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boundary conditions
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Abstract

We prove a Filippov type existence theorem for solutions of a second
order differential inclusion with mixed boundary conditions by the applica-
tion of the contraction principle in the space of the derivatives of solutions
instead of the space of solutions.
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1 Introduction
In this note we study the second-order differential inclusion

2" € F(t,x), a.e. (1) (1.1)
with boundary conditions of the form

x(0) — k12'(0) = ¢q, (1.2)
(1) 4 kox'(1) = ca, ’
where I =[0,1], F(.,.): IxR—-PR)and k; e Ry, ¢; e R, i=1,2.

In the theory of ordinary differential equations (i.e., when F' is a single valued
map) problem (1.1)-(1.2) is well known as a bilocal problem with mixed boundary
conditions.

The present note is motivated by a recent paper of Belrabi and Benchohra ([1])
in which several existence results concerning second order nonlinear boundary
value problems with integral conditions are obtained via fixed point techniques.
The aim of our paper is to provide a Filippov type result concerning the exis-
tence of solutions of problem (1.1)-(1.2). Recall that for a differential inclusion
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defined by a lipschitzian set-valued map with nonconvex values, Filippov’s theo-
rem consists in proving the existence of a solution starting from a given almost
solution.

Our approach is different from the one in [1] and consists in applying the
contraction principle in the space of derivatives of solutions instead of the space
of solutions. The idea of applying the set-valued contraction principle due to
Covitz and Nadler ([6]) in the space of derivatives of the solutions belongs to
Kannai and Tallos ([7]) and it was already used for other results concerning
differential inclusions ([3,4,5] etc.).

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

In this short section we sum up some basic facts that we are going to use later.

Let (X,d) be a metric space and consider a set valued map T on X with
nonempty closed values in X. T is said to be a A-contraction if there exists
0 < A < 1 such that:

dp(T(x),T(y)) < Ad(z,y) Va,y € X,

where dg(.,.) denotes the Pompeiu-Hausdorff distance. Recall that Pompeiu-
Hausdorff distance of the closed subsets A, B C X is defined by

dy(A, B) = max{d*(A, B),d"(B,A)}, d*(A,B)=sup{d(a,B);a € A},

where d(z, B) = infyep d(x,y).

If X is complete, then every set valued contraction has a fixed point, i.e. a
point z € X such that z € T'(2) ([6]).

We denote by Fiz(T) the set of all fixed points of the set-valued map T.
Obviously, Fiz(T') is closed.

Proposition 2.1.([8])Let X be a complete metric space and suppose that
Ty, Ty are A-contractions with closed values in X. Then

dy(Fiz(Th), Fiz(T)) < sup d(T1(2), Ta(2)).

— N zeX

By AC! we denote the space of differentiable functions x(.) : (0,1) — R whose
first derivative 2’(.) is absolutely continuous and by L' we denote the Banach
space of Lebesgue integrable functions z(.) : [0,1] — R endowed with the norm

1
luOll = [y lu(®)]dt.

A function z(.) € AC? is said to be a solution of (1.1)-(1.2) if there exists a
function v(.) € L with v(t) € F(t,z(t)), a.e. (I) such that 2" (t) = v(t), a.e. (I)
and z(.) satisfies conditions (1.2).
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The next statement is well known (e.g. [1]).

Lemma 2.2. Ifv(.) : [0,1] — R is an integrable function then the problem
2"(t) =wv(t) a.e (I)
x(0) — k12'(0) = ¢1,
(1) + k22'(1) = ca,

has a unique solution xz(.) € AC given by

where if ¢ = (c1,¢2) € R? we denote

(1 —t+ kQ)Cl + (kl + t)CQ

Pc(t): 1+ ky + ko (21)
and
B -1 (F1+t)1—s+ky) if 0<t<s<l1
G(t’s)_1+k1+k2{ (ki +s)(1—t+ky) if 0<s<t<l 22

is the Green function of the problem.
Note that if a = (a1, az2),b = (b1,b2) € R? we put ||a|| = |a1| + |az| and
|Pa(t) = Py(t)] < [la — b]|.

On the other hand, it is well known that sup, ,¢;|G(t,s)| = Ltk
In what follows we impose the following conditions on F'.

Hypothesis 2.3. (i) F(.,.) : I x R — P(R) has nonempty closed values and
for every x € X F(.,x) is measurable.

(ii) There exists L(.) € L' such that for almost all t € I,F(t,-) is L(t)-
Lipschitz in the sense that

du(F(t,2), F(t,y)) <L)z -yl ¥V z,yeR

and d(0, F(t,0)) < L(t) a.e.(I).

3 The main result
We are now ready to prove the main result of this paper.

Theorem 3.1. Assume that Hypothesis 2.3 is satisfied, \ := sup; ;¢
|G(t,s)] - fol L(s)ds < 1 and let y(.) € AC! be such that there exists q(.) € L'
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with d(y"(t), F(t,y(t))) < q(t), a.e. (I). Denote ¢ = y(0) — k1y/(0), & =
y(1) + ko' (1) and é = (¢1,¢2).

Then for every € > 0 there exists x(.) a solution of (1.1)-(1.2) satisfying for
alltel

(t)dt + ¢,

jo(t) — y(t)] < Suptsﬂ'Gt’S'/

——lle—all+

Proof: For u(.) € L' and define the following set valued maps:
1
M, (t) = F(t, P.(t) —l—/ G(t,s)u(s)ds), tel,
0
T(u)={¢(.) € L*; ¢(t) € My(t) a.e. (I)}.

It follows from the definition and Lemma 2.2 that z(.) is a solution of (1.1)-
(1.2) if and only if z”/(.) is a fixed point of T'(.).

We shall prove first that 7'(u) is nonempty and closed for every v € L'. The
fact that that the set valued map M, (.) is measurable is well known. For example
the map ¢t — P(t) + fo s)ds can be approximated by step functions and
we can apply Theorem III 40 in [2]. Since the values of F are closed with the
measurable selection theorem (Theorem II1.6 in [2]) we infer that M,(.) admits
a measurable selection ¢. One has

6(t)] < d(0, F(t,0)) + dgs (F(t,0), / G(t, s)u(s)ds) <
< L) (1 + |P(t)] —i—tbuep |G(t, )| |u )|ds),

which shows that ¢ € L' and T'(u) is nonempty.

On the other hand, the set T(u) is also closed. Indeed, if ¢, € T'(u) and
[|¢n, — #|]1 — O then we can pass to a subsequence ¢, such that ¢, (t) — ¢(t)
for a.e. t € I, and we find that ¢ € T'(u).

We show next that T(.) is a contraction on L.

Let u,v € L' be given, ¢ € T(u) and let § > 0. Consider the following
set-valued map:

H(t) = My(t) N {z € R; |¢(t) — 2| < L(t)|/0 G(t,s)(u(s) — v(s))ds| + 6}.

From Proposition 1.4 in [2], H(.) is measurable and from Hypothesis 2.2
ii) H(.) has nonempty closed values. Therefore, there exists ¢(.) a measurable
selection of H(.). It follows that ¥ € T(v) and according with the definition of
the norm we have

1 1
16— il = / 16(t) — (1) dt < / L()( / G (t, 9)].[u(s) — v(s)|ds)dt+
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/ St = / / DG, $)|d) [u(s) — v(s)|ds +8 < AlJu— o]y + 5.
Since 6 > 0 was chosen arbitrarly, we deduce that
(¢, T(v)) < Allu— 1.
Replacing u by v we obtain
du(T(u),T(v)) < Allu—vlf,

thus T'(.) is a contraction on L!.
We consider next the following set-valued maps

Fi(t,x) = F(t,z) + q(t)[-1,1], (t,z) € I xR,

(1 —t+ko)é + (k1 +1)éo
14k + ko

P:(t) =

M(t) = Fy(t, Ps(t /Gts ds), tel, wu()elL

Ti(u) = {y() €L o(t) € My(t) ae. (1)}
Obviously, Fi(.,.) satisfies Hypothesis 2.3.
Repeating the previous step of the proof we obtain that 737 is also a A-
contraction on L! with closed nonempty values.
We prove next the following estimate

it (T(w), Ty (u)) < Hc—c||/ dt+/ o(t)dt (3.1)
Let ¢ € T(u),0 > 0 and define
Hi(t)=M,(t)N{z € R; [p(t) — 2| < L(t)|P.(t) — Pa(t)| + q(t) + 6}

With the same arguments used for the set valued map H(.), we deduce that
H;(.) is measurable with nonempty closed values. Hence let ¢(.) be a measurable
selection of Hy(.). It follows that 1) € T} (u) and one has

1
6 — Iy = / 16() — (D))t < / L(0)|Pult) — P(t)] + q(t) + 8)dt <

/O L(t)\Pc(t)—Pé(t)\dtJr/ q(t)+0 < ||c—c\|/ dt+/ q(t)dt + 6.

Since § is arbitrarly, as above we obtain (3.1).
We apply Proposition 2.1 and we infer that

dp (Fiz(T), Fiz(T})) <

1
Hc—c||/ t)dt + 7)\ q(t)dt.
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Since y”(.) € Fixz(Ty) it follows that there exists u(.) € Fiz(T) such that for

any € >0
lly" —ulls < ||C—CH/ dt—l—i/ dt-i-;
T1- supy ser |G (1, 9)]
We define z(t) )+ fo s)ds, t € I and we have
l2(t) —y(®)] < [Pe(t |+/ |G(t, 5)]-|u(s) —y"(s)lds

< [Pe(t) — Pa(t)] + sup G(t, )1 ly" — ully < |[Pe(t) = Pa(t)|+
,8€

1 up, .7 |G(t, s)
sup\Gts|/ dt|c—c||—|—pt€[||/ t)dt + ¢

1-A t,s€l
1 su G(t,s
< \|cfé||+—p”el| | t)dt + e,
1—2A
which completes the proof. D

References

[1]

A. BELRABI, M. BENCHOHRA, Ezistence results for nonlinear boundary value
problems with integral boundary conditions, Electron. J. Differ. Equations.
2005 no. 6 (2005), 1-10.

C. CASTAING, M. VALADIER, Conver Analysis and Measurable Multifunc-
tions, LNM 580, Springer, Berlin, 1977.

A. CERNEA, A Filippov type existence theorem for an infinite operational
differential inclusion, Stud. Cerc. Mat., 50 (1998), 15-22.

A. CERNEA, An ezistence theorem for some nonconvex hyperbolic differential
inclusions, Mathematica (Cluj) 45(68) (2003), 121-126.

A. CERNEA, Ezxistence for nonconvex integral inclusions via fixed points, Arch.
Mathemat. 39 (2003), 293-298.

H. Covirz, S. B. NADLER JR., Multivalued contraction mapping in genera-
lized metric spaces, Israel J. Math. 8 (1970), 5-11.

Z. KANNAIL, P. TALLOS, Stability of solution sets of differential inclusions,
Acta Sci. Math. (Szeged) 61(1995), 197-207.



An existence result for bilocal problems 143

[8] T.C. LM, On fized point stability for set valued contractive mappings with
applications to generalized differential equations, J. Math. Anal. Appl. 110

(1985), 436-441.

Received: 24.10.2007.

Faculty of Mathematics and Informatics,
University of Bucharest,

Academiei 14, 010014

Bucharest, Romania

E-mail: acernea@math.math.unibuc.ro



