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1 Introduction

One of the most important problems of the combinatorial abelian group theory
is to determine the number of subgroups of a finite abelian group. This topic has
enjoyed a constant evolution starting with the first half of the 20th century. Since
a finite abelian group is a direct product of abelian p-groups, the above counting
problem is reduced to p-groups. Formulas which give the number of subgroups
of type µ of a finite p-group of type λ were established by S. Delsarte (see [7]),
P.E. Djubjuk (see [8]) and Y. Yeh (see [15]). An excellent survey on this subject
together with connections to symmetric functions was written by M.L. Butler
(see [5]) in 1994. Another way to find the total number of subgroups of finite
abelian p-groups is presented in [6] and applied for rank two p-groups, as well as
for elementary abelian p-groups. Also, remind here the paper [1] which gives an
explicit formula for the number of subgroups in a finite abelian p-group by using
divisor functions of matrices.

The starting point for our discussion is given by the paper [13] (see also Sec-
tion I.2 of [14]), where we introduced and studied the concept of fundamental
group lattice, that is the subgroup lattice of a finite abelian group. These lattices
were successfully used to solve the problem of existence and uniqueness of a finite
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abelian group whose subgroup lattice is isomorphic to a fixed lattice (see Propo-
sition 2.8 (§ 2.1) of [13]). Some steps in finding the total number of subgroups
of several particular finite abelian groups have been made in Section 2.2 of [13],
too.

The purpose of the current paper is to extend the above study, by applying
the fundamental group lattices in counting some different types of subgroups of
finite abelian groups. Explicit formulas are obtained for the number of subgroups
of a given order in a finite abelian p-group of rank 2, improving Proposition 2.9
(§ 2.2) of [13], and for the number of maximal subgroups and cyclic subgroups
of a given order of arbitrary finite abelian groups. The number of elements of a
prescribed order in such a group will be also found.

The paper is organized as follows: in Section 2 we recall the notion of funda-
mental group lattice and its basic properties. Section 3 deals with the number
of subgroups of finite abelian groups. In Section 4 the precise expressions for the
number of cyclic subgroups, as well as for the number of elements of a given order
in a finite abelian group will be determined. In the final section some conclusions
and further research directions are indicated.

Most of our notation is standard and will usually not be repeated here. Basic
definitions and results on lattices (respectively on groups) can be found in [9]
(respectively in [12]). For subgroup lattice concepts we refer the reader to [10]
and [14].

2 Fundamental group lattices

Let G be an abelian group of order n and L(G) be the subgroup lattice of G.
By the fundamental theorem of finitely generated abelian groups, there exist
(uniquely determined by G) the numbers k ∈ IN∗, d1, d2, ..., dk ∈ IN \ {0, 1}
satisfying d1|d2|...|dk, d1d2 · · · dk = n and

G ∼=

k

×
i=1

ZZ di
.

This decomposition of a finite abelian group into a direct product of cyclic groups
together with the form of subgroups of ZZ k (see Lemma 2.1, § 2.1, [13]) leads us
to the concept of fundamental group lattice, defined in the following manner:

Let k≥1 be a natural number. Then, for each (d1, d2, ..., dk) ∈ (IN\{0, 1})k,

we consider the set L(k;d1,d2,...,dk) consisting of all matrices A = (aij) ∈ Mk( ZZ )
which have the following properties:

i) aij = 0, for any i > j,

ii) 0 ≤ a1j , a2j , ..., aj−1j < ajj , for any j = 1, k,

iii) 1) a11|d1,

2) a22|
(

d2, d1
a12

a11

)

,
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3) a33|
(

d3, d2
a23

a22
, d1

∣

∣

∣

∣

a12 a13

a22 a23

∣

∣

∣

∣

a22a11

)

,

...

k) akk|
(

dk, dk−1
ak−1k

ak−1 k−1
, dk−2

∣

∣

∣

∣

ak−2 k−1 ak−2k

ak−1 k−1 ak−1k

∣

∣

∣

∣

ak−1 k−1ak−2 k−2
, ...,

d1

∣

∣

∣

∣

∣

∣

∣

a12 a13 · · · a1k

a22 a23 · · · a2k

...
...

...0 0 · · · ak−1 k

∣

∣

∣

∣

∣

∣

∣

ak−1 k−1ak−2 k−2...a11

)

,

where by (x1, x2, ..., xm) we denote the greatest common divisor of the numbers
x1, x2, ..., xm ∈ ZZ . On the set L(k;d1,d2,...,dk) we introduce the next partial order-
ing relation (denoted by ≤), as follows: for A = (aij), B = (bij) ∈ L(k;d1,d2,...,dk),

put A ≤ B if and only if the relations

1)′ b11|a11,

2)′ b22|
(

a22,

∣

∣

∣

∣

a11 a12

b11 b12

∣

∣

∣

∣

b11

)

,

3)′ b33|
(

a33,

∣

∣

∣

∣

a22 a23

b22 b23

∣

∣

∣

∣

b22
,

∣

∣

∣

∣

∣

∣

a11 a12 a13

b11 b12 b13

0 b22 b23

∣

∣

∣

∣

∣

∣

b22b11

)

,
...

k)′ bkk|
(

akk,

∣

∣

∣

∣

ak−1 k−1 ak−1 k

bk−1 k−1 bk−1 k

∣

∣

∣

∣

bk−1 k−1
,

∣

∣

∣

∣

∣

∣

ak−2 k−2 ak−2 k−1 ak−2 k

bk−2 k−2 bk−2 k−1 bk−2 k

0 bk−1 k−1 bk−1 k

∣

∣

∣

∣

∣

∣

bk−1 k−1bk−2 k−2
, ...,

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1k

b11 b12 · · · b1k

...
...

...
0 0 · · · bk−1 k

∣

∣

∣

∣

∣

∣

∣

∣

∣

bk−1 k−1bk−2 k−2...b11

)

hold. Then (L(k;d1,d2,...,dk),≤) is a complete modular lattice, which is called a
fundamental group lattice of degree k.
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Moreover, from Proposition 2.2, § 2.1, [13], we know that L(k;d1,d2,...,dk) is
isomorphic to L(G) and so the problem of counting the subgroups of G can
be translated into an arithmetic problem: finding the number of elements of
L(k;d1,d2,...,dk).

On the other hand, if n = pn1
1 pn2

2 ...pnm
m is the decomposition of n as a product

of prime factors and

G ∼=

m

×
i=1

Gi

is the corresponding primary decomposition of G, then it is well-known that we
have

L(G) ∼=

m

×
i=1

L(Gi).

The above lattice isomorphism shows that

|L(G)| =

m
∏

i=1

|L(Gi)|,

therefore our counting problem is reduced to p-groups. In this way, we need to
investigate only fundamental group lattices of type L(k;pα1 ,pα2 ,...,pαk ), where p is
a prime and 1 ≤ α1 ≤ α2 ≤ ... ≤ αk. Concerning these lattices, the following
elementary remarks will be very useful:

a) The order of the subgroup of

k

×
i=1

ZZ pαi corresponding to the matrix

A = (aij) ∈ L(k;pα1 ,pα2 ,...,pαk ) is

p

k
P

i=1

αi

k
∏

i=1

aii

·

b) The subgroup of

k

×
i=1

ZZ pαi corresponding to the matrix

A = (aij) ∈ L(k;pα1 ,pα2 ,...,pαk ) is cyclic if and only if < (0
1
, 0

2
, ..., āk

kk) > ⊆

< (0
1
, 0

2
, ..., āk−1

k−1 k−1, ā
k
k−1 k) > ⊆ · · · ⊆ < (ā1

11ā
2
12, ..., ā

k
1k) >, where, for

every i = 1, k, we denote by x̄i the image of an element x ∈ ZZ through the
canonical homomorphism: ZZ → ZZ pαi .
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c) If A = (aij) is an element of L(k;pα1 ,pα2 ,...,pαk ), then the linear system

A⊤










x1

x2

...
xk











=











pα1

pα2

...
pαk











admits solutions in ZZ k.

3 The number of subgroups of a finite abelian group

As we have seen in the previous section, in order to determine the number of
subgroups of finite abelian groups it suffices to reduce the study to p-groups and
our problem is equivalent to the counting of elements of the fundamental group
lattice L(k;pα1 ,pα2 ,...,pαk ). This consists of all matrices of integers A = (aij)i,j=1,k

satisfying the conditions:

(∗)



























































































































































i) aij = 0, for any i > j,

ii) 0 ≤ a1j , a2j , ..., aj−1j < ajj , for any j = 1, k,

iii) 1) a11|p
α1 ,

2) a22|
(

pα2 , pα1
a12

a11

)

,

3) a33|
(

pα3 , pα2
a23

a22
, pα1

∣

∣

∣

∣

a12 a13

a22 a23

∣

∣

∣

∣

a22a11

)

,

...

k) akk|
(

pαk , pαk−1
ak−1k

ak−1 k−1
, pαk−2

∣

∣

∣

∣

ak−2 k−1 ak−2k

ak−1 k−1 ak−1k

∣

∣

∣

∣

ak−1 k−1ak−2 k−2
, ...,

pα1

∣

∣

∣

∣

∣

∣

∣

∣

∣

a12 a13 · · · a1k

a22 a23 · · · a2k

...
...

...
0 0 · · · ak−1 k

∣

∣

∣

∣

∣

∣

∣

∣

∣

ak−1 k−1ak−2 k−2...a11

)

.

An explicit formula for |L(k;pα1 ,pα2 ,...,pαk )|, and consequently for |L(

k

×
i=1

ZZ pαi )|,

can be easily obtained in the particular case α1 = α2 = · · · = αk = 1 (see
Proposition 2.12, § 2.2, [13]).
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Proposition 3.1. For α ∈ {0, 1, ..., k}, the number of all subgroups of order

pk−α in the finite elementary abelian p-group ZZ k
p is 1 if α = 0 or α = k, and

∑

1≤i1<i2<...<iα≤k

pi1+i2+...+iα−
α(α+1)

2 if 1 ≤ α ≤ k − 1. In particular, the total

number of subgroups of ZZ k
p is 2 +

k−1
∑

α=1

∑

1≤i1<i2<...<iα≤k

pi1+i2+...+iα−
α(α+1)

2 .

In the general case, our method gives an immediate result in counting the

maximal subgroups of

k

×
i=1

ZZ pαi . By the first remark of Section 2, such a subgroup

corresponds to a matrix A = (aij) ∈ L(k;pα1 ,pα2 ,...,pαk ) satisfying
k

∏

i=1

aii = p. Then

aii = p for some i ∈ {1, 2, ..., k} and ajj = 1 for all j 6= i. From the condition
ii) of (∗) we get a1j = a2j = · · · = aj−1j = 0, for all j 6= i. Remark also that
the condition iii) is satisfied and thus the elements a1i, a2i, ..., ai−1i can be chosen
arbitrarily from the set {0, 1, ..., p− 1}. Therefore we have pi−1 distinct solutions
of the system (∗). Summing up these quantities for i = 1, k, we determine the

number of maximal subgroups of the finite abelian p-group

k

×
i=1

ZZ pαi .

Proposition 3.2. The number of maximal subgroups of

k

×
i=1

ZZ pαi is
pk − 1

p − 1
·

Next, we return to the problem of finding the total number of subgroups of
k

×
i=1

ZZ pαi . We shall apply our method for rank two abelian p-groups, i.e. when

k = 2 (clearly, it can be extended in a natural way for an arbitrary k). Note also
that the following theorem improves Proposition 2.9, § 2.2, [13], by indicating
the number of subgroups of a fixed order in such a group and by giving a proof
founded on fundamental group lattices.

Theorem 3.3. For every 0 ≤ α ≤ α1 + α2, the number of all subgroups of order

pα1+α2−α in the finite abelian p-group ZZ pα1 × ZZ pα2 is:
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pα+1 − 1

p − 1
, if 0 ≤ α ≤ α1

pα1+1 − 1

p − 1
, if α1 ≤ α ≤ α2

pα1+α2−α+1 − 1

p − 1
, if α2 ≤ α ≤ α1 + α2.

In particular, the total number of subgroups of ZZ pα1 × ZZ pα2 is

1

(p−1)2
[

(α2−α1+1)pα1+2−(α2−α1−1)pα1+1−(α1+α2+3)p+(α1+α2 + 1)
]

.

Proof: Let A = (aij) be a solution of (∗) for k = 2, corresponding to a subgroup
of order pα1+α2−α. In this situation, the condition iii) of (∗) becomes

a11|p
α1 and a22|

(

pα2 , pα1
a12

a11

)

.

Put a11 = pi, where 0 ≤ i ≤ α1. Then a22 = pα−i and so pα−i|(pα2 , pα1−ia12),
that is pα−i|pα1−i(pα2−α1+i, a12). If 0 ≤ α ≤ α1, we must have i ≤ α and
the above condition is satisfied by all a12 < pα−i. So, one obtains pα−i distinct
solutions of (∗), which implies that the number of subgroups of order pα1+α2−α

in ZZ pα1 × ZZ pα2 is in this case

(1) S1(α) =
α

∑

i=0

pα−i =
pα+1 − 1

p − 1
·

Suppose now that α1 ≤ α ≤ α2. Then pα1−α|(pα2−α1+i, a12) and thus a12 can
be any multiple of pα1−α in the set {0, 1, ..., pα−i − 1}. It results pα1−i distinct
solutions of (∗) and the number of subgroups of order pα1+α2−α in ZZ pα1 × ZZ pα2

is in this case

(2) S2(α) =

α1
∑

i=0

pα1−i =
pα1+1 − 1

p − 1
·

Finally, assume that α2 ≤ α ≤ α1 + α2. We must have α1 − α ≤ α2 − α1 + i

and the number of distinct solutions of (∗) is again pα1−i. Thus the number of
subgroups of order pα1+α2−α in ZZ pα1 × ZZ pα2 is in this case

(3) S2(α) =

α1
∑

i=α−α2

pα1−i =
pα1+α2−α+1 − 1

p − 1
·
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By using the equalities (1), (2) and (3), one obtains the total number of subgroups
of ZZ pα1 × ZZ pα2 , namely

α1
∑

α=0

S1(α) +

α2
∑

α=α1+1

S2(α) +

α1+α2
∑

α=α2+1

S3(α) =
1

(p − 1)2
[

(α2 − α1 + 1)pα1+2−

− (α2 − α1 − 1)pα1+1 − (α1 + α2 + 3)p + (α1 + α2 + 1)
]

,

which completes our proof.

In the following let us denote by fp(i, j) the number of all subgroups of the
finite abelian p-group ZZ pi × ZZ pj (i ≤ j), determined in Theorem 3.3. Note that
we have

fp(i, j) =

=
1

(p − 1)2
[

(j − i + 1)pi+2 − (j − i − 1)pi+1 − (i + j + 3)p + (i + j + 1)
]

=

= (j − i + 1)pi + (j − i + 3)pi−1 + · · · + (i + j − 1)p + (i + j + 1).

Put fp(i, j) = fp(j, i), for all i > j, and let n be a fixed positive integer
and Ap(n) be the matrix (fp(i, j))i,j=0,n. Then Ap(n) induces a quadratic form

n
∑

i,j=0

fp(i, j)X
iY j . Because

det Ap(n)=(p−1)pn−1 det Ap(n−1),

by induction on n one easily obtains

det Ap(n) = (p − 1)np
n(n−1)

2 , for any n ≥ 1.

Hence, we have proved the next two corollaries.

Corollary 3.4. The quadratic form
n
∑

i,j=0

fp(i, j)X
iY j induced by the matrix

Ap(n) is positive definite, for all n ∈ IN∗.

Corollary 3.5. All eigenvalues of the matrix Ap(n) are positive, for all n ∈ IN∗.

4 The number of cyclic subgroups of a finite abelian group

Another interesting application of fundamental group lattices (not studied in [13])
is the counting of cyclic subgroups of finite abelian groups. First of all, we obtain
this number for a finite abelian p-group of rank 2. By the second remark of
Section 2, the subgroup of ZZ pα1 × ZZ pα2 determined by the matrix A = (aij) is
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cyclic if and only if < (0
1
, ā2

22) > ⊆ < (ā1
11, ā

2
12) > . This necessary and sufficient

condition can be rewritten in the following manner.

Lemma 4.1. The subgroup of ZZ pα1 × ZZ pα2 corresponding to the matrix A =

(aij) ∈ L(2;pα1 ,pα2 ) is cyclic if and only if a22 =

(

pα2 , pα1
a12

a11

)

.

Proof: If < (0
1
, ā2

22) > ⊆ < (ā1
11, ā

2
12) >, then we can choose an integer x such

that (0
1
, ā2

22) = x(ā1
11, ā

2
12). It results pα1 |xa11 and pα2 |xa12−a22, therefore there

exist y, z ∈ ZZ satisfying xa11 = ypα1 and xa12 − a22 = zpα2 . These equalities

imply that a22 = −zpα2 + ypα1
a12

a11
, which together with the condition 2) of iii)

in (∗) show that a22 =

(

pα2 , pα1
a12

a11

)

·

Conversely, suppose that a22 =

(

pα2 , pα1
a12

a11

)

· Then there are y, z ∈ ZZ with

a22 = −zpα2 + ypα1
a12

a11
· Taking x = y

pα1

a11
∈ ZZ , we easily obtain (0

1
, ā2

22) =

x(ā1
11, ā

2
12) and so < (0

1
, ā2

22) > is contained in < (ā1
11, ā

2
12) > .

By using the above lemma, the problem of finding the number of cyclic sub-
groups of ZZ pα1 × ZZ pα2 reduces to an elementary arithmetic exercise.

Theorem 4.2. For every 0 ≤ α ≤ α2, the number of cyclic subgroups of order

pα in the finite abelian p-group ZZ pα1 × ZZ pα2 is:











1, if α = 0

pα + pα−1, if 1 ≤ α ≤ α1

pα1 , if α1 < α ≤ α2.

In particular, the number of all cyclic subgroups of ZZ pα1 × ZZ pα2 is

2 + 2p + · · · + 2pα1−1 + (α2 − α1 + 1)pα1 .

Proof: Denote by g2
p(α) the number of cyclic subgroups of order pα in ZZ pα1× ZZ pα2

and let A=(aij) ∈ L(2;pα1 ,pα2 ) be the matrix corresponding to such a subgroup.

Then a11|p
α1 , a22=

(

pα2 , pα1
a12

a11

)

and a11a22=pα1+α2−α. Taking a11=pi with

0 ≤ i ≤ α1, we obtain

a22 = pα1+α2−α−i = (pα2 , pα1−ia12) = pα1−i(pα2−α1+i, a12),
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which implies that

(4) pα2−α =
(

pα2−α1+i, a12

)

.

Clearly, for α = 0 it results a11 = pα1 , a22 = pα2 , a12 = 0, and thus

(5) g2
p(0) = 1.

For 1 ≤ α ≤ α1 we must have α1 − α ≤ i. If i = α1 − α, the condition (4) is
equivalent to pα2−α|a12, therefore a12 can be chosen in pα ways. If α1−α+1 ≤ i,
(4) is equivalent to

pα2−α|a12 and pα2−α+1 ∤ a12.

There are pα1−i− pα1−i−1 elements of the set {0, 1, ..., pα1+α2−α−i} which satisfy
the previous relations. So, one obtains

(6) g2
p(α) = pα +

α1
∑

i=α1−α+1

(

pα1−i − pα1−i−1
)

= pα + pα−1, for 1 ≤ α ≤ α1.

Mention that if α1 < α ≤ α2, then the condition α1 − α ≤ i is satisfied by all
i = 1, α1, and hence

(7) g2
p(α) =

α1
∑

i=0

(

pα1−i − pα1−i−1
)

= pα1 , for α1 < α ≤ α2.

Now, the equalities (5)-(7) give us the total number of cyclic subgroups of ZZ pα1 ×
ZZ pα2 , namely

1 +

α1
∑

α=1

(

pα + pα−1
)

+

α2
∑

α=α1+1

pα1 =

=
1

p − 1

[

(α2 − α1 + 1)pα1+1 − (α2 − α1 − 1)pα1 − 2
]

=

= 2 + 2p + · · · + 2pα1−1 + (α2 − α1 + 1)pα1

and our proof is finished.

The above method can be used for an arbitrary k > 2, too. In order to do
this we need to remark that

g2
p(α) =

pαh1
p(α) − pα−1h1

p(α − 1)

pα − pα−1
, for all α 6= 0,

where

h1
p(α) =

{

pα, if 0 ≤ α ≤ α1

pα1 , if α1 ≤ α.
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This equality extends to the general case in the following way.

Theorem 4.3. For every 1 ≤ α ≤ αk, the number of cyclic subgroups of order

pα in the finite abelian p-group

k

×
i=1

ZZ pαi is

gk
p(α) =

pαhk−1
p (α) − pα−1hk−1

p (α − 1)

pα − pα−1
,

where

hk−1
p (α) =























p(k−1)α, if 0 ≤ α ≤ α1

p(k−2)α+α1 , if α1 ≤ α ≤ α2

...

pα1+α2+...+αk−1 , if αk−1 ≤ α.

Note that gk
p(0) = 1 and the number of all cyclic subgroups of

k

×
i=1

ZZ pαi can be

easily determined from Theorem 4.3. Since the numbers of cyclic subgroups and of
elements of a given order in a finite abelian p-group are closely connected (through
the well-known Euler’s function ϕ), we also infer the following consequence of
Theorem 4.3.

Corollary 4.4. The number of all elements of order pα, 1 ≤ α ≤ αk, in the

finite abelian p-group

k

×
i=1

ZZ pαi is

gk
p(α)ϕ(pα) = gk

p(α)
(

pα − pα−1
)

= pαhk−1
p (α) − pα−1hk−1

p (α − 1).

As we have seen in Section 2, counting the subgroups of finite abelian groups
can be reduced to p-groups. The same thing can be also said for cyclic subgroups
and for elements of a given order in an arbitrary finite abelian group G. Suppose
that pn1

1 pn2
2 ...pnm

m is the decomposition of |G| as a product of prime factors and

let

m

×
i=1

Gi be the corresponding primary decomposition of G. Then every cyclic

subgroup H of order pα1
1 pα2

2 ...pam
m of G can be uniquely written as a direct product

m

×
i=1

Hi, where Hi is a cyclic subgroup of order pαi

i of Gi, i = 1,m. This remark

leads to the following result, that generalizes Theorem 4.3. and Corollary 4.4.
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Corollary 4.5. Under the previous hypotheses, for every (α1, α2, ..., αm) ∈ INm

with αi ≤ ni, i = 1,m, the number of cyclic subgroups (respectively of elements)
of order pα1

1 pα2
2 ...pαm

m in G is
m
∏

i=1

gki
pi

(αi)

(respectively
m
∏

i=1

gki
pi

(αi)ϕ(pαi

i )),

where ki denotes the number of direct factors of Gi, i = 1,m.

5 Conclusions and further research

All our previous results show that the arithmetic method introduced in [13] and
applied in this paper can constitute an alternative way to study the subgroups
of finite abelian groups. Clearly, it can successfully be used in solving many
computational problems in (finite) abelian group theory. These will surely be the
subject of some further research.

Finally, we mention several open problems concerning this topic.

Problem 5.1. Extend Theorem 3.3, by indicating explicit formulas for the
number of subgroups of a fixed order and for the total number of subgroups of a
finite abelian p-group of an arbitrary rank.

Problem 5.2. Let G be a finite abelian group. Use the description of L(G)
given by the above arithmetic method and the well-known description of Aut(G)
to determine the characteristic subgroups of G.

Problem 5.3. By using the defining relations of a fundamental group lattice,
create a computer algebra program that generates the subgroups of a finite abelian
group.

Problem 5.4. Let G1 be a finite abelian group and G2 be a finite group such
that | G1 |=| G2 |= n. Denote πe(Gi) = {o(a) | a ∈ Gi} and, for every divisor d

of n, let ni(d) be the number of elements of order d in Gi, i = 1, 2 (remark that
the numbers n1(d) are known, by Corollary 4.5). Is it true that the conditions

a) πe(G1) = πe(G2),

b) n1(d) = n2(d), for all d,
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imply the group isomorphism G1
∼= G2? (In other words, study whether a finite

abelian group is determined by the set of its element orders and by the numbers
of elements of any fixed order).

Acknowledgement. The authors are grateful to the reviewers for their
remarks which improve the previous version of the paper.
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