When is a Fully Idempotent Module a V-Module?

by
Derya Keskin Tütüncü

Abstract

Let R be a $P . I$.-ring and M any R-module. If M is fully idempotent, then M is a V-module.

Key Words: Idempotent submodule, Fully idempotent module, V module.
2010 Mathematics Subject Classification: Primary 16D40; Secondary 16D80.

1 Introduction

Throughout this paper all rings are associative with identity element and all modules are unitary right R-modules. $A n n_{R}(M)$ will denote the annihilator ideal of M in R, i.e. the ideal consisting of all elements r of R such that $m r=0$ for all $m \in M$.

A submodule N of a module M is called idempotent if $N=\operatorname{Hom}(M, N) N=$ $\sum\{\varphi(N) \mid \varphi: M \rightarrow N\}$ (see [1], page 32). Note that if A is a right ideal of R, then A is an idempotent submodule of the module R_{R} if and only if $A=A^{2}$, i.e. A is an idempotent right ideal of R. The module M is called fully idempotent if every submodule of M is idempotent. It is easy to see that any sum of idempotent submodules of any module M is again an idempotent submodule of M. Therefore as an easy observation, if R is a von Neumann regular ring, then R_{R} is fully idempotent since every direct summand is idempotent in any module. Note that any idempotent submodule need not be a direct summand as we see in the following:

Example 1.1. (i) Let \mathbb{Z} denote the ring of integers and $M=\mathbb{Z} \oplus \mathbb{Z}$ the free \mathbb{Z}-module of rank 2 . Let $N=\mathbb{Z}(2,3)+\mathbb{Z}(5,0)$. Suppose N is a direct summand of M. Then M / N is torsion-free. But $(0,15)=5(2,3)-2(5,0)$ so that $15(0,1) \in N$ but $(0,1) \notin N$. Thus M / N is not torsion-free and hence N is not a direct summand of M.

Define $\alpha_{1}: M \longrightarrow N$ by $\alpha_{1}(u, v)=(2 u-v)(2,3)(u, v \in \mathbb{Z})$. Then α_{1} is a \mathbb{Z}-homomorphism such that $\alpha_{1}(2,3)=(2,3)$. Also define $\alpha_{2}: M \longrightarrow N$ by $\alpha_{2}(u, v)=(2 u-v)(5,0)(u, v \in \mathbb{Z})$. Then α_{2} is a \mathbb{Z}-homomorphism such that $\alpha_{2}(2,3)=(5,0)$. It follows that N is an idempotent submodule of M.
(ii) Let \mathbb{C} denote the field of complex numbers (in fact any field of characteristic 0 would do). Let R denote the first Weyl algebra. Then R is the ring of polynomials in indeterminates x and y subject to the relation $x y-y x=1$. Note that $x y^{n}-y^{n} x=n y^{n-1}$ for every positive integer n. Now let $f(y)$ be any nonzero polynomial in $\mathbb{C}[y]$. Then $f(y)=c_{0}+c_{1} y+\cdots+c_{t} y^{t}$ for some non-negative integer t and elements $c_{i}(1 \leq i \leq t)$ in \mathbb{C} with c_{t} non-zero. We call t the degree of $f(y)$ as usual. Now $x f(y)-f(y) x=c_{0}(x-x)+c_{1}(x y-y x)+\cdots+c_{t}\left(x y^{t}-y^{t} x\right)=$ $c_{1}+\ldots t c_{t} y^{t-1}$. Because \mathbb{C} has characteristic zero, $t c_{t}$ is non-zero if t is non-zero. Let $f^{\prime}(y)$ denote the polynomial $x f(y)-f(y) x$ above (Note that $f^{\prime}(y)$ is called the formal derivative of $f(y)$).

Now consider the right ideal $x R$ of R. Note that y does not belong to $x R$ so that $x R$ is a proper right ideal of R. Let $g(x, y)$ belong to R but not $x R$. Because $y x=x y-1$ it follows that $g(x, y)=g_{0}(y)+x g_{1}(y)+\cdots+x^{s} g_{s}(y)$ for some non-negative integer s and polynomials $g_{i}(y)$ in $\mathbb{C}[y]$. Clearly, $g_{0}(y)$ is non-zero and $g_{0}(y)$ belongs to $x R+g(x, y) R$. Let the non-negative integer m be the least integer such that m is the degree of a non-zero polynomial $h(y)$ in the right ideal $x R+g(x, y) R$. Suppose that m is at least 1 . Then $x h(y)-h(y) x=$ $h^{\prime}(y) \in x R+g(x, y) R$ and $h^{\prime}(y)$ is a non-zero polynomial of degree $m-1$, a contradiction. Thus $m=0$ and $h(y)$ is a non-zero element of \mathbb{C} and thus a unit in R. It follows that $R=x R+g(x, y) R$. Hence $x R$ is a maximal right ideal of R. Because $y x$ does not belong to $x R$ it follows that $x R$ is an idempotent submodule of R_{R} and $x R$ is not a direct summand of R_{R} because the ring R is a domain ($[3$, Examples 2.32(h)]). (In fact, R is a simple ring so that every right (or left) ideal is idempotent).

Let M be any module. M is called a V-module if every simple R-module is M-injective. Any ring R is a right V-ring iff R_{R} is a V-module.

In this work, firstly we give an example of fully idempotent modules which are not V-modules (Example 2.1). Then we prove that if M is a fully idempotent module such that $M / M P$ is a V-module for every right primitive ideal P of R, then M is a V-module (Theorem 2.6). As a corollary we prove that if M is a fully idempotent module over a P.I.-ring, then M is a V-module (Corollary 2.7).

2 Results

The following example shows that a fully idempotent module need not be a V module.

Example 2.1. (i) Let R be a simple ring (with identity). Then every right ideal of R is idempotent but R need not be a right V-ring. For, if A is any non-zero right ideal of R then $A^{2}=A A=(A R) A=A(R A)=A R=A$.
(ii) Let R be the endomorphism ring of an infinite dimensional vector space. By [4, 23.6], R is a von Neumann regular ring but not a V-ring. Therefore R_{R} is a fully idempotent projective module which is not a V-module.

Lemma 2.2. Let M be a fully idempotent module. Let $N \leq M$ and I an ideal of R. Then $N \cap M I=N I$.

Proof: Let $x \in N \cap M I$. Since $N \cap M I$ is an idempotent submodule of M, there exist the homomorphisms $\varphi_{i}: M \rightarrow N \cap M I$ and the elements $x_{i} \in N \cap M I$ for some $k \geq 1$ and $1 \leq i \leq k$ such that $x=\varphi_{1}\left(x_{1}\right)+\ldots+\varphi_{k}\left(x_{k}\right)$. Let $1 \leq i \leq k$. Then $x_{i}=m_{1} a_{1}+\ldots+m_{t} a_{t}$ for some $t \geq 1, m_{j} \in M, a_{j} \in I(1 \leq j \leq t)$. Therefore $\varphi_{i}\left(x_{i}\right)=\varphi_{i}\left(m_{1}\right) a_{1}+\ldots+\varphi_{i}\left(m_{t}\right) a_{t} \in N I$. Hence $x \in N \bar{I}$, and so $N I=N \cap M I$.

Remark We do not know if the converse of Lemma 2.2 is true or not. But the converse is true if $M=R_{R}$: Let $A \leq R_{R}$ and $I=R A$. Then $A \cap R A=A R A$ gives $A=A^{2}$.
Lemma 2.3. Let M be a module. Then M is a V-module if and only if for all $B<A \leq M$ with A / B simple, A / B is a direct summand of M / B.

Proof: (\Rightarrow) : Let M be a V-module and let $B<A \leq M$ with A / B simple. Since M is a V-module, A / B is M-injective. Then A / B is M / B-injective. Therefore A / B is a direct summand of M / B.
(\Leftarrow) : Let S be a simple module. Let $X \leq M, i: X \rightarrow M$ be the inclusion map and $f: X \rightarrow S$ be a nonzero homomorphism. Then $X / \operatorname{Ker} f \cong S$. By hypothesis, $M / \operatorname{Ker} f=X / \operatorname{Ker} f \oplus Y / \operatorname{Ker} f$ for some submodule Y of M with $\operatorname{Ker} f \subseteq Y$. Now $M=X+Y$ and $\operatorname{Ker} f=X \cap Y$. Therefore the homomorphism $g: M \rightarrow S$ defined by $x+y \mapsto f(x)(x \in X, y \in Y)$ is well-defined. Clearly, $g i=f$. Thus S is M-injective.

Lemma 2.4. Let M be a V-module. Then for all $B<A \leq M$, there exists a submodule C with $B \leq C<A$ such that A / C is simple.

Proof: By Lemma 2.3.

Lemma 2.5. Let M be a module such that $M / M P$ is a V-module for each right primitive ideal P. Then M is a V-module if and only if $A \cap M P=A P$ for all $A \leq M$ and right primitive ideals P.

Proof: Assume M is a V-module. Let $A \leq M$ and P a right primitive ideal. Suppose $A P \supsetneqq A \cap M P$. Let $A P \leq B \supsetneqq A \cap M P$ such that $(A \cap M P) / B$ is simple (by Lemma 2.4), so M-injective. Now there exists a submodule C of M containing B such that $M / B=(C / B) \oplus((A \cap M P) / B)$. Hence $(M / C) P=0$
and so $M P \leq C$. Hence $A \cap M P=A \cap C \cap M P=B$, a contradiction. Thus $A P=A \cap M P$.

Conversely, we prove that M is a V-module. Let $B \leq A$ be submodules of M such that A / B is simple. Let $P=A n n_{R}(A / B)$. Then $A \cap M P=A P$ by hypothesis. $(A+M P) /(B+M P) \cong A / B$ and so is simple. But $M / M P$ is a V-module. Therefore there exists a submodule C of M such that $M / B=$ $C / B \oplus A / B$. It follows that M is a V-module by Lemma 2.3.

Theorem 2.6. Let M be a fully idempotent module such that $M / M P$ is a V module for every right primitive ideal P of R. Then M is a V-module.

Proof: By Lemmas 2.5 and 2.2.

Corollary 2.7. Let R be a P.I.-ring. If M is fully idempotent, then M is a V-module.

Proof: Since every primitive factor ring of a P.I.-ring R is simple artinian by Kaplansky [2].

Here we are giving an application of Corollary 2.7:
Example 2.8. Let K be a field. If we set $R=\left[\begin{array}{ll}K & K \\ 0 & K\end{array}\right]$ and $I=\left[\begin{array}{ll}0 & 0 \\ 0 & K\end{array}\right]$, then R is a P.I.-ring and I is a minimal right ideal of R_{R}. Assume that the module R_{R} is fully idempotent. Then by Corollary $2.7, R$ is a right V-ring, which is a contradiction since I is not injective (the homomorphism $f:\left[\begin{array}{ll}0 & K \\ 0 & 0\end{array}\right]_{R} \longrightarrow I_{R}$ defined by $f\left(\left[\begin{array}{ll}0 & k \\ 0 & 0\end{array}\right]\right)=\left[\begin{array}{ll}0 & 0 \\ 0 & k\end{array}\right]$ cannot be extended to a homomorphism of R_{R} into I_{R}).

Acknowledgments

The author would like to thank Professor P.F. Smith of Glasgow University for his valuable comments on the paper. The author is also very grateful to the referee for his/her valuable suggestions.

References

[1] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics (Birkhäuser, Basel-Boston-Berlin, 2006).
[2] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948) 575-580.
[3] T.Y. Lam, Lectures on Modules and Rings, vol. 189 of Graduate Texts in Mathematics (Springer-Verlag, New York, 1998).
[4] R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach, Philadelphia, 1991).

Received: 21.09.2009
Revised: 08.06.2010
Accepted: 08.07.2010

Department of Mathematics,
University of Hacettepe
06800 Beytepe, Ankara, Turkey
E-mail: keskin@hacettepe.edu.tr

