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Abstract

We combine a method of L. Panaitopol with some techniques for nonar-

chimedean absolute values to provide a new proof for an irreducibility cri-

terion of Perron for multivariate polynomials over an arbitrary field.
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1 Introduction

A famous irreducibility criterion that requires no information on the canonical
decomposition of the coefficients of an integer polynomial is the following result
of Perron [5].

Theorem A (Perron) Let F (X) = Xn +an−1X
n−1 + · · ·+a1X +a0 ∈ Z[X],

with a0 6= 0. If |an−1| > 1 + |an−2| + · · · + |a1| + |a0|, then F is irreducible in
Z[X].

Using some techniques that require the study of sheets of a Riemann surface,
Perron also stated in [5], in a slightly modified form, the following analogous
irreducibility criterion for polynomials in two variables over an arbitrary field.

Theorem B (Perron) Let K be a field, F (X,Y ) = an(X)Y n+ · · ·+a1(X)Y +
a0 ∈ K[X,Y ], with a0, . . . , an−1 ∈ K[X], an ∈ K, a0an 6= 0. If deg an−1 >
max{deg a0,deg a1, . . . ,deg an−2}, then F is irreducible over K(X).

As an immediate consequence of Theorem B, one may formulate a similar
irreducibility criterion for polynomials in r ≥ 3 variables X1,X2, . . . ,Xr over K.
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For any polynomial f ∈ K[X1, . . . ,Xr] we denote by deg
r
f the degree of f as a

polynomial in Xr with coefficients in K[X1, . . . ,Xr−1]. The next result follows
from Theorem B by writing Y for Xr, X for Xr−1 and by replacing K with
K(X1, . . . ,Xr−2).

Theorem C (Perron) Let K be a field, r ≥ 3, and let F =
∑

n

i=0 aiX
i

r
∈

K[X1, . . . ,Xr] with a0, . . . , an−1 ∈ K[X1, . . . ,Xr−1], an ∈ K[X1, . . . ,Xr−2] and
a0an 6= 0. If

deg
r−1 an−1 > max{deg

r−1 a0,deg
r−1 a1, . . . ,deg

r−1 an−2},

then F as a polynomial in Xr is irreducible over K(X1, . . . ,Xr−1).

By a clever use of the triangle inequality, L. Panaitopol [4] obtained an elegant
elementary proof of Theorem A, that makes no use of Rouché’s Theorem. The
aim of this note is to provide a new proof of Theorem B, based on ideas from [4]
combined with the techniques used in [1], [2] and [3].

Before proceeding to the proof of Theorem B we note that the two condi-
tions an ∈ K and deg an−1 > max{deg a0,deg a1, . . . ,deg an−2} are best possi-
ble, in the sense that there exist polynomials in K[X,Y ] for which either an /∈ K
and deg an−1 > max{deg a0,deg a1, . . . ,deg an−2}, or an ∈ K and deg an−1 =
max{deg a0,deg a1, . . . ,deg an−2}, and which are reducible over K[X].

To see this, one may first choose F1(X,Y ) = XY 2 + (X2 + 1)Y + X. In
this case deg a1 > deg a0, but a2 /∈ K, and F1 is obviously reducible, since
F1(X,Y ) = (XY + 1)(Y + X). For the second case one may choose F2(X,Y ) =
Y 2 + (X + 1)Y + X. Here a2 ∈ K, but deg a1 = deg a0, and F2 is reducible too,
since F2(X,Y ) = (Y + X)(Y + 1).

2 Proof of Theorem B.

We will give a proof based on the study of the location of the roots of F , re-
garded as a polynomial in Y with coefficients in K[X]. We first introduce a
nonarchimedean absolute value | · | on K(X), as follows. We fix an arbitrary real
number ρ > 1, and for any polynomial u(X) ∈ K[X] we define |u(X)| by the
equality

|u(X)| = ρdeg u(X).

We then extend the absolute value | · | to K(X) by multiplicativity. Thus for

any w(X) ∈ K(X), w(X) = u(X)
v(X) , with u(X), v(X) ∈ K[X], v(X) 6= 0, we let

|w(X)| = |u(X)|
|v(X)| . Let us note that for any non-zero element u of K[X] one has

|u| ≥ 1. Let now K(X) be a fixed algebraic closure of K(X), and let us fix an
extension of our absolute value | · | to K(X), which we will also denote by | · |.

Using our absolute value, the condition

deg an−1 > max{deg a0,deg a1, . . . ,deg an−2}
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reads
|an−1| > max{|a0|, |a1|, . . . , |an−2|}. (1)

We also have
|a0| ≥ |an| = 1. (2)

We consider now the factorisation of the polynomial F (X,Y ) over K(X), say

F (X,Y ) = an(X)(Y − θ1) · · · (Y − θn),

with θ1, . . . , θn ∈ K(X). Since a0 6= 0 we must have |θi| 6= 0, i = 1, . . . , n.
We will prove now that conditions (1) and (2) force F to have a single root θ

with |θ| > 1, and all the other roots with |θ| < 1.
To see this, we will first prove that F has no roots θ with |θ| = 1. Indeed, if

F would have a root θ with |θ| = 1, then −an−1θ
n−1 = anθn + an−2θ

n−2 + · · ·+
a1θ + a0 and hence

|an−1| = |an−1| · |θ|
n−1 = |anθn + an−2θ

n−2 + · · · + a1θ + a0|

≤ max{|anθn|, |an−2θ
n−2|, . . . , |a1θ|, |a0|}

= max{|an| · |θ|
n, |an−2| · |θ|

n−2, . . . , |a1| · |θ|, |a0|}

= max{|an|, |an−2|, . . . , |a1|, |a0|},

which cannot hold, according to (1) and (2).
On the other hand |θ1 · · · θn| = |a0|/|an| ≥ 1, so F must have at least one

root θ with |θ| > 1, say θ = θ1. Therefore we may write F as F (X,Y ) =
(Y − θ1) · G(X,Y ), with

G(X,Y ) = an(Y − θ2) · · · (Y − θn) =

= bn−1Y
n−1 + bn−2Y

n−2 + · · · + b1Y + b0 ∈ K(X)[Y ].

Equating the coefficients in the equality

anY n + · · · + a1Y + a0 = (Y − θ1)(bn−1Y
n−1 + · · · + b1Y + b0),

we deduce that

a0 = −θ1b0

ai = bi−1 − θ1bi for i = 1, 2, . . . , n − 1
an = bn−1.

(3)

Note that by (1) and (2) we have |an−1| > max{|a0|, |a1|, . . . , |an−2|, |an|}. In
what follows, we will use a stronger inequality, which is the key factor for the
remaining part of the proof. More precisely, since

deg an−1 > max{deg a0,deg a1, . . . ,deg an−2}
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and deg a0 ≥ deg an, we observe that for sufficiently large ρ we actually have

ρdeg an−1 > ρdeg a0 + ρdeg a1 + · · · + ρdeg an−2 + ρdeg an ,

that is
|an−1| > |a0| + |a1| + · · · + |an−2| + |an|. (4)

Using (3), (4) and the fact that our absolute value also satisfies the triangle
inequality, we obtain

|bn−2| + |θ1| ≥ |bn−2 − θ1bn−1|

= |an−1| > |a0| + |a1| + · · · + |an−2| + |an|

= |θ1b0| + |b0 − θ1b1| + |b1 − θ1b2| + · · · + |bn−3 − θ1bn−2| + 1

≥ |θ1b0| + (|θ1b1| − |b0|) + (|θ1b2| − |b1|) + · · · +

+(|θ1bn−2| − |bn−3|) + 1

= |θ1| · (|b0| + |b1| + · · · + |bn−2|) − (|b0| + |b1| + · · · + |bn−3|) + 1

= (|θ1| − 1) · (|b0| + |b1| + · · · + |bn−2|) + |bn−2| + 1,

which yields |θ1| − 1 > (|θ1| − 1) · (|b0| + |b1| + · · · + |bn−2|). After division by
|θ1| − 1, we obtain

|b0| + |b1| + · · · + |bn−2| < 1. (5)

We will prove now that (5) forces the roots θ2, . . . , θn of G to have all absolute
values strictly less than 1. Indeed, if we assume that G has a root θ with |θ| ≥ 1,
then

|θ|n−1 = |bn−1θ
n−1| = |bn−2θ

n−2 + · · · + b1θ + b0|

≤ |bn−2θ
n−2| + · · · + |b1θ| + |b0|

≤ |θ|n−1(|bn−2| + · · · + |b1| + |b0|),

and hence |bn−2| + · · · + |b1| + |b0| ≥ 1, which contradicts (5). Therefore |θi| < 1
for i = 2, . . . , n.

We can prove now that F is irreducible over K(X). Let us assume by the
contrary that F decomposes as F (X,Y ) = F1(X,Y ) · F2(X,Y ), with F1, F2 ∈
K(X)[Y ], deg

Y
F1 = t ≥ 1 and deg

Y
F2 = s ≥ 1. By the celebrated lemma of

Gauss we may in fact assume that F1, F2 ∈ K[X,Y ]. Without loss of generality
we may further assume that θ1 is a root of F2, which implies that all the roots
of F1 have absolute values strictly less than 1. On the other hand, if we write F1

as F1(X,Y ) = c0 + c1Y + · · · + ctY
t, say, with ci ∈ K[X], i = 0, . . . , t, then we

must have c0 | a0 and ct | an. This shows that ct ∈ K, that is |ct| = 1, so the
absolute value of the product of the roots of F1 is |c0|/|ct| = |c0| ≥ 1, which is a
contradiction. This completes the proof of the theorem. ¤
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