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Abstract

We study the behavior of Stanley depth under the operation of local-

ization with respect to a variable.
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Introduction

Let K be a field, S = K[x1, . . . , xn] be the polynomial ring in n variables over
K and I ⊂ S a monomial ideal. Stanley depth of S/I is denoted by sdepthS/I,
see Section 2 for its definition. The Stanley depth is an important combinato-
rial invariant of S/I studied in [7], [8], [9], [10] , [2], [1]. The interest in this
subject arises in part from the so-called Stanley conjecture which asserts that
sdepth S/I ≥ depthS/I.

The purpose of this note is to study the behavior of sdepthS/I under the
operation of localization with respect to a variable. The effect of localization of a
monomial ideal with respect to a variable, say xn, is, up to a flat extension, the
same as applying the K-algebra homomorphism ϕ : S → T = K[x1, . . . , xn−1]
given by xn 7→ 1. This is explained in Section 1.

Many, but not all, Stanley decompositions arise as prime filtrations. In Sec-
tion 2 we show how prime filtrations behave under localization, see Proposi-
tion 2.1. As a consequence we show in Corollary 2.2 that pretty clean filtra-
tions induce under localization again pretty clean filtrations. This implies in
particular that if Stanley’s conjecture holds for S/I, then it holds for the local-
ization as well. As an immediate consequence of Proposition 2.1 we show that
fdepthT/ϕ(I) ≥ fdepth(S/I)− 1, where fdepth, introduced in [8], is an invariant
of S/I related to prime filtrations. This invariant is of interest since one always
has fdepthS/I ≤ sdepth S/I,depth S/I.
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The main purpose of Section 3 is to prove an inequality analogue to that for the
fdepth. In fact, we show in Corollary 3.2 that sdepthT/ϕ(I) ≥ sdepth(S/I)− 1.
Easy examples show that the inequality is often strict. On the other hand, we
also give an example for which sdepthT/ϕ(I) > sdepth(S/I).

When I = I∆ is the Stanley-Reisner ideal of a simplicial complex ∆ we get in
particular that sdepthK[link∆({n})] ≥ sdepthK[∆]− 1, where K[∆] = S/I (see
Lemma 3.7).

1 Localization of monomial ideals

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n variables
over K, and let I ⊂ S a be a monomial ideal. Suppose that I is generated by
the monomials u1, . . . , um with ui =

∏n

j=1 x
aij

j . We denote, as usual, by Sxn
the

localization of S with respect to the element xn. Notice that Sxn
has a K-basis

consisting of all monomials of the form

xa1

1 xa2

2 · · ·x
an−1

n−1 xan

n with ai ∈ Z≥0 and an ∈ Z.

In other words,

Sxn
= K[xn, x−1

n ][x1, . . . , xn−1] = K[xn, x−1
n ] ⊗K T,

where T = K[x1, . . . , xn−1].
The extension ideal ISxn

is the ideal in Sxn
which is generated by the mono-

mials u′
i =

∏n−1
j=1 x

aij

j , because the last variable becomes a unit.
Let ϕ : S → T be the K-algebra homomorphism with xi 7→ xi for i =

1, . . . , n − 1 and xn 7→ 1, then ϕ(ui) = u′
i for all i and we see that ISxn

is the
extension ideal of ϕ(I) under the flat extension T → K[xn, x−1

n ] ⊗K T = Sxn
.

2 Localization of prime filtrations

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n variables
over K. Let I ⊂ S be a monomial ideal. A prime filtration of S/I is a chain of
monomial ideals

P : I = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ir = S

such that there are isomorphisms of Z
n-graded S-modules

Ij/Ij−1
∼= (S/Pj)(−aj) for j = 1, 2, . . . , r,

where Pj is a monomial prime ideal and aj ∈ Z
n. The set {P1, . . . , Pr} is called

the support of P and denoted Supp(P).
We consider the K-algebra homomorphism ϕ : S → T = K[x1, . . . , xn−1],

introduced in the previous section, with xi 7→ xi for i = 1, . . . , n− 1 and xn 7→ 1.
We will also consider the projection map π : Z

n → Z
n−1 which assigns to each

a = (a1, . . . , an) in Z
n the vector a′ = π(a) = (a1, . . . , an−1).
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Proposition 2.1. Let I ⊂ S be a monomial ideal, and let P be a prime filtration
of S/I as above. We set J = ϕ(I) and Jj = ϕ(Ij) for all Ij in the prime filtration.
Then we get the filtration

J = J0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jr = T

with

Jj/Jj−1
∼=

{

(T/P ′
j)(−a′

j), if xn 6∈ Pj ,
0, if xn ∈ Pj ,

where P ′
j ⊂ T is the monomial prime ideal in T such that Pj = P ′

jS.

Proof: The statement of the proposition follows once we can show the following:
Let I ⊂ J be monomial ideals in S such that J/I ∼= (S/P )(−a) where P is a
monomial prime ideal and a ∈ Z

n
≥0. Then

ϕ(J)/ϕ(I) ∼=

{

(T/P ′)(−a′), if xn 6∈ P ,
0, if xn ∈ P ,

We have J/I ∼= (S/P )(−a) if and only if J = (I, xa) and I :S xa = P . Since

ϕ(J) = ϕ(I, xa) = (ϕ(I), xa′

),

we see that

ϕ(J)/ϕ(I) ∼= (ϕ(I), xa′

)/ϕ(I)) ∼= (T/(ϕ(I) :T xa′

))(−a′). (1)

Next we claim that ϕ(I :S xa) = (ϕ(I) :T xa′

). Suppose this is true, then we get

(ϕ(I) :T xa′

) = ϕ(P ) =

{

P ′, if xn 6∈ P ,
T, if xn ∈ P ,

Hence the desired result follows.
It remains to prove the claim: let I = (u1, . . . , um) with ui = xai =

∏n

j=1 x
aij

j .
Then

I :S xa = (xa1/ gcd(xa1 , xa), . . . , xam/ gcd(xam , xa))

= (
n

∏

j=1

x
a1j−min{a1j ,aj}
j , · · · ,

n
∏

j=1

x
amj−min{amj ,aj}
j ).

It follows that

ϕ(I :S xa) = (ϕ(

n
∏

j=1

x
a1j−min{a1j ,aj}
j ), · · · , ϕ(

n
∏

j=1

x
amj−min{amj ,aj}
j ))

= (

n−1
∏

j=1

x
a1j−min{a1j ,aj}
j , · · · ,

n−1
∏

j=1

x
amj−min{amj ,aj}
j )

= (xa′

1/ gcd(xa′

1 , xa′

), . . . , xa′

m/ gcd(xa′

m , xa′

))

= (ϕ(xa1)/ gcd(ϕ(xa1), ϕ(xa)), . . . , ϕ(xa)/ gcd(ϕ(xam), ϕ(xa)))

= ϕ(I) :T xa′

.
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Let K be a field and S = K[x1, . . . , xn] be a polynomial ring. Let I ⊂ S be a
monomial ideal. A prime filtration

P : I = I0 ⊂ I1 ⊂ · · · ⊂ Ir = S

of S/I such that Ij/Ij−1
∼= (S/Pj)(−aj) is said to be clean (see [5]) if Supp(P) =

Min(S/I), where Min(S/I) denotes the set of minimal prime ideals of I. Equiva-
lently, (P) is clean, if there is no containment between the elements in Supp(P),
see [6]. A monomial ideal I is said to be clean if S/I has a clean filtration. The
prime filtration P is said to be pretty clean if for all i < j the inclusion Pi ⊂ Pj

implies Pi = Pj (see [6]). A monomial ideal I is said to be pretty clean if S/I has
a pretty clean filtration.

Let I ⊂ S be a monomial ideal. We denote by Ic ⊂ S the K linear subspace
of S generated by all monomials which do not belong to I. Then S = I ⊕ Ic

and S/I ∼= Ic as K-linear spaces. If u ∈ S is a monomial and Z ⊂ {x1, . . . , xn},
the K-subspace uK[Z] whose basis consists of all monomials uv with v ∈ K[Z]
is called a Stanley space of dimension |Z|. A decomposition D of Ic as a finite
direct sum of Stanley spaces is called a Stanley decomposition of S/I. The
minimal dimension of a Stanley spaces in D is called the Stanley depth of D and
is denoted by sdepthD. Finally we define sdepthS/I by

sdepthS/I = max{sdepthD : D is a Stanley decomposition of S/I}

In [11] Stanley conjectures that for any monomial ideal I ⊂ S one has sdepth S/I ≥
depthS/I. The monomial ideal I is said to be a Stanley ideal if Stanley’s con-
jecture holds for S/I. It is shown in [6] that a pretty clean ideal is a Stanley
ideal.

As a consequence of the previous result we have

Corollary 2.2. Let I ⊂ S be a monomial ideal. If I is (pretty) clean, then
ϕ(I) ⊂ T is (pretty) clean. In particular, if I is pretty clean, then ϕ(I) ⊂ T is a
Stanley ideal.

Proof: We refer to the the hypotheses and notation of Proposition 2.1, and
assume in addition that the filtration P of S/I is (pretty) clean. The filtration of
J given in Proposition 2.1 can be modified to give a prime filtration of T/J (by
omitting for all i > 0 those Ji for which Ji−1 = Ji) whose support is a subset of
Supp(P). From this, all assertions follow immediately.

Let F : I = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ir = S be a prime filtration with Ij/Ij−1
∼=

S/Pj(−aj). Then

D(F ) : S/I =
r

⊕

j=1

uiK[Zi]



Stanley decompositions and localization 155

is a Stanley decomposition of S/I, where ui = xai and Zi = {xj : xj 6∈ Pi} (see
[6]). Thus if we set fdepthF = min{dim S/P1, . . . ,dim S/Pr} and

fdepthS/I = max{fdepthF : F is a prime filtration of S/I},

then see that fdepth S/I ≤ sdepth S/I.
As an immediate consequence of Proposition 2.1 we obtain

Corollary 2.3. Let I ⊂ S be a pretty clean monomial ideal. Then

fdepthT/ϕ(I) ≥ fdepthS/I − 1.

3 Localizations and Stanley decompositions

The purpose of this section is to prove an inequality for the sdepth similar to that
for the fdepth given in Corollary 2.3 in Section 2. The desired inequality will be
a consequence of

Theorem 3.1. Let D : S/I =
⊕r

i=1 uiK[Zi] be a Stanley decomposition of S/I
then D′ : T/ϕ(I) =

⊕

xn∈Zi

ϕ(ui)K[Zi\{xn}] is a Stanley decomposition of T/ϕ(I).

Proof: Firstly we prove that

ϕ(ui)K[Zi \ {xn}] ∩ ϕ(uj)K[Zj \ {xn}] = {0}

for i 6= j and xn ∈ Zi, Zj . Suppose on the contrary that there exists a monomial
u ∈ T such that

u ∈ ϕ(ui)K[Zi \ {xn}] ∩ ϕ(uj)K[Zj \ {xn}],

that is
u = ϕ(ui)fi = ϕ(uj)fj ,

for some monomials fi ∈ K[Zi \ {xn}], fj ∈ K[Zj \ {xn}]. It follows that uxa
n ∈

uiK[Zi] and uxa
n ∈ ujK[Zj ] for some a ∈ N sufficiently large. Hence

uxa
n ∈ uiK[Zi] ∩ ujK[Zj ],

that is a contradiction.
Let u ∈ T \ ϕ(I) be a monomial. We claim that there exists i ∈ [r] such

that u ∈ ϕ(ui)K[Zi \ {xn}]. Note that ϕ(u) = u and u ∈ Ic because otherwise
u ∈ ϕ(I), which is a contradiction. This implies that there exist i ∈ [r] such that
u ∈ uiK[Zi]. Hence

ϕ(u) = u ∈ ϕ(ui)K[Zi \ {xn}].

Remains to show that we may choose i such that xn ∈ Zi. If xn /∈ Zi then
there exists j ∈ [r] such that i 6= j and t > s = degxn

ui such that uxt
n ∈ ujK[Zj ]

with xn ∈ Zj . Indeed, we have uxt
n = ujg, where g ∈ K[Zj ] is a monomial. It

follows that xt
n does not divide uj because t > s, so xn divides g. This implies

xn ∈ Zj .
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Corollary 3.2.
sdepthT/ϕ(I) ≥ sdepth S/I − 1.

Proof: In the above theorem, let D be a Stanley decomposition of S/I such that
sdepthD = sdepthS/I . Then we have

sdepthT/ϕ(I) ≥ sdepthD′ = sdepthS/I − 1.

Example 3.3. Let I = (xy) ⊂ S = K[x, y] be an ideal, D : S/I = xK[x] ⊕ K[y]
is a Stanley decomposition of S/I. Thus sdepthD = 1. After applying the map
ϕ defined by x → 1, D′ : T/ϕ(I) = K is a Stanley decomposition of T/ϕ(I) and
sdepthD′ = 0.

Example 3.4. Let I = (x2, xy) be an ideal of S = K[x, y]. A Stanley decomposi-
tion of S/I is D : S/I = xK⊕K[y]. Thus for ϕ given by y → 1, D′ : T/ϕ(I) = K is
a Stanley decomposition of T/ϕ(I). Here sdepth S/I = 0 and sdepthT/ϕ(I) = 0.

Example 3.5. Let I = (xyz) ⊂ S = K[x, y, z] be an ideal. Then D : S/I =
K[x, z]⊕yK[x, y]⊕zyK[y, z] is a Stanley decomposition of S/I with sdepthD = 2.
After applying the map ϕ given by z → 1, D′ : T/ϕ(I) = K[x]⊕yK[y] is a Stanley
decomposition of T/ϕ(I) and sdepthD′ = 1.

The following example shows that the inequality in Corollary 3.2 may be
strict.

Example 3.6. Let I = (xy, xz, xw) ⊂ S = K[x, y, z, w] be the squarefree mono-
mial ideal. Then

S/I = xK[x] ⊕ K[y, z] ⊕ wK[y, z, w]

is a Stanley decomposition of S/I. Thus sdepthS/I ≥ 1. By using partitions of
the characteristic poset of S/I (see [7]), one can show that indeed sdepthS/I = 1.
After applying ϕ we get ϕ(I) = (x) ⊂ K[x, y, z] and T/ϕ(I) = K[x, y, z]/(x) ∼=
K[y, z]. Hence sdepth T/ϕ(I) = 2. So we get

sdepthT/ϕ(I) > sdepth S/I.

We conclude this section by interpreting the inequality in Corollary 3.2 for
squarefree monomial ideals in terms of simplicial complexes.

Let S = K[x1, . . . , xn] be the polynomial ring in n variables over the field K
and I ⊂ S an ideal generated by squarefree monomials. Let △ be a simplicial
complex on he vertex set [n] such that I is the Stanley-Reisner ideal I∆ associated
to ∆ and K[∆] = S/I. As above consider T/ϕ(I).

Lemma 3.7. T/ϕ(I) = K[link∆({n})].
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Proof: It is enough to show that ϕ(I∆) = Ilink∆({n}). Let G ⊂ [n − 1] be such
that xG ∈ Ilink∆({n}). This implies that G 6∈ link∆({n}) and so G ∪ {n} 6∈ ∆.

Hence xG∪{n} ∈ I∆. This implies that xG ∈ ϕ(I∆).

A square free monomial of I∆ has the form xH with H ⊂ [n] and H 6∈ ∆. If
n 6∈ H then xH = ϕ(xH) ∈ ϕ(I∆). Since H 6∈ ∆, we get that H ∪ {n} 6∈ ∆. Then
H 6∈ link∆({n}) and so xH ∈ Ilink∆({n}). If n ∈ H then xH\{n} = ϕ(xH) ∈ ϕ(I∆).

As (H \ {n}) ∪ {n} = H 6∈ ∆ we get H \ {n} 6∈ link∆({n}). Thus xH\{n} ∈
Ilink∆({n}).

Corollary 3.8.

sdepthK[link∆({n})] ≥ sdepthK[∆] − 1.

Proof: The result follows from the above lemma and Corollary 3.2.

Corollary 3.9. For any subset F ⊂ [n],

sdepth K[link∆(F )] ≥ sdepth K[∆] − |F |.

Proof: We may assume that n ∈ F. Apply induction on |F |, the case |F | = 1
was done in the previous corollary. Suppose |F | > 1. Then by the same corollary
we get sdepth(K[link∆({n})]) ≥ sdepth(K[∆]) − 1. Apply induction hypothesis
for link∆({n}) and F ′ = F \ {n}. Then

sdepthK[link∆(F )] = sdepthK[linklink∆({n})(F
′)]

≥ sdepthK[link∆({n})] − |F ′|

≥ (sdepthK[∆] − 1) − |F ′|

= sdepthK[∆] − |F |.
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