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Abstract

We provide some sufficient conditions for a valued subfield (K′, v′) of
a valued field (K, v) to be of finite codimension in K, i.e. [K : K′] be
finite. Moreover, these conditions on K′ imply the fundamental equality
ef = [K : K′] and the unicity of the valuation v as an extension of v′.
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Introduction

A basic result in the classical valuation theory says that if (K ′, v′) ⊂ (K, v) is
a finite extension of valued fields, then the ramification index e and the inertia
degree f are finite and ef ≤ n = [K : K ′] (see [R]). If (K, v) is a discrete rank 1
valued field and if (K ′, v′) is complete, then ef = n and (K, v) is also complete
([Neu]). In this paper we consider the reverse problem: ”In what conditions on
(K ′, v′), can we state that [K : K ′] < ∞?”. Namely, we prove that if (K ′, v′) ⊂
(K, v) is an extension of rank t discrete valued fields such that (K ′, v′) is strongly
complete (see Definition 1.1) and e, f < ∞, then [K : K ′] = ef and K is also
strongly complete (Theorem 3.1). We also prove that if [K : K ′] = n < ∞ and
if (K ′, v′) is a strongly complete discrete rank t valued subfield of (K, v), then v
is the unique extension of v′ to K and ef = n (Corollary 3.1). If t = 1, strongly
complete means the usual notion of a topological completion of a rank 1 valued
field. Theorem 2.1 is a kind of ”inverse” of [Se], Prop. 3, §2, Ch. II. Theorem
3.1 extends Theorem 2.1 to the case of an arbitrary finite rank.
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1 Definitions and notations

Let (K, v) be a (Krull) valued field and let (Gv,+,≤) be its value group. A rank t
discrete valued field (K, v) is a valued field (K, v) with its value group (Gv,+,≤)
of rank t, which is isomorphic to Z × Z × ... × Z, t-times.

Let K ′ be a subfield of the valued field (K, v) and let v′ be the restriction of v
to K ′. We say that (K ′, v′) ⊂ (K, v) is an extension of valued fields. We also say
that (K ′, v′) is a valued subfield of (K, v). Let Ov = {x ∈ K | v(x) ≥ 0} be the
valuation ring of (K, v), let mv = {x ∈ Ov | v(x) > 0} be the maximal ideal of
(K, v) and let Kv = Ov/mv be the residue field of (K, v). Let Gv′ ,Ov′ ,mv′ and
K ′

v′ be the value group, the valuation ring, the maximal ideal and the residue
field respectively for the valued subfield (K ′, v′) of (K, v).Let e = e(K/K ′) =
[Gv : Gv′ ] be the ramification index of the valued field extension (K ′, v′) ⊂ (K, v)
and let f = f(K/K ′) = [Kv : K ′

v′ ] be its inertia degree.
Let (K, v) be a discrete rank t (t > 1) valued field with the value group

Gv = Z×Z×· · ·×Z = Zt, lexicographically ordered. For any x ∈ K, let us denote
v(x) = (v(x)1, v(x)2, . . . , v(x)t) ∈ Zt. If we denote w1(x) = v(x)1, we get that
w1 : K → Z ∪ {∞} is a discrete rank 1 valuation, called the marginal valuation
of v. The valuation ring Ow1

of w1 contains the valuation ring Ov of v. For
i = 1, 2, . . . , t, let us choose πi in Ov such that v(πi) = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zt,
where 1 is in the i-th position; πi is called an i-th uniformizer of (K, v). Hence
mw1

= π1Ow1
, the ideal generated by π1 in Ow1

. The residue field Kw1
=

Ow1
/π1Ow1

has a natural valuation v1 of rank t − 1 on it. Its valuation ring
corresponds to the image of the valuation ring Ov through the canonical surjective
map: Ow1

→ Ow1
/π1Ow1

. Thus one can set v1(x̄) = (v(x)2, . . . , v(x)t) ∈ Zt−1.
Now we consider the discrete rank t − 1 valued field (Kw1

, v1). The residue field
of (Kw1

, v1) is also Kv = Ov/mv, the residue field of (K, v).
Let now (K ′, v′) ⊂ (K, v) be a valued subfield of (K, v). One makes the

same construction as above for (K ′, v′) and obtains: Ov′ ⊂ Ov, mv′ ⊂ mv,
K ′

v′ ⊂ Kv, Gv′ ⊂ Gv, w′
1 : K ′ → Z ∪ {∞}, the rank 1 marginal valuation of

v′ : w′
1(x) = v′(x)1, K ′

w′

1
⊂ Kw1

and v′
1 : K ′

w′

1
→ Zt−1 ∪ {∞}. The residue field

of (K ′
w′

1
, v′

1) is K ′
v′ , the residue field of (K ′, v′).

If we start with the valued field extension (K ′
w′

1
, v′

1) ⊂ (Kw1
, v1) and do the

same as above we obtain a new valued field extension (K ′
w′

2
, v′

2) ⊂ (Kw2
, v2) such

that (Kw2
, v2) has rank t − 2 and v′

2(x̄) = (v(x)3, . . . , v(x)t) ∈ Zt−2 for x 6= 0,
and so on. We call the rank 1 valuations w1, w2, . . . , wt, the principal valuations
of (K, v) and the valuations v1, v2, . . . , vt−1 of ranks t−1, t−2, . . . , 1 respectively,
the auxiliary valuations of (K, v). The valuation wi is said to be the i-th principal
valuation of (K, v). It is clear that wi is the marginal valuation of vi−1, where
i = 1, 2, . . . , t. Here v0 = v.

Let (K, v) be a valued field and let ∞ be the biggest element of G ∪ {∞}.
A sequence {xn}, xn ∈ K is called a Cauchy sequence if the set {v(xn+1 − xn)}
is not bounded in G. A sequence {xn} in K is convergent to x ∈ K if the set
{v(xn −x)} is not bounded in G. This convergence endows K with a structure of



Extensions of discrete finite rank 247

a topological field. One calls this last topology the v-adic topology on K. We say
that (K, v) is complete if any Cauchy sequence in K is convergent to a unique
element x of K.

Definition 1.1. Let (K, v) be a discrete rank t valued field and let v0 = v, v1, ..., vt−1

be the auxiliary valuations of (K, v) defined on the field K, Kw1
, Kw2

, ..., Kwt−1

respectively. If the valued fields (K, v), (Kw1
, v1), ..., (Kwt−1

, vt−1) are complete,
one says that (K, v) is strongly complete.

Example 1.1. Let k be a field and let X1,X2,X3 be three independent variables
over k. Let k((X3)) be the field of Laurent power series s =

∑
i≥i0

aiX
i
3, i0 ∈ Z, ai0 6=

0, ai ∈ k. Let k((X3))((X2)) be the field of Laurent power series q =
∑

j≥j0

BjX
j
2 ,

j0 ∈ Z, Bj0 6= 0, Bj ∈ k((X3)). Let K = k((X3))((X2))((X1)) be the field of
Laurent power series r =

∑
t≥t0

CtX
t
1, Ct0 6= 0, Ct ∈ k((X3))((X2)). It is clear now

that any element r of K can be uniquely written as

r =
∑

(t,j,i)º(t0,j0,i0)

aijtX
t
1X

j
2Xi

3,

where the monomials aijtX
t
1X

j
2Xi

3 are lexicographically ordered like the triplets
(t, j, i) in Z × Z × Z. Now we define: v(r) = (t0, j0, i0), w1(r) = t0, v1(q) =
(j0, t0), w2(q) = j0, v2(s) = i0 = w3(s). It is easy to see that (K, v) is strongly
complete (see Definition 1.1) but k((X3))(X2)((X1)) is not strongly complete
because (Kw1

, v1) is not complete. If instead of X1, X2, X3 we consider X1,
X2, ...,Xt, t independent variables over k, we get a discrete valued field K =
k((Xt))((Xt−1))...((X1)) of rank t, which is strongly complete. Following [Se] for
instance, one can generalize the structure theorems for local fields to these discrete
rank t strongly complete fields. In the ”equal characteristic case” the only discrete
rank t strongly complete valued fields (K, v) (up to isomorphisms of valued fields)
are of the form K = k((Xt))((Xt−1))...((X1)).

2 The rank 1 case

Theorem 2.1. Let (K ′, v′) ⊂ (K, v) be a discrete rank 1 valued field extension
with (K ′, v′) complete. We assume that the ramification index e = e(K/K ′) and
the inertia degree f = f(K/K ′) are finite. Then, the valuation ring Ov is a free
Ov′-module of rank ef and [K : K ′] is finite and equal to ef. Moreover, (K, v) is
also complete and v is the unique valuation which extend v′ to K.

Proof: Let π1 and π′
1 be uniformizers of Ov and of Ov′ respectively i.e. v(π1) = 1

and v′(π′
1) = e. Thus we can write π′

1 = πe
1u, where u is a unit in Ov. Let

mv = π1Ov be the maximal ideal of Ov.
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Let A ∈ Ov and let us denote by Ā the class of A in Kv. Since Kv is finite over
K ′

v′ , let {v̄1, v̄2, . . . , v̄f} be a basis of Kv over K ′
v′ (v1, v2, . . . , vf ∈ Ov), then:

A =

f∑

i=1

a
(0)
i,0 vi + π1A1, A1 ∈ Ov and a

(0)
i,0 ∈ Ov′ .

Applying the same procedure to A1 ∈ Ov, we get:

A =

f∑

i=1

a
(0)
i,0 vi +

f∑

i=1

a
(0)
i,1 viπ1 + π2

1A2,

where A2 ∈ Ov and a
(0)
i,1 ∈ Ov′ . After e steps one obtains:

A =

e−1∑

j=0

(

f∑

i=1

a
(0)
i,j vi)π

j
1 + πe

1Ae, Ae ∈ Ov, a
(0)
i,j ∈ Ov′ .

But π′
1 = πe

1u, where u is a unit in Ov. Then:

A =

e−1∑

j=0

(

f∑

i=1

a
(0)
i,j vi)π

j
1 + π′

1B1, B1 = u−1Ae ∈ Ov.

Applying the same construction to B1, one gets:

A =

e−1∑

j=0

f∑

i=1

a
(0)
i,j viπ

j
1 + π′

1

e−1∑

j=0

f∑

i=1

a
(1)
i,j viπ

j
1 + (π′

1)
2B2,

where B2 ∈ Ov and a
(1)
i,j ∈ Ov′ . We continue in this way and, after n steps, we

get:

A =

e−1∑

j=0

f∑

i=1

(

n−1∑

k=0

a
(k)
i,j (π′

1)
k)viπ

j
1 + (π′

1)
nBn, Bn ∈ Ov

and a
(k)
i,j ∈ Ov′ for all i = 1, 2, . . . , f, j = 0, 1, . . . , e−1, and k = 0, 1, . . . , n−1.

Since Ov′ is closed in K ′, the convergent series cij =
∑∞

k=0 a
(k)
i,j (π′

1)
k are elements

in Ov′ . Moreover, (π′
1)

nBn → 0 in Ov, when n → ∞, so

A =

e−1∑

j=0

f∑

i=1

cijviπ
j
1, cij ∈ Ov′ . (1)

This means that {viπ
j
1, i = 1, 2, . . . , f , j = 0, 1, . . . , e − 1} is a generating

system of the module Ov over Ov′ . We now prove that the expression 1 is unique.
For this, it is sufficient to prove that

e−1∑

j=0

f∑

i=1

cijviπ
j
1 = 0, cij ∈ Ov′ (2)



Extensions of discrete finite rank 249

implies cij = 0 for i = 1, 2, . . . , f and j = 0, 1, . . . , e − 1. Taking classes in
Kv = Ov/mv, where mv = π1Ov, we obtain:

f∑

i=1

c̄i0v̄i = 0.

Since {v̄i}, i = 1, 2, . . . , f is a basis of Kv over K ′
v′ , we get ci0 = π′

1c
′
i0 where

c′i0 ∈ Ov′ . Now assume that we have proved that cij = π′
1c

′
ij , c′ij ∈ Ov′ for

j = 0, 1, . . . , r − 1 and i = 1, 2, . . . , f , where 0 < r < e. Then 2 implies that

π′
1

r−1∑

j=0

f∑

i=1

c′ijviπ
j
1 +

e−1∑

j=r

f∑

i=1

cijviπ
j
1 = 0, c′ij , cij ∈ Ov′ .

Let us put π′
1 = πe

1u, where u is a unit in Ov and then simplify πr
1. The last

equation becomes:

πe−r
1 u

r−1∑

j=0

f∑

i=1

c′ijviπ
j
1 +

e−1∑

j=r

f∑

i=1

cijviπ
j−r
1 = 0, c′ij , cij ∈ Ov′ .

Taking classes in Kv, we obtain:

f∑

i=1

c̄irv̄i = 0.

Since {v̄i}, i = 1, 2, . . . , f is a basis of Kv over K ′
v′ we get cir = (π′

1)c
′
ir, where

c′ir ∈ Ov′ .
Hence we have proved that π′

1 is a factor of each cij , but one can assume from
the beginning that at least one cij is a unit for any i = 1, 2, ..., f . Thus, the only
possibility is that cij = 0 for i = 1, 2, . . . , f and j = 0, 1, . . . , e−1. This proves
that Ov is in fact free Ov′ -module of rank ef .
Let α ∈ K. Then does exit s ∈ Ov′ such that sα ∈ Ov. So we get:

sα =

e−1∑

j=0

f∑

i=1

cijviπ
j
1, cij ∈ Ov′ ,

or

α =
e−1∑

j=0

f∑

i=1

(
cij

s
)viπ

j
1,

cij

s
∈ K ′.

Moreover, this expression is unique. Hence, [K : K ′] = ef . All the other state-
ments follows from [Se] (Proposition 3, p. 28).
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3 The general case

Proposition 3.1. Let (K, v) be a discrete rank t valued field and w1, w2, ..., wt be
its principal valuations on the fields K, Kw1

,Kw2
, ...,Kwt−1

respectively. Then,

all the valued fields (K,w1), (Kw1
, w2), ..., (Kwt−1

, wt) are complete if and only
if (K, v) is strongly complete.

Proof: It is enough to see that a sequence {yn} of elements in K (or in Kwi−1
,

i = 2, 3, ..., t) is bounded relative to v (or to vi−1) if and only if it is bounded
relative to w1 (or to wi, i = 2, 3, ..., t). In particular, the topology of (K, v) (or of
(Kwi−1

, vi−1)) is the same like the topology of (K,w1) (or of (Kwi−1
, wi)), with

respect to their own valuations.

Theorem 3.1. Let (K ′, v′) ⊂ (K, v) be an extension of discrete rank t valued
fields such that [Gv : Gv′ ] = e < ∞, where Gv, Gv′ are the value groups of (K, v)
and (K ′, v′) respectively. Let Kv and K ′

v′ be the residue fields of (K, v) and
(K ′, v′) respectively. If [Kv : K ′

v′ ] = f < ∞ and if (K ′, v′) is a strongly complete
valued field, then

a) K/K ′ is a finite extension with [K : K ′] = ef , and

b) K is also strongly complete.

Proof: We use mathematical induction on t. For t = 1, the statement of The-
orem 3.1 becomes exactly the statement of Theorem 2.1. Suppose now that the
statement of Theorem 3.1 was proved for any rank = 1, 2, . . . , t − 1. As above,
we consider the marginal valuations w1, w′

1 of v and v′ respectively. We also con-
sider the auxiliary valuations v1 and v′

1 of (K, v) and (K ′, v′) respectively. Since
Gv = Z × · · · × Z, t-times and since both valued fields have the same rank t, one
has that Gv′ = e1Z×· · ·×etZ, where e1e2 · · · et = e. Let π′

1, π
′
2, . . . , π

′
t in Ov′ such

that v′(π′
i) = (0, . . . , 0, ei, 0, . . . , 0) ∈ Zt . Since the residue valued field (K ′

w′

1
, v′

1)
has the principal valuations w′

2, . . . , w
′
t, it is strongly complete. In addition, the

rank of (Kw1
, v1) is t − 1 and [Gv1

: Gv′

1
] = e2e3 · · · et. Since the residue fields

of (K ′
w′

1
, v′

1) and (Kw1
, v1) are K ′

v′ and Kv respectively, applying the mathe-

matical induction hypothesis, one gets that [Kw1
: K ′

w′

1
] = e2e3 · · · etf and that

Kw1
is strongly complete. We now consider the extension (K ′, w′

1) ⊂ (K,w1) of
discrete rank 1 valued fields. Since (K ′, w′

1) is complete, [Gw1
: Gw′

1
] = e1 and

[Kw1
: K ′

w′

1
] = e2e3 · · · etf , Theorem 2.1 says that (K,w1) is also complete and

[K : K ′] = e1e2 · · · etf = ef , etc.

Since the valuations v and v′ are completly determined by the couples (w1, v1)
and (w′

1, v
′
1) respectively, using the above mathematical induction and Theorem

2.1 we get the unicity of v (relative to v′), i.e. we obtain the following result:
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Corollary 3.1. Let (K ′, v′) ⊂ (K, v) be a finite extension of discrete rank t
valued fields and (K ′, v′) be strongly complete. Then v is the unique extension of
v′ to K and ef = n = [K : K ′].

Remark 3.1. If k ⊂ K ′ ⊂ K = k((X)) and K ′ is complete we obtain the main
result of [NaP]. If k * K ′ ⊂ K, but K ′ is complete one obtains the main result
of [Nas].

Remark 3.2. If instead of the condition [Kv : K ′
v′ ] < ∞ we ask only that

K ′
v′ ⊂ Kv to be algebraic but not necessarily finite, the extension K ′ ⊂ K is not

in general algebraic. This can be proved by using the same ideas like those used
by R. Gilmer in [Gi]. For instance, if Q is an algebraic closure of Q then the
extension Q((X)) ⊂ Q((X)) contains transcendental elements. One of them, for

instance is α =
∑∞

n=1 2( 1

2n!
)Xn!.

Example 3.1. Let C be the field of complex numbers and let R be its sub-
field of real numbers. Let K = C((X))((Y )) be the field of Laurent series s =∑
(i,j)º(i0,j0)

aijX
iY j , lexicographically ordered relative to (i, j) ∈ Z×Z, where i0,

j0 ∈ Z and aij ∈ C. Let v be the natural valuation of rank 2 on K (see Example
1.1) and let K ′ = R((X2))((Y 3)) be the analogous subfield of K. Then Theorem
3.1 says that [K : K ′] = 12.
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[R] P. Ribenboim, Théorie des valuations, Les Presses de l’Université de
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