)dt +

∫ 1

0

q(t)dt + δ.

Since δ is arbitrarly, as above we obtain (3.1).
We apply Proposition 2.1 and we infer that

dH(Fix(T ), F ix(T1)) ≤
1

1 − λ
||c − c̃||

∫ 1

0

L(t)dt +
1

1 − λ

∫ 1

0

q(t)dt.
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Since y′′(.) ∈ Fix(T1) it follows that there exists u(.) ∈ Fix(T ) such that for
any ε > 0

||y′′ − u||1 ≤
1

1 − λ
||c − c̃||

∫ 1

0

L(t)dt +
1

1 − λ

∫ 1

0

q(t)dt +
ε

supt,s∈I |G(t, s)|
.

We define x(t) = Pc(t) +
∫ 1

0
G(t, s)u(s)ds, t ∈ I and we have

|x(t) − y(t)| ≤ |Pc(t) − Pc̃(t)| +

∫ 1

0

|G(t, s)|.|u(s) − y′′(s)|ds

≤ |Pc(t) − Pc̃(t)| + sup
t,s∈I

|G(t, s)|.||y′′ − u||1 ≤ |Pc(t) − Pc̃(t)|+

1

1 − λ
sup
t,s∈I

|G(t, s)|

∫ 1

0

L(t)dt||c − c̃|| +
supt,s∈I |G(t, s)|

1 − λ

∫ 1

0

q(t)dt + ε

≤
1

1 − λ
||c − c̃|| +

supt,s∈I |G(t, s)|

1 − λ

∫ 1

0

q(t)dt + ε,

which completes the proof.
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