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Abstract

Let R be a P.I.-ring and M any R-module. If M is fully idempotent,

then M is a V -module.
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1 Introduction

Throughout this paper all rings are associative with identity element and all
modules are unitary right R-modules. AnnR(M) will denote the annihilator
ideal of M in R, i.e. the ideal consisting of all elements r of R such that mr = 0
for all m ∈ M .

A submodule N of a module M is called idempotent if N = Hom(M,N)N =
∑

{ϕ(N) | ϕ : M → N} (see [1], page 32). Note that if A is a right ideal of R,
then A is an idempotent submodule of the module RR if and only if A = A2, i.e.
A is an idempotent right ideal of R. The module M is called fully idempotent if
every submodule of M is idempotent. It is easy to see that any sum of idempotent
submodules of any module M is again an idempotent submodule of M . Therefore
as an easy observation, if R is a von Neumann regular ring, then RR is fully
idempotent since every direct summand is idempotent in any module. Note
that any idempotent submodule need not be a direct summand as we see in the
following:

Example 1.1. (i) Let Z denote the ring of integers and M = Z ⊕ Z the free
Z-module of rank 2. Let N = Z(2, 3)+Z(5, 0). Suppose N is a direct summand of
M . Then M/N is torsion-free. But (0, 15) = 5(2, 3)−2(5, 0) so that 15(0, 1) ∈ N
but (0, 1) 6∈ N . Thus M/N is not torsion-free and hence N is not a direct
summand of M .
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Define α1 : M −→ N by α1(u, v) = (2u − v)(2, 3) (u, v ∈ Z). Then α1 is
a Z-homomorphism such that α1(2, 3) = (2, 3). Also define α2 : M −→ N by
α2(u, v) = (2u − v)(5, 0) (u, v ∈ Z). Then α2 is a Z-homomorphism such that
α2(2, 3) = (5, 0). It follows that N is an idempotent submodule of M .

(ii) Let C denote the field of complex numbers (in fact any field of charac-
teristic 0 would do). Let R denote the first Weyl algebra. Then R is the ring of
polynomials in indeterminates x and y subject to the relation xy − yx = 1. Note
that xyn − ynx = nyn−1 for every positive integer n. Now let f(y) be any non-
zero polynomial in C[y]. Then f(y) = c0 + c1y + · · ·+ cty

t for some non-negative
integer t and elements ci(1 ≤ i ≤ t) in C with ct non-zero. We call t the degree of
f(y) as usual. Now xf(y)−f(y)x = c0(x−x)+c1(xy−yx)+ · · ·+ct(xyt−ytx) =
c1 + . . . tcty

t−1. Because C has characteristic zero, tct is non-zero if t is non-zero.
Let f ′(y) denote the polynomial xf(y) − f(y)x above (Note that f ′(y) is called
the formal derivative of f(y)).

Now consider the right ideal xR of R. Note that y does not belong to xR
so that xR is a proper right ideal of R. Let g(x, y) belong to R but not xR.
Because yx = xy − 1 it follows that g(x, y) = g0(y) + xg1(y) + · · · + xsgs(y)
for some non-negative integer s and polynomials gi(y) in C[y]. Clearly, g0(y) is
non-zero and g0(y) belongs to xR + g(x, y)R. Let the non-negative integer m be
the least integer such that m is the degree of a non-zero polynomial h(y) in the
right ideal xR + g(x, y)R. Suppose that m is at least 1. Then xh(y) − h(y)x =
h′(y) ∈ xR + g(x, y)R and h′(y) is a non-zero polynomial of degree m − 1, a
contradiction. Thus m = 0 and h(y) is a non-zero element of C and thus a unit
in R. It follows that R = xR+ g(x, y)R. Hence xR is a maximal right ideal of R.
Because yx does not belong to xR it follows that xR is an idempotent submodule
of RR and xR is not a direct summand of RR because the ring R is a domain ([3,
Examples 2.32(h)]). (In fact, R is a simple ring so that every right (or left) ideal
is idempotent).

Let M be any module. M is called a V -module if every simple R-module is
M -injective. Any ring R is a right V -ring iff RR is a V -module.

In this work, firstly we give an example of fully idempotent modules which
are not V -modules (Example 2.1). Then we prove that if M is a fully idempotent
module such that M/MP is a V -module for every right primitive ideal P of R,
then M is a V -module (Theorem 2.6). As a corollary we prove that if M is a
fully idempotent module over a P.I.-ring, then M is a V -module (Corollary 2.7).

2 Results

The following example shows that a fully idempotent module need not be a V -
module.

Example 2.1. (i) Let R be a simple ring (with identity). Then every right ideal
of R is idempotent but R need not be a right V -ring. For, if A is any non-zero
right ideal of R then A2 = AA = (AR)A = A(RA) = AR = A.
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(ii) Let R be the endomorphism ring of an infinite dimensional vector space.
By [4, 23.6], R is a von Neumann regular ring but not a V -ring. Therefore RR is
a fully idempotent projective module which is not a V -module.

Lemma 2.2. Let M be a fully idempotent module. Let N ≤ M and I an ideal

of R. Then N ∩ MI = NI.

Proof: Let x ∈ N ∩MI. Since N ∩MI is an idempotent submodule of M , there
exist the homomorphisms ϕi : M → N ∩ MI and the elements xi ∈ N ∩ MI for
some k ≥ 1 and 1 ≤ i ≤ k such that x = ϕ1(x1) + . . . + ϕk(xk). Let 1 ≤ i ≤ k.
Then xi = m1a1 + . . . + mtat for some t ≥ 1, mj ∈ M , aj ∈ I (1 ≤ j ≤ t).
Therefore ϕi(xi) = ϕi(m1)a1 + . . . + ϕi(mt)at ∈ NI. Hence x ∈ NI, and so
NI = N ∩ MI.

Remark We do not know if the converse of Lemma 2.2 is true or not. But the
converse is true if M = RR: Let A ≤ RR and I = RA. Then A ∩ RA = ARA
gives A = A2.

Lemma 2.3. Let M be a module. Then M is a V -module if and only if for all

B < A ≤ M with A/B simple, A/B is a direct summand of M/B.

Proof: (⇒): Let M be a V -module and let B < A ≤ M with A/B simple. Since
M is a V -module, A/B is M -injective. Then A/B is M/B-injective. Therefore
A/B is a direct summand of M/B.

(⇐): Let S be a simple module. Let X ≤ M , i : X → M be the inclusion
map and f : X → S be a nonzero homomorphism. Then X/Kerf ∼= S. By
hypothesis, M/Kerf = X/Kerf ⊕ Y/Kerf for some submodule Y of M with
Kerf ⊆ Y . Now M = X +Y and Kerf = X ∩Y . Therefore the homomorphism
g : M → S defined by x + y 7→ f(x) (x ∈ X, y ∈ Y ) is well-defined. Clearly,
gi = f . Thus S is M -injective.

Lemma 2.4. Let M be a V -module. Then for all B < A ≤ M , there exists a

submodule C with B ≤ C < A such that A/C is simple.

Proof: By Lemma 2.3.

Lemma 2.5. Let M be a module such that M/MP is a V -module for each right

primitive ideal P . Then M is a V -module if and only if A ∩ MP = AP for all

A ≤ M and right primitive ideals P .

Proof: Assume M is a V -module. Let A ≤ M and P a right primitive ideal.
Suppose AP © A ∩ MP . Let AP ≤ B © A ∩ MP such that (A ∩ MP )/B is
simple (by Lemma 2.4), so M -injective. Now there exists a submodule C of M
containing B such that M/B = (C/B) ⊕ ((A ∩ MP )/B). Hence (M/C)P = 0
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and so MP ≤ C. Hence A ∩ MP = A ∩ C ∩ MP = B, a contradiction. Thus
AP = A ∩ MP .

Conversely, we prove that M is a V -module. Let B ≤ A be submodules
of M such that A/B is simple. Let P = AnnR(A/B). Then A ∩ MP = AP
by hypothesis. (A + MP )/(B + MP ) ∼= A/B and so is simple. But M/MP
is a V -module. Therefore there exists a submodule C of M such that M/B =
C/B ⊕ A/B. It follows that M is a V -module by Lemma 2.3.

Theorem 2.6. Let M be a fully idempotent module such that M/MP is a V -

module for every right primitive ideal P of R. Then M is a V -module.

Proof: By Lemmas 2.5 and 2.2.

Corollary 2.7. Let R be a P.I.-ring. If M is fully idempotent, then M is a

V -module.

Proof: Since every primitive factor ring of a P.I.-ring R is simple artinian by
Kaplansky [2].

Here we are giving an application of Corollary 2.7:

Example 2.8. Let K be a field. If we set R =

[

K K
0 K

]

and I =

[

0 0
0 K

]

,

then R is a P.I.-ring and I is a minimal right ideal of RR. Assume that the module
RR is fully idempotent. Then by Corollary 2.7, R is a right V -ring, which is a

contradiction since I is not injective (the homomorphism f :

[

0 K
0 0

]

R

−→ IR

defined by f(

[

0 k
0 0

]

) =

[

0 0
0 k

]

cannot be extended to a homomorphism of

RR into IR).
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