Disjoint paths spanning simple polytopal graphs

by
Peter Knorr

Abstract

In this paper, the definition of traceability is extended to n-path-traceability, i. e. the existence of a spanning set of n disjoint paths. Subsequently, an algorithm is provided to show that for each natural number $n>1$, there is a simple 3-polytopal graph with at most $44 \mathrm{n}+46$ vertices which is not n-path-traceable

Key Words: Spanning subgraphs, spanning set of paths, simple 3polytopes.
2000 Mathematics Subject Classification: Primary 05C38.

1 Introduction

The question of the existence of hamiltonian cycles in graphs, a historically old question, was in modern times mainly motivated by the well-known 4 -colour conjecture. For cubic 3-connected planar graphs, the question was answered through a counterexample by TUTTE [6] in 1946. From then on, the question of smallest counterexamples arose.

The corresponding question about smallest non-traceable graphs, i. e. without hamiltonian paths, is mentioned by V. Klee [3]. T. Zamfirescu found in 1968 an example with 88 vertices, which remained the smallest known until these days (see [1], [8]). Moreover, he generalized the last question replacing the hamiltonian paths by n-paths, which are disjoint unions of at most n paths. He also separately considered the question when the n paths are not necessarily pairwise disjoint. A related problem was treated in [7].

By a graph we shall always understand here a cubic 3-connected planar graph, which means by Steinitz' Theorem the 1-skeleton of a simple polytope. A graph is n-path-traceable if it has a spanning n-path.

By using the well-known Lederberg-Bosák-Barnette graph T, which is a smallest non-hamiltonian graph [2], one easily gets a non- n-path-traceable graph. It suffices to insert $2 n+1$ copies of T^{\prime}, the graph T minus one vertex, into equally

Figure 1: A non-2-path-traceable graph, 186 vertices
many vertices of an arbitrary graph H. To keep the example small, we take H to have $2 n+2$ vertices. Since T^{\prime} contains 37 vertices, the constructed graph has $74 n+38$ vertices. (An example for $n=2$ is shown in Figure 1. Each pointed triangle stands for a copy of T^{\prime})

This paper describes the construction of non- n-path-traceable simple 3-polytopal graphs consisting of at most $44 n+46$ vertices. This result has already been announced in [4].

2 The construction

The first graph needed for our construction is shown in Figure 2. It consists of three Tutte triangles (see [6]), contains 43 vertices and will be called T_{3}.

Lemma 1. T_{3} is not traceable.
Proof: Assume T_{3} contains a spanning path P. Then, P cannot enter and leave the triangle $a a^{\prime} b^{\prime}$, since this would lead to a hamilton path from a^{\prime} to b^{\prime}. (The same holds true for $a^{\prime \prime} b^{\prime \prime} b$.)

Thus, each of the small triangles must contain an endpoint of P. If these triangles are contracted to a respectively b, P would become a hamiltonian path from a to b in the big Tutte triangle, which is impossible.

Lemma 2. If a graph G contains a copy I of T_{3} and a spanning n-path J, then $I \cap J$ is not connected.

Figure 2: The graph T_{3} with its symbol

The proof is easy, since no subpath of J can span I.

Theorem 1. Let G be the graph of Figure 3, the black-white partition of the vertex set being $\left\{V_{1}, V_{2}\right\}$, with

$$
\text { card } V_{1}=\text { card } V_{2}=\left\{\begin{array}{l}
n+1 \text { for } n \text { odd } \\
n+2 \text { for } n \text { even } .
\end{array}\right.
$$

If $n+1$ vertices in V_{2} are replaced by copies of T_{3}, then the resulting graph is not n-path-traceable and has $44 n+44$ vertices if n is odd and $44 n+46$ if n is even.

Proof: Let H be the resulting graph. Assume H contains a spanning n-path J. Then, for each copy I of T_{3} in $H, I \cap J$ must consist of more than one component. If each of these components is contracted to a single vertex and all edges of $H \backslash J$ are deleted, then we obtain a union K of n disjoint paths (see Figure 4).

During the process of transformation from G over H to K, the number of black vertices does not change. If all other vertices in K are considered white, then no two white vertices can be adjacent to each other. But since $I \cap J$ consists of more than one component for each copy I of T_{3} and H contains $n+1$ such copies, K must contain at least $n+1$ more white than black vertices. Thus, the number of paths must be larger than n, and a contradiction is obtained.

Figure 3: Graph G for $n=6$ or $n=7$

Figure 4: A spanning 3-path is transformed

Figure 5: A non-2-path-traceable Graph, 134 vertices

For $n=2$, the graph described in the Theorem is depicted in Figure 5. It was found by Strauch [5] in 2002.

References

[1] B. Grünbaum Polytopes, graphs and complexes, Bull. Amer. Math. Soc. 76 (1970), pp. 1131-1201
[2] D. A. Holton \& B. D. McKay The Smallest Non-Hamiltonian 3Connected Cubic Planar Graphs Have 38 Vertices, J. Comb. Th. B 45 (1989), pp. 305-319
[3] V. Klee, Paths on polyhedra II, Pac. J. Math. 17 (1966), pp. 249-262
[4] P. Knorr, Aufspannende Kreise und Wege in 3-polytopalen Graphen, Diplomarbeit (2007), Universität Dortmund
[5] C. Strauch, Ein planarer, 3-zusammenhängender, 3-regulärer Graph ohne aufspannenden Y-Baum, Analele Universităţii din Craiova, Seria Matem-atică-Informatică, Vol. XXIX (2002), pp. 23-25
[6] W. T. Tutte, On hamiltonian circuits, Journal London Mathematical Society 21 (1946), pp. 98-101
[7] T. Zamfirescu, On spanning and expanding stars, Atti Accad. Sci. Ist. Bologna, Serie XIII-1 (1974), pp. 45-47
[8] T. Zamfirescu, Three small cubic graphs with interesting hamiltonian properties, J. Graph Th. 4 (1980), pp. 287-292

Received: 05.05.2008.

Technische Universitaet Dortmund Fakultaet fuer Mathematik, Lehrstuhl LSII

Vogelpothsweg 87
44227 Dortmund
E-mail: peter-knorr@gmx.de

