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Abstract

In this note the velocity field and the associated tangential stress cor-

responding to the rotational flow of a generalized Maxwell fluid within an

infinite circular cylinder are determined by means of the Laplace and Hankel

transforms. At time t = 0 the fluid is at rest and the motion is produced

by the rotation of the cylinder around its axis. The solutions that have

been obtained are presented under integral and series forms in terms of

the generalized G-functions. The similar solutions for ordinary Maxwell

fluid, performing the same motion, are obtained as particular cases of our

solutions for β = 1.
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1 Introduction

The inadequacy of the classical Navier-Stokes theory to describe the behavior
of the rheologically complex fluids such as polymer solutions, heavy oils, blood
and many emulsions, has led to the development of models of non-Newtonian
fluids. Among them, the models of differential type and rate type have received
much attention. The first viscoelastic rate type model is due to Maxwell [1], and
this model has had some success in describing the response of some polymeric
liquids. In the last ten years, many authors have made use of rheological equations
with fractional derivatives to describe the properties of polymers. In general,
the constitutive equations with fractional derivative are obtained from known
non-Newtonian models by replacing time ordinary derivatives by derivatives of
fractional order.

For example [2], in the prediction of the dynamic mechanical properties of
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a viscous damper containing a viscoelastic fluid in the form of silicon gel, the
fluid is modeled by a fractional derivative Maxwell model. The motion of a fluid
in the neighborhood of a rotating body is of interest to both academic workers
and industry. In this note, we consider the viscoelastic fluid to be modeled as a
generalized Maxwell fluid and study the flow starting from rest due to the rotation
of the cylinder around its axis with a velocity of constant angular acceleration.
The velocity field as well as the adequate shear stress, obtained by means of
the Laplace and Hankel transforms, are presented under series forms in terms of
the generalized G-functions. The similar solutions for ordinary Maxwell fluids as
well as those for Newtonian fluids, performing the same motion, are obtained as
limiting cases of our general solutions.

2 Governing equations

The constitutive equations of an incompressible generalized Maxwell fluid, as
it results from [3-5] are of the form

T = −pI + S, S + λ(Dβ
t S + V · ∇S − LS − SLT ) = µA, (1)

where T is the Cauchy stress tensor, −pI denotes the indeterminate spherical
stress, S is the extra-stress tensor, V is the velocity, L is the velocity gradient,
A = L + LT is the first Rivlin-Ericksen tensor, µ is the dynamic viscosity, λ is
the relaxation time, ∇ is the gradient operator, the superscript T denotes the
transpose operation and Dβ

t is Reimann-Liouville fractional derivative of order β
[6,7],

Dβ
t f(t) =

1

Γ(1 − β)

d

dt

∫ t

0

f(τ)

(t − τ)β
dτ ; 0 < β ≤ 1 (2)

where Γ(·) is the Gamma function. This model reduces to the ordinary Maxwell
model when β = 1 because D1

t f = df/dt. In cylindrical coordinates (r, θ, z), the
rotational flow velocity is given by [3, 8, 9]

V = V(r, t) = ω(r, t)eθ, (3)

where eθ is the transverse unit vector. For such flows the constraint of incom-
pressibility is automatically satisfied. Since the velocity field is independent of θ
and z, we also assume that S depends only of r and t. Furthermore, if the fluid
is assumed to be at rest at the moment t = 0 then

S(r, 0) = 0 , (4)

Equalities (1)2, (3) and (4) imply Srr = Szz = Srz = Sθz = 0 and

(1 + λDβ
t )τ = µ(

∂ω

∂r
−

1

r
ω) , (5)
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where τ = Srθ is the shear stress which is different of zero.
In the absence of body forces and a pressure gradient in the axial direction,

the balance of the linear momentum leads to the relevant equation

ρ
∂ω

∂t
= −

∂p

∂θ
+

(

∂

∂r
+

2

r

)

τ (6)

where ρ is the constant density of the fluid and ∂p/∂θ has to be zero due to the
rotational symmetry [7, 10].

Eliminating τ among Eqs. (5) and (6), we attain to the governing equation

(1 + λDβ
t )

∂ω(r, t)

∂t
= ν

(

∂2

∂r2
+

1

r

∂

∂r
−

1

r2

)

ω(r, t) , (7)

where ν = µ/ρ is the kinematic viscosity of the fluid.

3 Rotating flow in an infinite circular cylinder

Let us consider an incompressible generalized Maxwell fluid at rest in an
infinite circular cylinder of radius R. At time t = 0+ the cylinder begins to
rotate around its axis with the angular velocity Ω t. Owing to the shear the fluid
is gradually moved, its velocity being of the form (3) while the governing equation
is (7). The appropriate initial and boundary conditions are

ω(r, 0) =
∂ω(r, 0)

∂t
= 0 ; r ∈ [0, R) (8)

and

ω(R, t) = R Ω t; t ≥ 0 . (9)

To solve this problem we shall use as in [9, 11], the Laplace and Hankel transforms.

3.1 Calculation of the velocity field

Applying the Laplace transform to Eq. (7), using the Laplace transform for-
mula for sequential fractional derivatives [7] and having the initial and boundary
conditions (8) and (9) in mind, we find that

(q + λqβ+1)ω(r, q) = ν

(

∂2

∂r2
+

1

r

∂

∂r
−

1

r2

)

ω(r, q); r ∈ (0, R), (10)

where the image function ω(r, q) has to satisfy the condition

ω(R, q) =
ΩR

q2
. (11)
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Multiplying both sides of Eqs. (10) by rJ1(rr1n) , integrating with respect to
r from 0 to R and taking into account the condition (11) and the equality

∫ R

0

r

(

∂2ω

∂r2
+

1

r

∂ω

∂r
−

ω

r2

)

J1(rr1n)dr = Rr1nJ2(Rr1n)ω(R, t) − r2
1nω

H
(r1n, t),

we find that

ω
H

(r1n, q) = νΩR2r1nJ2(Rr1n)
1

q2[q + λqβ+1 + νr2
1n]

(12)

where

ω
H

(r1n, q) =

∫ R

0

rω(r, q)J1(rr1n)dr

is the Hankel transform of ω(r, q), while r1n are the positive roots of the tran-
scendental equation J1(Rr) = 0. Now for a more suitable presentation of the
final results, we rewrite Eq. (12) in the following equivalent form

ωH(r1n, q) =
ΩR2

q2r1n

J2(Rr1n) −
ΩR2

νr3
1n

(

1

q
−

1

q + νr2
1n

)

J2(Rr1n) −

ν ΩR2r1nJ2(Rr1n)
1

q + νr2
1n

λqβ−1

q + λqβ+1 + νr2
1n

(13)

Using the following formulae

ω(r, q) =
2

R2

∞
∑

n=1

ωH(r1n, q)
J1(rr1n)

J2
2 (Rr1n)

,

∫ R

0

r2J1(rr1n)dr =
R2

r1n

J2(rr1n),

we obtain that

ω(r, q) =
r Ω

q2
−

2Ω

ν

∞
∑

n=1

(

1

q
−

1

q + νr2
1n

)

J1(rr1n)

r3
1nJ2(Rr1n)

−

2νΩ
∞
∑

n=1

r1nJ1(rr1n)

J2(Rr1n)

1

q + νr2
1n

λqβ−1

q + λqβ+1 + νr2
1n

(14)

To obtain ω(r, t) = L−1{ω(r, q)} we will apply the discrete inverse Laplace trans-
form method [3, 5, 11]. For this, we use the expansion

λqβ−1

q + λqβ+1 + νr2
1n

=

∞
∑

k=0

(

−
νr2

1n

λ

)k
qβ−k−2

(qβ + 1
λ
)k+1

(15)

Introducing (15) into (14), applying the discrete inverse Laplace transform and
using the following properties

L−1{F 1(q)F 2(q)} = (f1∗f2)(t) =

∫ t

0

f1(t−s)f2(s)ds, fi = L−1{F i(q)}, i = 1, 2,
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L−1

{

qb

(qa − d)c

}

= Ga, b, c(d, t), Re(ac − b) > 0, Re(q) > 0;

L−1

{

1

q + a

}

= e−at, a ≥ 0,

we find for ω(r, t) the expression

ω(r, t) = ω
N

(r, t) − 2ν Ω

∞
∑

n=1

r1nJ1(rr1n)

J2(Rr1n)

∞
∑

k=0

(

−
ν r2

1n

λ

)k

∫ t

0

e−νr2

1n
(t−s)Gβ,β−k−2,k+1

(

−
1

λ
, s

)

ds (16)

where (cf. [8], Eqs. (5.1) and (5.2) with α = 0)

ω
N

(r, t) = rΩt −
2Ω

ν

∞
∑

n=1

(

1 − e−νr2

1n
t
) J1(rr1n)

r3
1nJ2(Rr1n)

(17)

is the similar solution for Newtonian fluids performing the same motion, and [12]

Ga, b, c(d, t) =

∞
∑

j=0

Γ(c + j)

Γ(c)

dj t(c+j)a−b−1

Γ(j + 1)Γ[(c + j)a − b]
, Re(ac − b) > 0, (18)

is the generalized G-function.

3.2 Calculation of the shear stress

Applying the Laplace transform to Eq. (5) and using the initial condition (4),
we find that

(1 + λqβ)τ(r, q) = µ

[

∂ω(r, q)

∂r
−

1

r
ω(r, q)

]

, (19)

The image function ω(r, q) can be immediately obtained using Eqs. (16), (17)
and the formula

L

{

ta

Γ(a + 1)

}

=
1

qa+1
, a > −1.

Consequently, applying the Laplace transform to Eq. (16), differentiating the
results with respect to r and using the identity

rJ ′

1(rr1n) − J1(rr1n) = −rr1nJ2(rr1n) , (20)
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we find that

∂ω(r, q)

∂r
−

1

r
ω(r, q) =

2Ω

ν

∞
∑

n=1

(

1

q
−

1

q + νr2
1n

)

J2(rr1n)

r2
1nJ2(Rr1n)

+

2νΩ

∞
∑

n=1

r2
1nJ2(rr1n)

J2(Rr1n)

∞
∑

j,k=0

(

−
1

λ

)k+j

×

(νr2
1n)k Γ(k + j + 1)

Γ(k + 1)Γ(j + 1)

1

q + νr2
1n

1

qβ(k+j)+k+2
(21)

Introducing (21) into (19), and using the immediate decomposition

1

1 + λqβ
= 1 −

qβ

qβ + 1
λ

(22)

we find that

τ(r, t) = 2Ωρ

∞
∑

n=1

(

1

q
−

1

q + νr2
1n

)

J2(rr1n)

r2
1nJ2(Rr1n)

−

2Ωρν

∞
∑

n=1

J2(rr1n)

J2(Rr1n)

1

q + νr2
1n

qβ−1

qβ + 1
λ

+ 2νµΩ

∞
∑

n=1

r2
1nJ2(rr1n)

λJ2(Rr1n)
×

∞
∑

j,k=0

(

−
1

λ

)k+j

(νr2
1n)k Γ(k + j + 1)

Γ(k + 1)Γ(j + 1)
×

(

1

q + νr2
1n

)

1

qβ(k+j)+k+2
.

1

qβ + 1
λ

(23)

Applying the inverse Laplace transform to Eq. (23), we get the shear stress τ(r, t)
under form

τ(r, t) = τ
N

(r, t) − 2µΩ
∞
∑

n=1

J2(rr1n)

J2(Rr1n)

∫ t

0

e−νr2

1n
(t−s)Gβ,β−1,1

(

−
1

λ
, s

)

ds +

2νΩ
µ

λ

∞
∑

n=1

r2
1nJ2(rr1n)

J2(Rr1n)

∞
∑

j,k=0

(

−
1

λ

)k+j

(ν r2
1n)k Γ(k + j + 1)

Γ(k + 1)Γ(j + 1)
×

∫ t

0

∫ σ

0

e−νr2

1n
(t−σ) sβ(k+j)+k+1

Γ[β(k + j) + k + 2]
×

Gβ,0,1

(

−
1

λ
, σ − s

)

ds dσ (24)

where (cf. [8], Eqs. (5.1) and (5.2) with α = 0)

τ
N

(r, t) = 2ρΩ
∞
∑

n=1

(

1 − e−νr2

1n
t
) J2(rr1n)

r2
1nJ2(Rr1n)

(25)

is the shear stress corresponding to a Newtonian fluid performing the same mo-
tion.
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4 Limiting cases

Making β = 1 into Eq. (16), we obtain the velocity field

ω(r, t) = Ωrt −
2Ω

ν

∞
∑

n=1

(1 − e−νr2

1n
t)

J1(rr1n)

r3
1nJ2(Rr1n)

−

2Ων
∞
∑

n=1

r1nJ1(rr1n)

J2(Rr1n)

∞
∑

k=0

(

−νr2
1n

λ

)k

×

∫ t

0

e−νr2

1n
(t−s)G1,−k−1,k+1

(

−
1

λ
, s

)

ds (26)

corresponding to an ordinary Maxwell fluid performing the same motion.
Similar, from Eqs. (24) and (25), we obtain the associated shear stress

τ(r, t) = 2ρΩ

∞
∑

n=1

(1 − e−νr2

1n
t)

J2(rr1n)

r2
1nJ2(Rr1n)

− 2ρΩν

∞
∑

n=1

J2(rr1n)

J2(Rr1n)
×

∫ t

0

e−νr2

1n
(t−s)G1,0,1

(

−
1

λ
, s

)

ds +

2Ων
µ

λ

∞
∑

n=1

r2
1nJ2(rr1n)

J2(Rr1n)

∞
∑

j,k=0

(

−
1

λ

)k+j

(ν r2
1n)k ×

Γ(k + j + 1).e−νr2

1n
t

Γ(k + 1)Γ(j + 1)Γ(j + 2k + 2)
×

∫ t

0

∫ σ

0

eνr2

1n
σ sj+2k+1G1,0,1

(

−
1

λ
, 0, σ − s

)

ds dσ (27)

Using the following equality

G1,0,1(a, t) =
∞
∑

j=0

ajtj

Γ(j + 1)
=

∞
∑

j=0

(at)j

j!
= eat,
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the above relation becomes

τ(r, t) = 2ρΩ

∞
∑

n=1

(1 − e−νr2

1n
t)

J2(rr1n)

r2
1nJ2(Rr1n)

−

2Ωνρ
∞
∑

n=1

J2(rr1n)

J2(Rr1n)
e−νr2

1n
t λ

1 − λνr2
1n

×

[

1 − exp

(

−
1 − λνr2

1n

λ
t

)]

+

2Ων
µ

λ

∞
∑

n=1

∞
∑

j,k=0

r2
1nJ2(rr1n)

J2(Rr1n)

(

−
1

λ

)k+j

(ν r2
1n)k ×

Γ(k + j + 1).e−νr2

1n
t

Γ(k + 1)Γ(j + 1)Γ(j + 2k + 2)
×

∫ t

0

∫ σ

0

exp

[

(νr2
1n −

1

λ
)σ +

s

λ

]

s2k+j+1ds dσ (28)

5 Conclusion

In this paper, the velocity field and the adequate shear stress corresponding
to the rotational flow induced by an infinite circular cylinder in an incompress-
ible generalized Maxwell fluid, have been determined using Hankel and Laplace
transforms. The motion is produced by the circular cylinder that at the initial
moment begins to rotate around its axis with an angular velocity of constant
acceleration. The solutions that have been obtained, written under integral and
series forms in terms of the generalized G functions, satisfy all imposed initial
and boundary conditions.

Furthermore, they are presented as a sum between the Newtonian solutions
and the adequate non-Newtonian contributions. In the special case when β → 1,
the similar solutions for ordinary Maxwell fluids, performing same motion, are
obtained.
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