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Abstract

We will give a very quick panoramic view of some more or less recent re-
search, mostly by the second author (V.P.), in the fields of low-dimensional
topology and geometric group theory.
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A Review

The notion of the geometric simple connectivity (GSC ) stems from
smooth manifold theory. A smooth manifold M , which is possibly non com-
pact with non empty boundary, is said to be GSC if it admits Morse functions f
without critical points of index λ = 1. Here, when M is non compact one asks
that f be proper and, anyway, the f |∂M has to be taken into account too. There
is also a more combinatorial version, in terms of handlebody decompositions, the
condition being then that the 1-handles and 2-handles should be in cancelling
position; here, of course, all the 1-handles are involved but only a subset of the
2-handles. This second definition makes also sense outside of the smooth realm,
for cell-complexes. For the connections between GSC and the mere π1 = 0 condi-
tion we refer here to the brief note [49] by the last two authors (V.P. and C.T.).
More recently, there has been here the big celebrated breakthrough by Grisha
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Perelman, namely his proof of the 3-dimensional Poincaré Conjecture, and this
is completely equivalent to the following implication

{π1 = 0} =⇒ GSC, for closed 3-manifolds.

See here [20], [21], [22], [1], [2], [13], [16] and [17]. The Perelman-Hamilton Ricci
flow approach (which, as such, has no connection with GSC) has yielded not only
the Poincaré Conjecture, but also the full Thurston Geometrization Conjecture
for closed 3-manifolds.

The second author (V.P.) has also developed, completely independently of
Perelman and Hamilton, his own approach to the 3-dimensional Poincaré Con-
jecture, based on GSC for smooth 4-manifolds mainly non compact ones with
non empty boundary. This approach, an outline of which can be found in [39],
[42], and see also [40], [41], consists of three successive steps which we will very
briefly review below. One will notice that GSC occurs preeminently in all three
of them. Notice also that, according to [49], the connection between GSC and
mere simple connectivity stays certainly mysterious and problematic when the
dimension is four, at least in the diff context, or when non compact manifolds
with non empty boundaries are concerned. Both of these aspects are present in
the approach to the Poincaré Conjecture by the second author (V.P.), while the
second aspect, albeit in very high dimensions, occurs in the work (also by V.P.)
in group theory, described later in this section.

We finally point out that there is, also, another related notion which is the
counterpart, in the polyhedral category, of the GSC of open manifolds and which,
in general, is slightly weaker, namely the weak GSC condition, developed by
the first author (D.O.) in collaboration with L. Funar in [7], [8] and [18]. We will
say more about it towards the end of this paper.

Step I. We start here by introducing another weakening of the GSC concept,
following a suggestion by Barry Mazur. An open smooth manifold Xn will be
said to be GSC at long distance if for every compact K ⊂ Xn we can sandwich
a compact smooth GSC submanifold K ⊂ Mn ⊂ Xn.

Next, to any smooth compact bounded 4-manifold M4 we can associate,
canonically, the following smooth open 4-manifold

(1) X4(M4)
def
= int(M4#∞#(S2 × D2)).

Here is the first, purely 4-dimensional, result, which is totally unrelated to di-
mension three; full proofs are given in [37] and a relatively detailed outline is to
be found in [38].

Theorem 1 . If M4 is GSC at long distance, with a boundary ∂M4 which is
a homology 3-sphere, then X4(M4) is GSC.

This is one of the ingredients for the first step, the final result of which is the
following
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Theorem 2 . For any homotopy 3-ball ∆3, the smooth open 4-manifold
X4(∆3 × I) is GSC.

Modulo theorem 1, the full proof of theorem 2 is contained in [28] to [32].

Step II. This intermediary step was only achieved more recently, much later
than the III to come below. Both for it and for theorem 1, severe criticism by M.
Freedman, D. Gabai and F. Quinn of earlier flawed versions, have been essential.
The main result here is the following

Theorem 3 . If X4(∆3 × I) is GSC, then so is ∆3 × I itself.

An outline of the proof is to be found in [42], but the long handwritten
manuscript with full details still waits to be typed.

Step III. Once we know that ∆3×I is GSC, then we also get the coherence

theorem, for which we will refer here to [9] and [37]; we will describe it later
in this paper. But then, once we have coherence, we can also apply the so-called
strange compactification procedure ([35], [39], [9] and more about it will
be said below) and get the following final result, the conclusion of which is the
3-dimensional Poincaré Conjecture

Theorem 4 . If ∆3 × I is GSC, then ∆3 = B3.

An outline of the proof of this theorem can be found in the papers [9], [34],
[35], [39], [41] and then, complete details in [33].

In the sketchy 3-stage outline above we had side by side two kinds of issues:
show that some specific object is GSC and then, deduce from this some desirable
geometric result. This kind of duality will be present throughout the rest of this
present short paper.

The 3-stage approach outlined above is essentially unrelated to 3-dimensional
topology and so one cannot expect much from it concerning the full geometriza-
tion conjecture. But then, it has other kinds of fall-outs and/or ramifications,
to which we will turn next. These are totally outside the world of 3-manifolds.
To begin with, let us mention a category of smooth non-compact four-manifolds
with non-empty boundary, which play a preeminent role in Steps I and III above.
These are the sort of links V4, defined by the following prescriptions

(2) intV 4 = R
4

standard, ∂V 4 =

α≤∞∑

1

S1
i × intD2

i .

where the null-framing is meant in the last formula. Classical links trivially gen-
erate such V 4’s (with α < ∞) and these V 4’s will be called smoothly tame . But
then, Casson Handles [12] are also examples of sort of links (with α = 1) and M.
Freedman has proved (see [5] and [6]) that they are topologically tame . More-
over, by combining Freedman and Donaldson [4], in particular because exotic R

4’s
do exists, one can show that at least some of them have to be smoothly wild .
Issues of triviality and of (smooth) tameness for various specially constructed sort
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of links are among the big items in the 4-dimensional approach to the Poincaré
Conjecture described above, see here also [35] and [41]. Notice that the distinc-
tion smoothly tame versus topologically tame is foreign to classical knot theory.
But then, there is here the idea that just like this classical knot theory is related,
via the quantum invariants, to the entangled quantum many-particle systems, so
our sort of links should be connected to (not necessarily topological) quantum
field theory.

In the discussion above, concerning the topological tameness versus the smooth
tameness for the “sort of links” V 4 (2), as well as in the discussion which will
follow next, concerning the 4-dimensional smooth Schoenflies problem, we touch
upon the issue of the deep, uncharted precipice which exists exactly in dimension
four between the categories diff and top. Remember that in dimension three
or less, the two categories are equivalent, while in dimensions strictly larger than
four, the difference between the two is completely accounted for by discrete in-
variants, by characteristic classes of sorts. But, in dimension four, this is beyond
the power of algebraic topology or of any kind of discrete invariants, and the
whole issue is, as yet, shrouded in deep mystery. One may legitimately suspect
that basic issues concerning the nature of space and time are being touched upon
here, too.

We move now to an important fall-out of step II and this concerns the 4-
dimensional diff Schoenflies problem. Some historical details concerning this
problem can be found in [41]; we just remind here the reader that a smooth 4-
dimensional Schoenflies ball is a smooth compact submanifold ∆4 ⊂ S4, with
∂∆4 = S3. Please do not confuse the Schoenflies ball ∆4 with the much more
general M4 which occurs in theorem 1.

One of the results of Barry Mazur’s celebrated work on the Schoenflies problem
[14] (and see here [44] too) is the following diffeomorphism

(3) ∆4 − {a boundary point}
diff
== B4 − {a boundary point},

which implies, of course, that ∆4 TOP
== B4; but, beyond the (3) above, ∆4 is one

of the big mysteries of 4-dimensional differential topology. So, here comes our
next result

Theorem 5 . ∆4 is GSC.

One can find the outline of the proof in [42], but the full detailed version is
still waiting to be typed. The very general idea for theorem 5 is that, very much
like the premise X4(∆3 × I)) ∈ GSC is used in the context of theorem 3 to show
that ∆3 × I ∈ GSC, so we can use now Barry’s (3) in order to draw a similar
conclusion for the Schoenflies ball ∆4.

Now, once we know that ∆4 is GSC, the next aim should be to deduce from

this that ∆4 is standard, i.e. that ∆4 diff
== B4. This is the subject of current

research of the second author (V.P.), together with David Gabai.



On Geometric Simple Connectivity 161

We do not want to enter into the discussion of this current activity here, we
will just mention a typical post-GSC result, which might eventually come handy
in the present context. This is an old theorem of David Gabai, solving an even
older conjecture of the second author (V.P.), namely the following result:

Let W 4 be a compact smooth 4-manifold having a handlebody decomposition
with exactly one handle for the indices λ = 0, λ = 2 and λ = 3. Assume also that

the homology of W 4 is the same as the homology of a point. Then W 4 diff
== B4.

In [10] this is a corollary of the following so-called “Po’s conjecture”, which
is also proved in [10]. Start with the following abstract 2-dimensional stratified
object (Σn, S1). Inside an oriented S2 consider 2n + 1 disjoined disks. Then
delete the interiors of the disks in question and glue the 2n + 1 remaining circles
to a unique copy of S1, using the normal orientation for n + 1 of them, and the
opposite one for the remaining n. With this, D. Gabai proves the following:

If Σn is embedded in S3, then the (S3, S1) is unknotted.

In [10] one can also find a more general conjecture than the post-GSC 4-
dimensional result quoted above, but this remains beyond our present state of
the art, and as mysterious as ever.

The next fall-out concerns geometric group theory. Abstracting from earlier
work by A. Casson [11], by the second author (V.P.), see here [25] to [27], and
also by others, S. Brick and M. Mihalik have introduced the notion QSF (=
quasi-simply-filtered) for finitely presented groups Γ (see [3] and [51].) We
start by defining QSF for locally compact spaces X, in the simplicial category.
We will say that X is QSF if for any compact k ⊂ X there is some (abstract)

compact simply connected K endowed both with an inclusion k
i
→֒ K and with

a map f into X, creating a commutative diagram

k ⊂ > X

K

f

>

i

⊂

>

which is such that ik ∩ {double points of f} = ∅, something which is reminiscent
of the classical Dehn-Papakyriakopoulos lemma, in 3-dimensional topology, of
course (see [23]).

In [3] it is shown, among other things, that

i) Consider two presentations P1, P2 for the same finitely presented group

Γ, i.e. finite simplicial complexes with π1 = Γ. We have then P̃1 ∈ QSF
iff P̃2 ∈ QSF, which makes QSF be a bona fide group theoretical notion.

ii) For Γ = π1M
3 the QSF implies π∞

1 Γ = 0, where π∞
1 Γ

def
= π∞

1 M̃3.

The next item is a corollary of Perelman’s work on the geometrization of
3-manifolds.
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iii) All Γ = π1M
3 are QSF.

See the next section for more details about the various group-theoretical ram-
ifications of QSF. But here comes the next result by the second author (V.P.), to
be compared to iii) above.

Theorem 6 . All finitely presented groups Γ are QSF.

This is, of course, totally independent from iii) above which only applies to
fundamental groups of closed 3-manifolds, while theorem 6 claims the same kind
of result for all finitely presented groups. Let us say that iii) appears as a very
special case of theorem 6. Of course, theorem 6 implies then also that for all
closed M3’s we have π∞

1 M̃3 = 0, but this is about as far as we can get with this
technology in the direction of the geometrization conjecture for 3-manifolds.

For an outline of the proof of theorem 6 we refer to [43]. The preprint [45] is a
first instalment of the detailed proof. The rest is to follow later, when typing will
be available. This being said, the three successive papers which will eventually
present the complete proof of theorem 6 (the first one being [45]) are a very
massive bulk of unconventional technology. Hence partial results, showing that
various special classes of groups are QSF, proved by more mundane, shorter and
lighter technology, remain valid and interesting (e.g. [3], [8] and [18]).

The reason for talking about theorem 6 here is that it is strongly connected
with GCS in more than one way. To begin with, the first author (D.O.) and Louis
Funar have shown that Γ is QSF iff there is some smooth compact manifold M
with π1M = Γ, such that M̃ ∈ GSC (see [8] and [18]). But unlike in i) above,
this is presentation-dependent.

In his approach to theorem 6, the second author (V.P.) works with pre-
sentations of Γ which are singular 3-manifolds M3(Γ). The occurrence of 3-
dimensional objects here, does not imply, by any means, a connection with 3-
manifolds; these remain beyond our scope. It is actually just a technical ingredi-
ent. These, necessarily singular, presentations of Γ allow to take full advantage
of the richness of the double point structures for maps from dimension two to
dimension three when, later on, 2-dimensional representations for Γ, as defined
below, will be considered; we will come back to this later. Anyway, in view of
the work of the first author (D.O.) and Louis Funar, it would suffice now to

show that for some smooth high dimensional thickening ΘN (M3(Γ)) the Θ̃N ∈
GSC. But life is not that easy, and what one actually manages to achieve, is just
another smooth high-dimensional simply-connected manifold Su(Γ) (never mind
the reason for this notation here), related to the ΘN (M3(Γ))∼ and similarly en-
dowed with a free action of Γ but, unfortunately, the Su(Γ)/Γ is non-compact.

Very roughly speaking, one gets Su from Θ̃N by changing each of the infinitely
many compact fundamental domain of ΘN (M3(Γ))∼ into some foamy non com-
pact object, like turning solid compact ice-cubes into some infinitely complicated
beer-foam. The main hard step in the proof of theorem 6 is actually getting this
kind of Su(Γ) to be GSC. Afterwards, getting from this rather unusual object to
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Γ ∈ GSC, although not a trivial step, is easier.

But the GSC notion is present from the very beginning, on the road to theorem
6. The first basic concept is now the notion of (inverse) representation for Γ, an
arrow looking like {→ Γ} rather than the more mundane {Γ →}’s. Also, please
do not confuse “representation” of Γ, like defined below, and “presentation” of Γ
like for instance M3(Γ).

By definition, a representation for Γ is a diagram

(4) X
f

−→ M̃3(Γ)

where

a) X is a not necessarily locally-finite simplicial complex of dimension ≤ 3
and f a non degenerate simplicial map. We call dim X the dimension of
the representation; the meaningful cases being of course dimensions 2 and
3.

b) X ∈ GSC.

c) One can zip (4), in the sense that the smallest equivalence relation on X
which is compatible with f and which kills all the non-immersive points, we
call them the mortal singularities, kills all the double points, see here
[24], for instance, and then [45] too. These mortal singularities pertain to
f while, completely independently of them, we also have the singularities
of M̃3(Γ) itself which, by definition, are immortal .

d) One will also ask that f be “essentially surjective”. For dim X = 3 this

means that the image of f is dense, i.e. fX = M̃3(Γ). If dim X = 2, it

means that M̃3(Γ) − Imf consists of a union of (possibly infinitely many)
small cells of dimensions two and three.

There is nothing group theoretical, yet at least, concerning this notion which
stems from the very beginning of the second author’s (V.P.) approach to the
Poincaré Conjecture; see here in particular [28] and then also [29] to [35]. Actu-
ally, the structure of the definition above is such that any object which is being
“represented” comes automatically with π1 = 0; and in all the papers just men-
tioned it was homotopy 3-spheres which were being represented. Then in [48] the
last two authors (V.P. and C.T.) have represented wild open simply-connected
3-manifolds (the Whitehead manifold Wh3). Chaotic behavior in the guise of
Julia sets occurs then, something which in the context of the representations
necessary for theorem 6 would be mortally disastrous. Next, the second author
(V.P.) alone, or the last two authors (V.P. and C.T.), have represented universal
covering spaces of closed 3-manifolds, in [26], [27], [36], [46], [47], but these papers
are by now largely superseded by Perelman’s works (see the iii) above), and so is
[11] too.
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With all this, here is the first step in the proof of theorem 6, namely the
following

Theorem 7 . For any finitely presented group Γ there exists a representation
(4) with the following additional features

i) The representation is 3-dimensional (i.e. dim X = 3) and the X is locally

finite.

ii) There is a free action Γ × X −→ X, such that f is equivariant (for the

standard action Γ×M̃3(Γ) −→ M̃3(Γ)), i.e. f(gx) = gf(x), ∀x ∈ X, g ∈ Γ.

iii) There is a uniform bound N such that for any double point (x, y) ∈ X×X
of f there is a zipping strategy of length ≤ N .

The complete detailed proof is contained in [45], a paper which relies heavily on
the work [50] of the last two authors (V.P. and C.T.).

Although written originally in the context of smooth 3-manifolds, this paper
[50] seems to be actually tailor-made for singular 3-manifolds too, i.e. for presen-
tations of completely general finitely presented groups Γ. As somebody said once
in a different context, papers may sometimes be more clever than their authors.
The work [36] should still be a useful reference for understanding what is going
on in all this framework.

The context of the theorems 6 and 7 above was a good occasion for introducing
the topic of representations, like the one in (4). But now we want to discuss
these representations in more depth and also in a more general context which
will concern the second author’s (V.P.) work, both on the Poincaré Conjecture
and on geometric group theory.

We will be concerned with a representation of some simply connected 3-
manifold, which might be singular like M̃3(Γ) in (4), but possibly smooth too.
Also it might be non-compact or compact. For this object Y 3 we will consider a
representation

(5) X
f

−→ Y 3,

with the features a), b), c), d) already listed in connection with (4) and, if Y 3

is compact, then the X might be compact too. But we will anyway assume now
that dim X = 2 and, as it will be argued below, this is the most interesting case.
We will also need to look into the set of double points of f , namely the

(6) X ⊃ M2(f)
def
= {the set of those x ∈ X s.t. card f−1f(x) > 1}.

The point we want to make is that, in a situation like the one we are consid-
ering now, with a generic map from a 2-dimensional space to a 3-dimensional one
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with not too nasty singularities, then there is a wealth of structures connected
with M2(f), which can be put to use.

There are two special cases of (5) to be looked into now, corresponding re-
spectively to the second author’s (V.P.) work on the 3-dimensional Poincaré Con-
jecture, or on group theory. These two cases of (5) are

(7-I) Y 3 = a smooth homotopy 3-sphere Σ3 to which the homotopy 3-ball ∆3 =
Σ3 − intB3 is attached, and X is a compact 2-dimensional GSC complex;

(7-II) Our group theoretical (4) for which the X is assumed now to be a non
compact but locally finite 2-dimensional complex (it turns out that, with
some work, such local finiteness can always be achieved).

In both contexts (7-I) and (7-II), it may be assumed, without loss of generality,
that all the mortal singularities (i.e. the non-immersive points of f (5)) x ∈ X
are of the following type, which we call undrawable . The f(x) belongs to the
smooth part of Y 3, and, in the neighborhood of x, the X consists of two copies
of R

2, call them A and B. The f |A, f |B inject and fA, fB cut through each
other transversally along a line L = (−∞,∞). The A and B are already glued
together at the source, along the half-line 1

2
L = (−∞, 0], ending at x = 0. The

(0,∞) consists entirely of double points, and this should also indicate how the
zipping starts. Figure 1 in [28] can serve as an illustration for all this, and a little
thought should make it clear too why we call the singular x “undrawable”.

From here on, we will specialize for a while to (7-I). By definition, an abstract

desingularization for X
f

−→ Σ3 is a 2-valued function

(8) {the set of all local branches Ax, Bx for all the mortal, undrawable singu-

larities x ∈ X }
φ

−→ {the set with two elements s, n}

such that for each individual x we should always have φ(Ax) 6= φ(Bx), i.e. if
φ(Ax) = s (or n) then φ(Bx) = n (or s).

Now, our X
f

−→ Σ3 is a representation, hence it can be zipped starting from
the finite set Sing (f) ⊂ X. In more concrete terms, this complete zipping up of X
means that the quotient-space projection X −→ fX can be factorized (actually
in many different ways), as

(9) X
f1

−→ X1

f2

−→ fX ⊂ Σ3,

where the following two things happen

(9-1) The first piece f1 is a precisely ordered sequence of elementary zipping moves
which are all homotopy equivalences (we will say they are “acyclic”). This
is not hard to describe explicitly; it is very clearly displayed in the figures
2 to 5 of [28] or 2.3 of [10], and we will not say more about it here.
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(9-2) The f2 is a collection of independent steps commuting with each other, lo-
calized in disjointed open neighborhood of X1. Typically, each such neigh-
borhood is the union of two copies of R

2, call them now C and D, such
that the following happens.
The f1|C, f1|D inject, the two planes f1C, f1D cut through each other
transversally along a line (−∞,∞); at the source X1, C and D are glued
along (−∞,−1] and [1,∞), with undrawable singularities x1, x2 at ±1.
The zipping is finished by continuing to glue f1C and f1D together along
[−1,+1], killing x1, x2 as singularities, in the process.

The whole factorization (9), with the order of operations inside f1, will be
called a zipping strategy , for (7-I).

Assume now that, for our representation (7-I), both a desingularization (8)
and a zipping strategy (9) are given. It is not hard to see that the initially given
desingularization propagates canonically along the ordered sequence of acyclic
moves of f1, inducing a desingularization φ1 for

(10) X1

f2

−→ Σ3.

Two things should be stressed here, before we go on. To begin with, φ1

is sensitive to the precise order inside f1, hence our name “strategy”. Then,
(10) is not a representation since, although simply-connected, X1 fails, generally
speaking, to be GSC.

For each X1 ⊃ C ∪D
f2

−→ Σ3, the desingularization φ1 smears the letters s, n
on the branches at x1, x2. When one ends the zipping, with x1 and x2 meeting in
a head-on collision, then these two (abstract) desingularizations might match (the
coherent case) or mismatch (the non-coherent case) and this occurs, generally
speaking, at each individual C ∪ D ⊂ X1, independently of each other.

At this point, we are able to state a result which lives in the very middle of
the second author’s (V.P.) approach to the Poincaré Conjecture, dividing it into
two halves of comparable difficulties, namely the following

Coherence Theorem 8 . For every homotopy 3-sphere Σ3 there is a rep-

resentation X
f

−→ Σ3, a desingularitation φ and a strategy, such that with the
induced desingularization φ1, all the movements in f2 are coherent.

This may look like a purely combinatorial statement concerning 2-complexes,
but this is deceptive. To begin with, there is a fairly easy argument (for which we
refer to [9] or to [37]), showing that the coherence theorem 8 is completely
equivalent to the statement that ∆3×I ∈ GSC, which is the conclusion of theorem
3. This is the first author’s (V.P.) road to the coherence theorem, namely
to get it as corollary of theorem 3, after the steps I and II, from the beginning of
the paper, are already achieved.

Actually, the whole issue of coherence is a question in diff 4-dimensional
topology. Our abstract desingularizations are actually recipes both for thickening
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X in dimension four and for desingularizing it, in the sense of the algebraic
geometers (see here [29] and [9]). What coherence really means, is being able to
realize geometrically the zipping, in dimension four, staying GSC. The obstruction
to coherence is quite subtle. On the one hand it is unstable , in the sense
that one kills it as soon as one goes to dimension five or more (by an appropriate
product with [0,1], . . . ). On the other hand, it has the following “abelianization”,
which is stable . Consider the double points at the level of X×X or X×X

/
Z/2Z

instead of X. Call them now M2(f) and M2(f)
/
Z/2Z respectively, coming with

a map M2(f) −→ M2(f) which desingularizes M2(f) and with an obvious Z/2Z

principal fibration
M2(f) −→ M2(f)

/
Z/2Z.

Coherence implies, among other things, that this fibration is trivial (not a
2-sheeted covering), but the converse is false.

Of course, the work of Perelman (see [20] to [22] or [2] and [17]) immediately
implies the theorem 8 too, but what we are talking about here is a different

approach to the Poincaré Conjecture. And then, also, the 4-dimensional diff

technology for the proof of theorem 3 (via which the coherence theorem is
gotten here) can be adapted so as to yield the purely 4-dimensional theorem 5
(see here [42]). Our aim here was to discuss the complexity of M2(f) in the
context of (7-I), but we will still add a few words about what goes on, once we
are in the possession of theorem 8. So we give a very brief bird’s eye view of Step
III in the approach to the Poincaré Conjecture.

Starting from the coherence theorem for Σ3, one can develop an infinite
process achieving the following two items

1. A first, finite initial truncation of the process generates a smoothly tame
sort of link V 4

(
see (2)

)
, from which one can get the smooth compact

4-manifold (∆3 × I)#n#(S2 × D2), for some large n.

2. Being smoothly tame, our V 4 naturally compactifies to B4, but the infi-
nite process generates a second, so-called strange compactification , from
which one can read that π∞

1 V 4 is a free group. All this implies that Σ3 = S3.

We move now from (7-I) to (7-II). This time, our technology will make use
of differential topology in higher dimensions, certainly higher than four, and we
do not care about coherence any longer. But there is now another problem:
for a generic finitely presented group Γ we cannot guarantee that the subset
M2(f) ⊂ X is closed. This is a very serious pathology which has to be faced
when one wants to prove theorem 6, which would be a relatively simple matter,
without the pathology in question.

Here is an illustration of what goes on, locally. Consider a smooth open
neighborhood U ⊂ X. Generically, M2(f)∩U will be an infinite family of parallel
lines. Like one does for foliations or for laminations, we will cut M2(f) ∩ U
with a tight compact transversal τ , and next look at τ ∩ M2(f). Of course, if
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for all possible (U, τ)’s this would be finite, then M2(f) would be closed. But,
generically, it is not and so one starts worrying about the accumulation pattern
of M2(f)∩ τ ⊂ τ . If this would always be cantorian, like in [48], then this would
kill our approach to theorem 6. Fortunately, one can show that for any Γ there is
a 2-dimensional representation like in (7-II), having the features i), ii), iii) from
theorem 7, and also the next one below

(iv) For any compact transversal τ,M2(f) ∩ τ accumulates on a finite set.

Short of M2(f) ∩ τ itself being finite, this is the best we can hope for. Also,
this is the beginning of the proof of theorem 6, about which we will not say more
here.

So, how does a non-closed M2(f) arise at all? Well, generically, for our repre-
sentations (4), the X is an infinite sheaf of paths, each being a thickened version

of [0,∞), which via f explores every nook and hook of M̃3(Γ), a bit like in the
context of the celebrated Feynman’s path-integral. In this exploration a same
compact spot in M̃3(Γ) might be visited infinitely many times. This kind of
phenomenon was called “Whitehead’s nightmare” in [36] and it is this nightmare
which produces non-closed M2(f)’s.

At this point let us introduce the following definition, for an a priori arbitrary
group Γ

(11) We will call a 2-dimensional representation like in (7-II) easy if M2(f) is
closed. A group Γ which admits at least one such representation is called
easy too, otherwise it will be called difficult . So the “easy groups” are
exactly those which manage to avoid Whitehead’s nightmare.

Here is a list of known facts, concerning these notions

(11-1) It is fairly easy to show that if Γ has an easy representation, then it is QSF.
The proof uses only the very basics of the technology in [29].

(11-2) From [26] it is not hard to extract a proof that all the hyperbolic groups,
in the sense of Gromov, admit easy representations. Very many other well-
known and well-studied classical groups admit easy representations and, to
the best of our knowledge, nobody has ever encountered a group which is
difficult, in the sense above.

(11-3) When Γ = π1M
3, where M3 is a closed 3-manifold, then, making use of

the full strength of Perelman’s work, one can show that these Γ’s have easy
representations too. So, 3-manifold groups are all easy, in the sense above,
but this is a result which is about as difficult to prove as any.

So, what then next? To begin with, there is a conjecture by the second author
(V.P.) which we will explain now (and see here [45] too). This time we will be
concerned with 3-dimensional locally finite representations
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(12) X3 f
−→ M̃3(Γ),

with X3 an infinite union of fundamental domains ∆ and M̃3(Γ) an infinite union
of fundamental domains δ. From the group Γ comes a Gromov word-length ‖δ‖,
which is well-defined up to quasi-isometry.

Conjecture 9 . For each finitely presented group Γ there is a representation

(12) and a function Z+

µ
−→ Z+ such that for each δ there are at most µ(‖δ‖)

fundamental domains ∆ ⊂ X3 coming with f∆ ∩ δ 6= ∅. (No Whitehead night-
mares!).

The second author (V.P.) is currently working on this conjecture. The ap-
proach relies heavily both on the results of theorem 6, and also on the techniques
of the proof of the theorem in question. Differential topology is used again, but
not just the high-dimensional manifolds involved in the proof of theorem 6. Now,
manifolds modelled on the Hilbert cube play a big role too. Their virtue is that
they combine infinite dimensionality and compactness, all in one. When han-
dlebody structures and surgery are concerned, this may become a big technical
help.

If true, as it is hoped, conjecture 9 implies easily that each Γ has an easy
2-dimensional representation. This means an easy implication going from con-
jecture 9 to theorem 6, a deceptive statement indeed, since the proof of the
conjecture is supposed to rely heavily on theorem 6.

Finally, concerning the function µ which occurs in the statement of the con-
jecture 9, its asymptotic properties might be a sort of new invariant for discrete
groups, worth investigating.

This is as much as we want to say concerning (7-II) and, noticing that all the
preceding discussions starting with (5) have used a mixture of low-dimensional
topology, double points M2(f) and group theory, it is hard not to look back into
times long bygone when, albeit in a very different format, such mixtures had
already occurred.

In the very early fifties, when both topology and group theory were still in their
infancy, there was the strange and somewhat tragic figure of Chrystos Papakyri-
akopoulos. By some very clever arguments concerning the double points of maps
of surfaces into 3-manifolds, he managed to prove three theorems, for 3-manifolds,
which at that time may have been the best there was in low-dimensional topo-
logy (the curious reader may look here into the “nécrologie” which the second
author (V.P.) wrote for Papa, at the demand of the Greek Mathematical Society
[23]). The most important of these results was the so-called “Sphere Theorem”.
Then, John Stallings looked in great depth at what was actually going on in this
theorem and, almost twenty years later, came with his own celebrated theorem
on groups with infinitely many ends. Again, in its days, this may have been the
best geometric group theory there was. And then things went on . . .
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This is about as much as we wanted to tell here concerning representations
and double points structures. To end in a more philosophical vein, one might
muse on why we should focus on GSC rather that, let us say, on “no handles of
index λ = 2, or λ = 3, or . . .”? Two reasons, at least, come here to our minds.
To begin with, while the λ = 1 issue belongs to the non-commutative realm, the
λ ≥ 2 is essentially bound to the commutative one. Next, as the present paper
might have already made it abundantly clear, not only is GSC related to some
of the most hotly burning issues in low-dimensional topology but it looms big in
group theory too.

Those of us who are more historically minded might also remember here
Smale’s initial grab at the high-dimensional h-cobordism Theorem, Stallings’s
reaction to it and then Smale’s final courageous answer; some of this story is told
in [41].

Tameness conditions for discrete groups

As already said, a concept which is strongly connected with the GSC is the
weak geometric simple connectivity (or WGSC ) (see [7], [8] and [18]). The
WGSC property for polyhedra can be viewed as the piecewise-linear counterpart
of the geometric simple connectivity of open manifolds. Specifically, a polyhedron
is WGSC if it admits an exhaustion by compact connected and simply connected
polyhedra.

This condition should also be compared with the QSF, which basically amounts
to finding an exhaustion “approximable” by finite simply connected complexes.
But the WGSC is more flexible than the GSC, and enables us to work within
the realm of polyhedra and hence (discrete) groups. Of course, on the other side,
the GSC is much closer to collapsibility, something which goes far beyond the
simple-connectivity.

However, it is possible to show that the WGSC and the GSC are equivalent
for non-compact manifolds of dimension different from 4 (under the additional
irreducibility assumption for dimension 3): one needs to use a classical result of
Wall asserting that the GSC is equivalent, in dimension at least 5 and in the
compact case, to the simple connectivity (for more details see [7]).

A good “extension” of the GSC to non-simply connected spaces, which is
suitable for applications to 3-manifolds, is the Tucker property (see [52]), which
we recall here. The non-compact PL space X is Tucker if, for any finite sub-
complex K of X, the fundamental group of each component of X −K is finitely
generated.

This definition was motivated by Tucker’s work on 3-manifolds with bound-
ary (see [52]). In the realm of manifolds with boundary the relevant tameness
condition that somehow replace the simple connectivity at infinity is the follow-
ing notion: a non-compact manifold is a missing boundary manifold if it is
obtained from a compact manifold with boundary by removing a closed subset
of its boundary. In [52] it is shown that a P

2-irreducible connected 3-manifold
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is a missing boundary 3-manifold if and only if it is Tucker (where a manifold is
P

2-irreducible if it is irreducible and does not contain 2-sided projective planes
properly embedded).

Notice also that there is a big difference between the GSC and the Tucker
condition: while the GSC is the property of having no extra 1-handles, the Tucker
property is related (more or less) to the fact that some handlebody decomposition
needs only finitely many 1-handles, without any control on their number.

Furthermore, it turns out that the Tucker property can also be formulated
as a group theoretical property for coverings and, actually, it is equivalent, for
discrete groups, to a combinatorial condition of (metric) complexes: the tame

1-combability (see [15]).
Group combings were essential ingredients in Thurston’s attempt, inspired

from the theory of automatic groups, to abstract finiteness properties of funda-
mental groups of negatively curved manifolds, while tame 1-combings of groups
were considered by M. Mihalik and S. Tschantz in [15], as higher dimensional
analogs of usual combings. We don’t want to say more on these interesting topics
here, and we refer to [15] and [8] for details.

What we just want to notice now is that all these notions may have different
flavors in (geometric) group theory. In this setting there are, in fact, three “levels”
of group properties. We have combinatorial invariants, which are well-defined
group theoretical notions for (discrete) groups (i.e. presentation independent);
there are geometric invariants in the sense of M. Gromov, namely those properties
that are invariant under the (metric) notion of quasi-isometry; and finally one
has the topological properties imported from the realm of infinite complexes by
means of the following recipe.

Say that a finitely presented group has a certain property A if the universal
covering of some (and not necessarily all) finite complex with this fundamental
group has the required property.

It is exactly in this context that we can speak about the GSC, or the WGSC,
for finitely presented groups.

All this being said, we can come back to our properties and be more precise in
which sense they are slightly different. Actually, we have that the Tucker property
is a geometric invariant [15] (and also a proper homotopy invariant [19]). The
QSF is a combinatorial property for groups [3]: if one universal covering of a finite
complex with given fundamental group is QSF then all such universal coverings
are QSF. While this is not anymore true for the WGSC condition: there are
examples of presentations of a WGSC group which lead to non WGSC complexes
(see [8]).

In order to compare such different notions of groups, the second author (D.O.)
with Louis Funar introduced in [8] an equivalence relation for these topological
conditions defined for groups.

Say that two topological properties A and B are almost-equivalent for
finitely presented groups if a finitely presented group has A if and only if it
has B.
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One of the results of [8] by the first author (D.O.) and Louis Funar says that
all these properties define the same class of groups. More precisely

Theorem 10 . The GSC, QSF, WGSC, the tame 1-combability and the
Tucker property are almost-equivalent topological properties of finitely presented
groups.

This, in particular, implies the following useful corollary

Corollary 11 . The group Γ is QSF if and only if the universal covering M̃n

of any compact manifold Mn with π1(M) = Γ and dimension n ≥ 5 is GSC.
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Preprint Univ. Paris-Sud Orsay 2004-16 (2004).

[41] V. Poénaru Autour de l’Hypothèse de Poincaré in “Géométrie au XX éme
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