Convex quadratic programming with weighted entropic perturbation

by
Vasile Preda and Costel Bălcău

Abstract
We extend the unconstrained convex programming approach to solving the standard-form quadratic programming problem with weighted entropic perturbation. We construct a geometric dual problem for the proposed problem and we prove their weak and strong duality theorems.

Key Words: Convex quadratic programming, entropic perturbation, geometric programming method, duality theorems.

2000 Mathematics Subject Classification: Primary 90C20, Secondary 90C25, 94A17.

1 Introduction
The method of minimizing the weighted logarithm deviation from a reference measure subject to some given moments was used by Guiaşu [10] to classify known probability distributions. For a guide to further references and applications see Guiaşu [9, 11, 12].

In this paper we study the quadratic programming problem with weighted entropic perturbation

\[(P(\mu)) : \min f_\mu(x) = \frac{1}{2}x^\top Dx + c^\top x + \sum_{j=1}^{n} \mu_j x_j \ln x_j \quad \text{s.t.} \]

\[Ax = b; \quad x \geq 0,\]

where \(x = (x_1, \ldots, x_n)^\top \in \mathbb{R}^n\) is the variable vector for the problem, \(n \in \mathbb{N}^*\), \(c = (c_1, \ldots, c_n)^\top \in \mathbb{R}^n\) and \(b = (b_1, \ldots, b_m)^\top \in \mathbb{R}^m\) are known vectors, \(A = (a_{ij})_{i \in \{1, \ldots, m\}} \in \mathbb{R}^{m \times n}\) is a known matrix, \(m \in \mathbb{N}^*, m \leq n, D \in \mathbb{R}^{n \times n}\) is a known

Dedicated to Professor Silviu Guiaşu on his 70th birthday.
diagonal matrix having the diagonal elements $d_1, \ldots, d_n \geq 0$, $\mu_1, \ldots, \mu_n > 0$ are perturbation parameters (weights), and $\mu = (\mu_1, \ldots, \mu_n)^T \in \mathbb{R}^n$. We use the well-known convention $0 \ln 0 = 0$.

We remark that in the particular case when $\mu_1 = \mu_2 = \ldots = \mu_n$ we regain the standard quadratic programming with entropic perturbation [8].

In [5, 6, 7, 8, 14] Fang, Rajasekera and Tsao developed the entropic perturbation method for solving linear and quadratic programming problems using Erlander’s geometric entropic programming technique [4].

Using this method, in Section 2 we construct a geometric dual problem of problem $(P(\mu))$, and in Section 3 we describe their duality. As special cases we recover duality from quadratic programming with entropic perturbation [8], from linear programming with weighted entropic perturbation [1], and from maximizing the weighted entropy subject to some given constraints of moments type [10].

We mention that some interesting extensions of the entropic perturbation method for linear or quadratic programming can be also found in [2, 3, 13, 16].

2 The construction of the dual

Because of the entropic perturbation, the problem $(P(\mu))$ seems more complicated than the standard-form quadratic programming problem. However, this perturbation allows us to construct an unconstrained dual convex programming problem.

We will assume that the problem $(P(\mu))$ has at least one interior feasible solution $x > 0$. This assumption is called the interior point assumption.

Remark 2.1. Under the interior point assumption the problem $(P(\mu))$ is consistent. More than that, as

$$
\lim_{x_j \to 0} x_j \ln x_j = 0, \quad \lim_{x_j \to -\infty} \left(\frac{1}{2} d_j x_j^2 + c_j x_j + \mu_j x_j \ln x_j \right) = +\infty
$$

and the function $x_j \ln x_j$ is strictly decreasing on the interval $[0, \frac{1}{e}]$ and strictly convex for each $j \in \{1, \ldots, n\}$, it follows that the problem $(P(\mu))$ has a finite optimum and a unique optimal solution $x^*(\mu) > 0$.

Let $j \in \{1, \ldots, n\}$ be arbitrary and fixed. For each positive function $\varphi_j(y)$, $y = (y_1, \ldots, y_m) \in \mathbb{R}^m$ and for each $x_j > 0$, applying the logarithmic inequality

$$
\ln \frac{\varphi_j(y)}{x_j} \leq \frac{\varphi_j(y)}{x_j} - 1,
$$

with equality if and only if

$$
\varphi_j(y) = x_j,
$$

(1)
Convex quadratic programming

it follows that
\[\mu_j \ln \frac{\varphi_j(y)}{x_j} \leq \frac{d_j \left[x_j - \varphi_j(y) \right]^2}{2x_j} + \frac{\mu_j \varphi_j(y)}{x_j} - \mu_j, \quad (2) \]

with equality if and only if the relation (1) holds.

The inequality (2) can be rewritten as
\[\frac{d_j x_j}{2} + \mu_j \ln x_j \geq \left[d_j \varphi_j(y) + \mu_j \ln \varphi_j(y) \right] - \frac{d_j \varphi_j^2(y)}{2x_j} - \frac{\mu_j \varphi_j(y)}{x_j} + \mu_j. \quad (3) \]

As the function
\[F_j : (0, +\infty) \to \mathbb{R}, \quad F_j(t) = d_j t + \mu_j \ln t \]
is bijective, the following equation
\[d_j \varphi_j(y) + \mu_j \ln \varphi_j(y) = \sum_{i=1}^{m} a_{ij} y_i - c_j - \mu_j \quad (4) \]
has a unique positive solution \(\varphi_j(y) \), for every \(y \in \mathbb{R}^m \) and \(j \in \{1, \ldots, n\} \).

Now the inequality (3) becomes
\[\frac{d_j x_j}{2} + c_j + \mu_j \ln x_j \geq \sum_{i=1}^{m} a_{ij} y_i - \frac{d_j \varphi_j^2(y)}{2x_j} - \mu_j \varphi_j(y). \]

Multiplying both members by \(x_j > 0 \) and summing after \(j \in \{1, \ldots, n\} \) we get
\[f_\mu(x) \geq \sum_{i=1}^{m} y_i \sum_{j=1}^{n} a_{ij} x_{j} - \frac{1}{2} \sum_{j=1}^{n} d_j \varphi_j^2(y) - \sum_{j=1}^{n} \mu_j \varphi_j(y). \quad (5) \]

Passing to the limit \(x_j \searrow 0 \) it follows that this inequality is true for every \(x_j \geq 0, \) \(j \in \{1, \ldots, n\} \).

If the vector \(x = (x_1, \ldots, x_n)^T \) satisfies the restriction \(Ax = b \), the inequality (5) can be rewritten as
\[f_\mu(x) \geq \sum_{i=1}^{m} b_i y_i - \frac{1}{2} \sum_{j=1}^{n} d_j \varphi_j^2(y) - \sum_{j=1}^{n} \mu_j \varphi_j(y). \quad (6) \]

In this way we can define the geometric dual problem of problem \((P(\mu))\), namely
\[(D(\mu)) : \max_{y \in \mathbb{R}^m} g_\mu(y) = b^T y - \frac{1}{2} \sum_{j=1}^{n} d_j \varphi_j^2(y) - \sum_{j=1}^{n} \mu_j \varphi_j(y). \]
3 Duality results

In this section we will establish duality theorems between problems \((P(\mu))\) and \((D(\mu))\). The next theorem follows directly from (6).

Theorem 3.1 (Weak duality). If \(x\) and \(y\) are feasible solutions of problems \((P(\mu))\) and \((D(\mu))\) respectively, then \(f_\mu(x) \geq g_\mu(y)\).

Because one has equality in (6) if and only if \(x_j = \varphi_j(y)\), \(\forall j \in \{1, \ldots, n\}\), we obtain the following result.

Theorem 3.2. Let \(y^* = (y_1^*, \ldots, y_m^*) \in \mathbb{R}^m\) and \(x^* = (x_1^*, \ldots, x_n^*) \in \mathbb{R}^n, x^* > 0\) be such that the following relation holds

\[
d_j x_j^* + \mu_j \ln x_j^* = \sum_{i=1}^{m} a_{ij} y_i^* - c_j - \mu_j, \quad \forall j \in \{1, \ldots, n\}.
\]

If \(x^*\) satisfies the restriction \(Ax^* = b\), then \(x^*\) is the optimal solution of problem \((P(\mu))\) and \(y^*\) is an optimal solution of problem \((D(\mu))\). Moreover, in this case

\[
f_\mu(x^*) = g_\mu(y^*),
\]

i.e. problems \((P(\mu))\) and \((D(\mu))\) have the same optimal value.

To prove the strong duality theorem we will need the following result.

Lemma 3.1. The function \(g_\mu(y)\) is concave.

Proof: We have \(g_\mu(y) = \Theta(y) + \sum_{j=1}^{n} \Psi_j(y)\), where \(\Theta(y) = \sum_{i=1}^{m} b_i y_i, \forall y \in \mathbb{R}^m\), and

\[
\Psi_j(y) = -\frac{1}{2} d_j \varphi_j^2(y) - \mu_j \varphi_j(y), \quad \forall y \in \mathbb{R}^m, \quad \forall j \in \{1, \ldots, n\}.
\]

Obviously the function \(\Theta(y)\) is linear. Hence it is enough to prove that the function \(\Psi_j(y)\) is concave for every \(j \in \{1, \ldots, n\}\). We have

\[
\frac{\partial \Psi_j}{\partial y_k}(y) = -(d_j \varphi_j(y) + \mu_j) \frac{\partial \varphi_j}{\partial y_k}(y), \quad \forall k \in \{1, \ldots, m\}.
\] (7)

For each \(j \in \{1, \ldots, n\}\), define the function \(\phi_j : (0, +\infty) \times \mathbb{R}^m \to \mathbb{R}\) by

\[
\phi_j(x_j, y) = d_j x_j + \mu_j \ln x_j - \sum_{i=1}^{m} a_{ij} y_i + c_j + \mu_j.
\]

It follows from (4) that \(\phi_j(\varphi_j(y), y) = 0, \forall y \in \mathbb{R}^m\). From

\[
\frac{\partial \phi_j}{\partial y_k}(\varphi_j(y), y) = 0, \quad \forall k \in \{1, \ldots, m\}, \quad \forall y \in \mathbb{R}^m
\]
we derive that
\[\frac{\partial \varphi_j}{\partial y_k}(y) = \frac{a_{kj} \varphi_j(y)}{d_j \varphi_j(y) + \mu_j}, \quad \forall k \in \{1, \ldots, m\}. \quad (8) \]

Then, from (7) we deduce that the Hessian of \(\Psi_j(y) \) has the form
\[H_{\Psi_j}(y) = r_j(y) A^{(j)} A^{(j)^\top}, \]
where
\[r_j(y) = -\frac{\varphi_j(y)}{d_j \varphi_j(y) + \mu_j}, \quad A^{(j)} = \left(a^{(j)_{il}} \right)_{i \in \{1, \ldots, m\}, \ l \in \{1, \ldots, n\}}, \]
\[a^{(j)_{il}} = \begin{cases} a_{ij}, & \text{if } l = j \\ 0, & \text{if } l \neq j \end{cases}. \]
Obviously, \(r_j(y) < 0 \), and then the Hessian \(H_{\Psi_j}(y) \) is negative semi-definite, which means that \(\Psi_j(y) \) is concave.

Remark 3.1. It follows from the proof of Lemma 3.1 that if \(\text{rank} A = m \), then \(g_\mu(y) \) is strictly concave, which guarantees the uniqueness of the optimal solution of the dual problem \((D(\mu))\).

Theorem 3.3 (Strong duality). Assume that the primal problem \((P(\mu))\) satisfies the interior point assumption, \(\text{rank} A = m \), and the dual problem \((D(\mu))\) has feasible solutions. Then the two problems have the same optimal value. Moreover, if \(y^*(\mu) \) is the optimal solution of problem \((D(\mu))\), then the vector \(x^*(\mu) \) given by the equation
\[d_j x^*_j(\mu) + \mu_j \ln x^*_j(\mu) = \sum_{i=1}^{m} a_{ij} y^*_i(\mu) - c_j - \mu_j, \quad \forall j \in \{1, \ldots, n\} \quad (9) \]
is the optimal solution of problem \((P(\mu))\) and \(f_\mu(x^*(\mu)) = g_\mu(y^*(\mu)) \).

Proof: The primal problem \((P(\mu))\) can be written in the form
\[\inf_{x \in \mathbb{R}^n} \left\{ \tilde{f}(x) - h(Ax) \right\}, \]
where
\[\tilde{f}(x) = \begin{cases} f_\mu(x), & \text{if } x \geq 0 \\ +\infty, & \text{otherwise} \end{cases}, \quad \forall x \in \mathbb{R}^n, \]
and
\[h(w) = -\delta(w|\{b\}) = \begin{cases} 0, & \text{if } w = b \\ -\infty, & \text{if } w \neq b \end{cases}, \quad \forall w \in \mathbb{R}^m, \]
\(\delta(\cdot|\{b\}) \) being the indicator function of the set \(\{b\} \). Obviously, \(\tilde{f} \) is a closed proper convex function and \(h \) is a closed proper concave function. Using Fenchel Duality Theorem ([15], p. 332) we deduce that the Fenchel dual of the problem \((P(\mu))\) is
\[\sup_{y \in \mathbb{R}^m} \left\{ h^*(y) - \tilde{f}^*(A^\top y) \right\}, \quad (10) \]
where the functions h^* and \tilde{f}^* are the Fenchel conjugates of h, and \tilde{f} respectively. According to the definition of the Fenchel conjugate, we have

$$\tilde{f}^*(u) = \sup_{x \geq 0} \left\{ x^\top u - f(x) \right\}$$

$$= \sum_{j=1}^n \left[-\frac{1}{2} d_j(x_j^*)^2 + (u_j - c_j)x_j^* - \mu_j x_j^* \ln x_j^* \right].$$

where $x_j^* > 0$ is the unique solution of the equation

$$d_j x_j + \mu_j \ln x_j = u_j - c_j - \mu_j. \quad (11)$$

It follows that $\tilde{f}^*(u) = \sum_{j=1}^n \left[\frac{1}{2} d_j x_j^* \right].$

For $u = A^\top y$, according to (4) the equation (11) has a unique solution $x_j^* = \varphi_j(y)$. Hence

$$\tilde{f}^*(A^\top y) = \sum_{j=1}^n \left[\frac{1}{2} d_j \varphi_j^2(y) + \mu_j \varphi_j(y) \right], \forall y \in \mathbb{R}^m. \quad (12)$$

Obviously,

$$h^*(y) = -\delta^*(-y|\{b\}) = b^\top y, \forall y \in \mathbb{R}^m. \quad (13)$$

Using (10), (12) and (13) we deduce that the Fenchel dual of the problem $(P(\mu))$ is even the geometric dual problem $(D(\mu))$. It follows from our hypothesis and the Fenchel Duality Theorem that the problems $(P(\mu))$ and $(D(\mu))$ have optimal solutions and the same optimal value.

Let now $y^*(\mu)$ be the optimal solution of the problem $(D(\mu))$ and consider the vector $x^*(\mu)$ given by the equation (9). According to (9) and (4) it follows that $x_j^*(\mu) = \varphi_j(y^*(\mu)) > 0, \forall j \in \{1, \ldots, n\}$.

Using the optimality of the dual solution $y^*(\mu)$ and the relation (8) from the proof of Lemma 3.1 we have

$$0 = \frac{\partial g_\mu}{\partial y_k}(y^*(\mu)) = b_k - \sum_{j=1}^n a_{kj} \varphi_j(y^*(\mu)) = b_k - \sum_{j=1}^n a_{kj} x_j^*(\mu), \forall k \in \{1, \ldots, m\}.$$

Then $Ax^*(\mu) = b$. By Theorem 3.2, we conclude that $x^*(\mu)$ is the optimal solution of problem $(P(\mu))$ and $f_\mu(x^*(\mu)) = g_\mu(y^*(\mu))$. \hfill \square

Remark 3.2. For $\mu_1 = \mu_2 = \ldots = \mu_n = \mu$ one recovers the duality from the standard quadratic programming with entropic perturbation [8].
Remark 3.3. In the absence of the quadratic term, that is for \(D = 0 \), one can solve the equation (4) and gets explicitly the function

\[
\varphi_j(y) = \exp \left[\frac{1}{\mu_j} \left(\sum_{i=1}^{m} a_{ij} y_i - c_j \right) - 1 \right], \quad \forall j \in \{1, \ldots, n\}.
\]

In this way one recovers the duality from the linear programming with weighted entropic perturbation [1].

 Remark 3.4. If \(c = 0 \), \(D = 0 \) and \(\mu \) is a finite probability distribution, one recovers the duality from the maximizing of weighted entropy subject to some given constraints of moments type [10].

References

Received: 28.07.2008.

University of Bucureşti,
Faculty of Mathematics and Informatics
E-mail: preda@fmi.unibuc.ro

University of Piteşti,
Faculty of Mathematics and Informatics
E-mail: cbalcau01@linux.math.upit.ro