Bull. Math. Soc. Sci. Math. Roumanie Tome 51(99) No. 2, 2008, 137–143

An existence result for bilocal problems with mixed boundary conditions

by Aurelian Cernea

Abstract

We prove a Filippov type existence theorem for solutions of a second order differential inclusion with mixed boundary conditions by the application of the contraction principle in the space of the derivatives of solutions instead of the space of solutions.

Key Words: Mixed bilocal problem, set-valued contraction, fixed point.

2000 Mathematics Subject Classification: Primary 34A60.

1 Introduction

In this note we study the second-order differential inclusion

$$x'' \in F(t, x), \quad a.e. (I) \tag{1.1}$$

with boundary conditions of the form

$$\begin{aligned} x(0) - k_1 x'(0) &= c_1, \\ x(1) + k_2 x'(1) &= c_2, \end{aligned}$$
(1.2)

where $I = [0, 1], F(., .) : I \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$ and $k_i \in \mathbf{R}_+, c_i \in \mathbf{R}, i = 1, 2$.

In the theory of ordinary differential equations (i.e., when F is a single valued map) problem (1.1)-(1.2) is well known as a bilocal problem with mixed boundary conditions.

The present note is motivated by a recent paper of Belrabi and Benchohra ([1]) in which several existence results concerning second order nonlinear boundary value problems with integral conditions are obtained via fixed point techniques. The aim of our paper is to provide a Filippov type result concerning the existence of solutions of problem (1.1)-(1.2). Recall that for a differential inclusion

defined by a lipschitzian set-valued map with nonconvex values, Filippov's theorem consists in proving the existence of a solution starting from a given almost solution.

Our approach is different from the one in [1] and consists in applying the contraction principle in the space of derivatives of solutions instead of the space of solutions. The idea of applying the set-valued contraction principle due to Covitz and Nadler ([6]) in the space of derivatives of the solutions belongs to Kannai and Tallos ([7]) and it was already used for other results concerning differential inclusions ([3,4,5] etc.).

The paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

In this short section we sum up some basic facts that we are going to use later.

Let (X, d) be a metric space and consider a set valued map T on X with nonempty closed values in X. T is said to be a λ -contraction if there exists $0 < \lambda < 1$ such that:

$$d_H(T(x), T(y)) \le \lambda d(x, y) \quad \forall x, y \in X,$$

where $d_H(.,.)$ denotes the Pompeiu-Hausdorff distance. Recall that Pompeiu-Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$d_H(A,B) = \max\{d^*(A,B), d^*(B,A)\}, \quad d^*(A,B) = \sup\{d(a,B); a \in A\},\$$

where $d(x, B) = \inf_{y \in B} d(x, y)$.

If X is complete, then every set valued contraction has a fixed point, i.e. a point $z \in X$ such that $z \in T(z)$ ([6]).

We denote by Fix(T) the set of all fixed points of the set-valued map T. Obviously, Fix(T) is closed.

Proposition 2.1.([8])Let X be a complete metric space and suppose that T_1, T_2 are λ -contractions with closed values in X. Then

$$d_H(Fix(T_1), Fix(T_2)) \le \frac{1}{1-\lambda} \sup_{z \in X} d(T_1(z), T_2(z)).$$

By AC^1 we denote the space of differentiable functions $x(.): (0,1) \to \mathbf{R}$ whose first derivative x'(.) is absolutely continuous and by L^1 we denote the Banach space of Lebesgue integrable functions $x(.): [0,1] \to \mathbf{R}$ endowed with the norm $||u(.)||_1 = \int_0^1 |u(t)| dt$.

A function $x(.) \in AC^1$ is said to be a solution of (1.1)-(1.2) if there exists a function $v(.) \in L^1$ with $v(t) \in F(t, x(t))$, a.e. (I) such that x''(t) = v(t), a.e. (I) and x(.) satisfies conditions (1.2).

The next statement is well known (e.g. [1]).

Lemma 2.2. If $v(.): [0,1] \to \mathbf{R}$ is an integrable function then the problem

$$\begin{aligned} x''(t) &= v(t) \quad a.e. \ (I) \\ x(0) &- k_1 x'(0) = c_1, \\ x(1) &+ k_2 x'(1) = c_2, \end{aligned}$$

has a unique solution $x(.) \in AC^1$ given by

$$x(t) = P_c(t) + \int_0^1 G(t,s)v(s)ds,$$

where if $c = (c_1, c_2) \in \mathbf{R}^2$ we denote

$$P_c(t) = \frac{(1-t+k_2)c_1 + (k_1+t)c_2}{1+k_1+k_2}$$
(2.1)

and

$$G(t,s) = \frac{-1}{1+k_1+k_2} \begin{cases} (k_1+t)(1-s+k_2) & \text{if } 0 \le t < s \le 1\\ (k_1+s)(1-t+k_2) & \text{if } 0 \le s < t \le 1 \end{cases}$$
(2.2)

is the Green function of the problem.

Note that if $a = (a_1, a_2), b = (b_1, b_2) \in \mathbf{R}^2$ we put $||a|| = |a_1| + |a_2|$ and

$$|P_a(t) - P_b(t)| \le ||a - b||$$

On the other hand, it is well known that $\sup_{t,s\in I} |G(t,s)| = \frac{1+k_1+k_2}{4}$. In what follows we impose the following conditions on F.

Hypothesis 2.3. (i) $F(.,.) : I \times \mathbb{R} \to \mathcal{P}(\mathbb{R})$ has nonempty closed values and for every $x \in X$ F(.,x) is measurable.

(ii) There exists $L(.) \in L^1$ such that for almost all $t \in I, F(t, \cdot)$ is L(t)-Lipschitz in the sense that

$$d_H(F(t,x),F(t,y)) \le L(t)|x-y| \quad \forall \ x,y \in \mathbf{R}$$

and $d(0, F(t, 0)) \le L(t)$ a.e.(I).

3 The main result

We are now ready to prove the main result of this paper.

Theorem 3.1. Assume that Hypothesis 2.3 is satisfied, $\lambda := \sup_{t,s\in I} |G(t,s)| \cdot \int_0^1 L(s) ds < 1$ and let $y(.) \in AC^1$ be such that there exists $q(.) \in L^1$

with $d(y''(t), F(t, y(t))) \leq q(t)$, a.e. (I). Denote $\tilde{c}_0 = y(0) - k_1 y'(0)$, $\tilde{c}_1 = y(1) + k_2 y'(1)$ and $\tilde{c} = (\tilde{c}_1, \tilde{c}_2)$.

Then for every $\varepsilon > 0$ there exists x(.) a solution of (1.1)-(1.2) satisfying for all $t \in I$

$$|x(t) - y(t)| \le \frac{1}{1 - \lambda} ||c - \tilde{c}|| + \frac{\sup_{t,s \in I} |G(t,s)|}{1 - \lambda} \int_0^1 q(t) dt + \varepsilon,$$

Proof: For $u(.) \in L^1$ and define the following set valued maps:

$$M_u(t) = F(t, P_c(t) + \int_0^1 G(t, s)u(s)ds), \quad t \in I,$$

$$T(u) = \{\phi(.) \in L^1; \quad \phi(t) \in M_u(t) \quad a.e. \ (I)\}.$$

It follows from the definition and Lemma 2.2 that x(.) is a solution of (1.1)-(1.2) if and only if x''(.) is a fixed point of T(.).

We shall prove first that T(u) is nonempty and closed for every $u \in L^1$. The fact that the set valued map $M_u(.)$ is measurable is well known. For example the map $t \to P(t) + \int_0^1 G(t, s)u(s)ds$ can be approximated by step functions and we can apply Theorem III. 40 in [2]. Since the values of F are closed with the measurable selection theorem (Theorem III.6 in [2]) we infer that $M_u(.)$ admits a measurable selection ϕ . One has

$$\begin{aligned} |\phi(t)| &\leq d(0, F(t, 0)) + d_H(F(t, 0), F(t, P_c(t) + \int_0^1 G(t, s)u(s)ds) \leq \\ &\leq L(t)(1 + |P_c(t)| + \sup_{t,s \in I} |G(t, s)| \int_0^1 |u(s)|ds), \end{aligned}$$

which shows that $\phi \in L^1$ and T(u) is nonempty.

On the other hand, the set T(u) is also closed. Indeed, if $\phi_n \in T(u)$ and $||\phi_n - \phi||_1 \to 0$ then we can pass to a subsequence ϕ_{n_k} such that $\phi_{n_k}(t) \to \phi(t)$ for a.e. $t \in I$, and we find that $\phi \in T(u)$.

We show next that T(.) is a contraction on L^1 .

Let $u, v \in L^1$ be given, $\phi \in T(u)$ and let $\delta > 0$. Consider the following set-valued map:

$$H(t) = M_v(t) \cap \{x \in \mathbf{R}; \ |\phi(t) - x| \le L(t)| \int_0^1 G(t,s)(u(s) - v(s))ds| + \delta\}.$$

From Proposition III.4 in [2], H(.) is measurable and from Hypothesis 2.2 ii) H(.) has nonempty closed values. Therefore, there exists $\psi(.)$ a measurable selection of H(.). It follows that $\psi \in T(v)$ and according with the definition of the norm we have

140

An existence result for bilocal problems

$$\int_0^1 \delta dt = \int_0^1 (\int_0^1 L(t) |G(t,s)| dt) |u(s) - v(s)| ds + \delta \le \lambda ||u - v||_1 + \delta dt$$

Since $\delta > 0$ was chosen arbitrarly, we deduce that

$$d(\phi, T(v)) \le \lambda ||u - v||_1.$$

Replacing u by v we obtain

$$d_H(T(u), T(v)) \le \lambda ||u - v||_1,$$

thus T(.) is a contraction on L^1 .

We consider next the following set-valued maps

$$\begin{split} F_1(t,x) &= F(t,x) + q(t)[-1,1], \quad (t,x) \in I \times \mathbf{R}, \\ P_{\tilde{c}}(t) &= \frac{(1-t+k_2)\tilde{c}_1 + (k_1+t)\tilde{c}_2}{1+k_1+k_2}, \\ M_u^1(t) &= F_1(t,P_{\tilde{c}}(t) + \int_0^1 G(t,s)u(s)ds), \quad t \in I, \quad u(.) \in L^1, \\ T_1(u) &= \{\psi(.) \in L^1; \quad \psi(t) \in M_u^1(t) \quad a.e. \ (I)\}. \end{split}$$

Obviously, $F_1(.,.)$ satisfies Hypothesis 2.3.

Repeating the previous step of the proof we obtain that T_1 is also a λ contraction on L^1 with closed nonempty values.

We prove next the following estimate

$$d_H(T(u), T_1(u)) \le ||c - \tilde{c}|| \int_0^1 L(t)dt + \int_0^1 q(t)dt$$
(3.1)

Let $\phi \in T(u), \delta > 0$ and define

$$H_1(t) = M_u^1(t) \cap \{ z \in \mathbf{R}; \quad |\phi(t) - z| \le L(t) |P_c(t) - P_{\tilde{c}}(t)| + q(t) + \delta \}.$$

With the same arguments used for the set valued map H(.), we deduce that $H_1(.)$ is measurable with nonempty closed values. Hence let $\psi(.)$ be a measurable selection of $H_1(.)$. It follows that $\psi \in T_1(u)$ and one has

$$||\phi - \psi||_{1} = \int_{0}^{1} |\phi(t) - \psi(t)| dt \le \int_{0}^{1} [L(t)|P_{c}(t) - P_{\tilde{c}}(t)| + q(t) + \delta] dt \le \int_{0}^{1} L(t)|P_{c}(t) - P_{\tilde{c}}(t)| dt + \int_{0}^{1} q(t) + \delta \le ||c - \tilde{c}|| \int_{0}^{1} L(t) dt + \int_{0}^{1} q(t) dt + \delta.$$

Since δ is arbitrarly, as above we obtain (3.1). We apply Proposition 2.1 and we infer that

$$d_H(Fix(T), Fix(T_1)) \le \frac{1}{1-\lambda} ||c - \tilde{c}|| \int_0^1 L(t)dt + \frac{1}{1-\lambda} \int_0^1 q(t)dt.$$

Since $y''(.) \in Fix(T_1)$ it follows that there exists $u(.) \in Fix(T)$ such that for any $\varepsilon > 0$

$$||y''-u||_1 \leq \frac{1}{1-\lambda}||c-\tilde{c}|| \int_0^1 L(t)dt + \frac{1}{1-\lambda}\int_0^1 q(t)dt + \frac{\varepsilon}{\sup_{t,s\in I}|G(t,s)|}.$$

We define $x(t) = P_c(t) + \int_0^1 G(t,s)u(s)ds, t \in I$ and we have

$$\begin{split} |x(t) - y(t)| &\leq |P_c(t) - P_{\tilde{c}}(t)| + \int_0^1 |G(t,s)| \cdot |u(s) - y''(s)| ds \\ &\leq |P_c(t) - P_{\tilde{c}}(t)| + \sup_{t,s \in I} |G(t,s)| \cdot ||y'' - u||_1 \leq |P_c(t) - P_{\tilde{c}}(t)| + \\ &\frac{1}{1 - \lambda} \sup_{t,s \in I} |G(t,s)| \int_0^1 L(t) dt ||c - \tilde{c}|| + \frac{\sup_{t,s \in I} |G(t,s)|}{1 - \lambda} \int_0^1 q(t) dt + \varepsilon \\ &\leq \frac{1}{1 - \lambda} ||c - \tilde{c}|| + \frac{\sup_{t,s \in I} |G(t,s)|}{1 - \lambda} \int_0^1 q(t) dt + \varepsilon, \end{split}$$

which completes the proof.

References

- A. BELRABI, M. BENCHOHRA, Existence results for nonlinear boundary value problems with integral boundary conditions, Electron. J. Differ. Equations. 2005 no. 6 (2005), 1-10.
- [2] C. CASTAING, M. VALADIER, Convex Analysis and Measurable Multifunctions, LNM 580, Springer, Berlin, 1977.
- [3] A. CERNEA, A Filippov type existence theorem for an infinite operational differential inclusion, Stud. Cerc. Mat., 50 (1998), 15-22.
- [4] A. CERNEA, An existence theorem for some nonconvex hyperbolic differential inclusions, Mathematica (Cluj) 45(68) (2003), 121-126.
- [5] A. CERNEA, Existence for nonconvex integral inclusions via fixed points, Arch. Mathemat. 39 (2003), 293-298.
- [6] H. COVITZ, S. B. NADLER JR., Multivalued contraction mapping in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.
- [7] Z. KANNAI, P. TALLOS, Stability of solution sets of differential inclusions, Acta Sci. Math. (Szeged) 61(1995), 197-207.

	_	_
ĸ		

[8] T.C. LIM, On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436-441.

Received: 24.10.2007.

Faculty of Mathematics and Informatics, University of Bucharest, Academiei 14, 010014 Bucharest, Romania E-mail: acernea@math.math.unibuc.ro