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Abstract

An acute triangulation is a triangulation whose triangles have all their
angles less than π

2
. In this paper we prove that i) every planar pentagon

can be triangulated into at most 54 acute triangles, and ii) every double
pentagon can be triangulated into at most 76 acute triangles.
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1 Introduction

A triangulation of a two-dimensional space means a collection of (full) triangles
covering the space, such that the intersection of any two triangles is either empty
or consists of a vertex or of an edge. A triangle is called geodesic if all its edges are
segments, i.e., shortest paths between the corresponding vertices. We are inter-
ested only in geodesic triangulations, all the members of which are, by definition,
geodesic triangles. An acute triangulation is a triangulation whose triangles have
all their angles less than π

2
. The number of triangles in a triangulation is called

its size.
The interest for acute (or non-obtuse) triangulation first appeared in applied

mathematics. In 1953 R. H. MacNeal [11] needed them when investigating the
discretization of partial differential equations. Also, for problems in Numerical
Analysis, very flat (and very sharp) angles are not desirable (see for example
[3]). In 1960, Burago and Zalgaller [1] investigated in considerable depth acute
triangulations of polygonal complexes, being led to them by the problem of their
isometric embedding into R3. (However, their method could not give an estimate
on the number of triangles used.) The question whether an obtuse triangle can
be acutely triangulated was also independently asked and solved (see [4], [5],
[6]). In 1980, Cassidy and Lord [2] considered acute triangulations of the square.
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Recently, Maehara investigated acute triangulations of quadrilaterals [12] and
other polygons [13], and a result of the latter was improved by Yuan [16], where
it was proved that every n-gon admits an acute triangulation with size at most
24(106n − 216). This is the first concrete upper bound on the size of acute
triangulations of n-gons depending on n. In 2010, Yuan [17] considered the acute
triangulations of trapezoids.

On the other hand, compact convex surfaces have also been triangulated.
Acute triangulations of all Platonic surfaces, which are surfaces of the five well-
known Platonic solids, were investigated in [7], [9], and [10]. Furthermore, some
other famous surfaces have also been acutely triangulated, such as flat Möbius
strips [18] and flat tori [8].

In 2009, Saraf [15] gave a new proof for the existence of acute triangulations
of general polyhedral surfaces, but there is still no estimate on the size of the
existing acute triangulations. The following problem first raised in [7] is natural,
and not easy.

Problem 1. Does there exist a number N such that every compact convex
surface in R3 admits an acute triangulation with at most N triangles?

As remarked in [10], Problem 1 can be transfered to other families of Alexan-
drov surfaces, with or without boundary.

In this paper we discuss the acute triangulations of pentagons and doubly cov-
ered pentagons. The doubly covered pentagon, or simply the double pentagon, is
a (degenerate) convex polyhedral surface (homeomorphic to the 2-sphere) consist-
ing of two isometric convex pentagonal (planar) sides glued along the boundaries
in the obvious way (according to the isometry). Acute triangulations of double
triangles [20] and double quadrilaterals [19] have already been investigated. In
Section 2, we present some preparatory propositions. In Section 3, we prove that
every pentagon can be triangulated into at most 54 acute triangles (the upper
bound 24(106n−216) gives 7536 triangles in this case). In Section 4, we consider
the acute triangulations of double pentagons. We prove that any double pentagon
can be triangulated into at most 76 acute triangles. (Note that the glued a edges
of the pentagons need not be edges of the triangulation.)

2 Preliminaries

A (simple) polygon Γ is a planar set homeomorphic to a compact disc, having
as boundary bdΓ a finite union of line-segments. Each endpoint of such a line-
segment is called a vertex of Γ. A vertex of Γ is called an acute corner if Γ has
an acute angle at this vertex.

Let T be an acute triangulation of a polygon Γ. A vertex P of T is called
− a corner vertex if P is a vertex of Γ,
− a side vertex if P lies on bdΓ but is not a corner vertex,
− an interior vertex otherwise.
For any set A ⊂ Rd, let intA denote the interior of A and relintA the relative

interior of A. (Here the “relative interior” of a set A is defined as its interior
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within the affine hull of A.)
Several results obtained by Maehara [12] will be very useful.

Figure 1: Illustrations of Proposition 2.1

Proposition 2.1. ([12]) Let ABC be a triangle with acute angles at B and C,
and let P ∈relintAC. If the angle at A is acute (resp. non-acute), then there is
an acute triangulation T of ABC with size 4 (resp. 7) such that P is the only
side vertex on AC. Further, there is (resp. are) exactly 1 (resp. 2) new vertex
introduced on BC and exactly 1 new vertex introduced on AB.

Figure 2: Illustrations of Proposition 2.2 and 2.3

Proposition 2.2. ([12]) Let ABCD be a convex quadrilateral. If ∠B < π
2

and
∠D ≥ π

2
, then there is an acute triangulation T of ABCD of size at most 9 such

that there is no side vertex in CD ∪ DA. Further, if ∠ACB(resp. ∠BAC) < π
2
,

then there is exactly 1 new vertex introduced on AB (resp. BC); if the angle
∠ACB (resp. ∠BAC) ≥ π

2
, then there are exactly 2 new vertex introduced on

AB (resp. BC).

Proposition 2.3. ([12]) Every quadrilateral admits an acute triangulation of size
at most 10, such that there are at most two new vertices introduced on each side.

The following results will also be useful.

Proposition 2.4. Let ABC be a triangle with ∠B < π
2

and let M , N ∈ relintAC.
Then ABC admits a non-obtuse triangulation of size at most 11, with M , N as
the only side vertices on AC, so that the angles at all vertices different from M
and N are acute.
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Figure 3: A non-obtuse triangulation of ABC with two new vertices on AC

Proof. Consider M1, N1 ∈ AB∪BC with M1M⊥AC, N1N⊥AC. We may assume
without loss of generality that ∠C < π

2
, M ∈ relintAN and N1 ∈ relintBC, as

shown in Figure 3 (a) and (b). If M1 ∈ AB (resp. M1 ∈ BC) then, by Proposition
2.2 the quadrilateral BCNM1 (resp. ABN1M) can be triangulated into at most 9
acute triangles with no new vertex introduced on BM1∪M1N (resp. AM∪MN1).
Hence ABC admits a non-obtuse triangulation of size at most 11, with M , N
the only side vertices on AC.

Let Γ be a convex polygon. A point P ∈ Γ and an edge XY of Γ are said to be
facing each other in Γ, if the points P , X, Y are the vertices of a non-degenerate
triangle contained in Γ and ∠PXY , ∠PY X are both less than or equal to π

2
. A

point P ∈ intΓ is called a pivot of Γ if all edges of Γ are facing P in Γ.

Motivated by [13], we obtain the following refined result; the similar proof is
omitted.

Proposition 2.5. If a convex polygon Γ has a pivot P ∈ intΓ, then it admits
an acute triangulation in which the vertices newly introduced on the edges facing
P are the orthogonal projections of P . Furthermore, if Γ has n vertices, m non-
obtuse angles and r edges, the orthogonal projection of P on each of which is a
corner of Γ, then the number of triangles in this acute triangulation is at most
4n + 2m − r.

Now we give two examples to illustrate the acute triangulations described in
Proposition 2.5.

In Figure 4 (a), P is a pivot of a right triangle ABC. By Proposition 2.5,
ABC can be triangulated into 4 × 3 + 2 × 3 − 0 = 18 acute triangles, where P1,
P2, P3 are orthogonal projections of P on AB, BC, CA respectively.

In Figure 4 (b), P is a pivot of a right trapezoid ABCD with PD⊥AD. By
Proposition 2.5, ABCD can be triangulated into 4 × 4 + 2 × 3 − 1 = 21 acute
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Figure 4: Acute triangulations by using pivots

triangles, where P1, P2, P3 are orthogonal projections of P on AB, BC, CD
respectively.

Remark. Let ABC be an acute triangle. If we replace a vertex, say A, by
a vertex A′ which is close to A enough, then clearly the triangle A′BC is still
acute. In other words, if we slightly slide A in any direction, then the triangle
obtained is still acute.

3 Acute triangulations of pentagons

Let Γ = ABCDE be a pentagon with an acute corner B. If Γ can be divided
into a triangle ABC and a simple quadrilateral ACDE, then B is said to be a
good acute corner of Γ. In order to prove Theorem 3.5, we first present some
lemmas.

Lemma 3.1. Every pentagon with at least one acute corner can be triangulated
into at most 32 acute triangles.

Proof. Let Γ = ABCDE be a pentagon with at least one acute corner.
Case 1. Γ has a good acute corner.
Suppose that B is a good acute corner. By Proposition 2.3, ACDE admits

an acute triangulation T with |T | ≤ 10 such that there are at most 2 side vertices
on AC.

Subcase 1.1. There is no side vertex on AC. Let ACM be the acute triangle
in T which contains AC. Let H be the orthogonal projection of M on AC. By
Proposition 2.1, ABC can be triangulated into at most 7 acute triangles with

H as the only side vertex on AC. Then we can slightly slide H in direction
−−→
MH

such that both triangles MAH and MCH become acute, and obtain an acute
triangulation of Γ whose size is at most 18.

Subcase 1.2. There is precisely one side vertex on AC. Then by the similar
discussion in Subcase 1.1 we know that Γ can be triangulated into at most 17
acute triangles.
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Subcase 1.3. There are exactly two side vertices, say M and N , on AC. Use
Proposition 2.4 to triangulate Γ into at most 21 non-obtuse triangles. Finally we
can slightly slide M , N away from ABC in direction perpendicular to AC such
that all the triangles become acute.

Case 2. Γ has no good acute corner.
Let B be an acute corner of Γ. We suppose without loss of generality that

∠BCA < π
2
. Since B is not good, D, E can not lie both outside the triangle

ABC.
Subcase 2.1. D lies outside the triangle ABC.
Then E ∈ intABC∪relintAC (here intABC denotes the interior of the triangle

ABC). Recalling that Γ has no good acute corner, we have ∠BAE ≥ π
2
, ∠CDE ≥

π
2
. In fact, if ∠BAE < π

2
, then A is a good acute corner; if ∠CDE < π

2
, then D

is a good acute corner.

Figure 5: Two new vertices introduced on EF

If E ∈ intABC, then the supporting line of AE must intersect relintBC at a
point F . Thus Γ can be divided into a triangle ABF and a simple quadrilateral
EFCD, see Figure 5. By Proposition 2.3, EFCD can be triangulated into at
most 10 acute triangles such that there are at most 2 new vertices introduced
on EF . If there is no (resp. precisely one) new vertex introduced on EF , then
similarly to Subcase 1.2 (resp. 1.3), Γ admits an acute triangulation with size
at most 17 (resp. 21). If there are precisely 2 new vertices, say M and N ,
introduced on AP , then let P be the point on BC such that PN⊥AF . Since
∠BAF ≥ π

2
, P ∈ relintBF , see again Figure 5. Clearly, ∠EMP > π

2
. Let H

be the orthogonal projection of M on EP . Then H ∈ relintEP . Furthermore,
since ∠EAP < π

2
and ∠AEP > π

2
, by Proposition 2.1, the triangle EAP can be

triangulated into 7 acute triangles such that H is the only side vertex on EP ,
and there are 2 new vertices, say I1 and I2, introduced on AP . By Proposition
2.4, ABP admits a non-obtuse triangulation of size at most 11, such that I1, I2

are the only side vertices on AP . Now we slightly slide I1, I2 away the triangle
ABP in the direction perpendicular to AP , and then slightly slide H in direction
−−→
MH and N in direction

−−→
PN , thus obtaining an acute triangulation of Γ with size

at most 32.
If E ∈ relintAC, then we can triangulate triangle EDC into 7 acute triangles
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such that there are 2 new vertices introduced on EC. By the above discussion
we know that Γ can be triangulated into 29 acute triangles.

Figure 6: Illustration of Subcase 2.2

Subcase 2.2. D ∈ intABC ∪ relintAC.
Since ∠BCD < π

2
and Γ has no good acute corner, we have E ∈ intBDC ∪

relintBD, ∠BAE ≥ π
2
, ∠CDE ≥ π

2
. Clearly, E is a concave corner of Γ. Thus

there is a point P ∈ relintST such that ∠AEP > π
2
, ∠DEP > π

2
, as shown in

Figure 6. By Proposition 2.2, both quadrilaterals ABPE and EPCD can be tri-
angulated into 9 acute triangulations such that there is no new vertex introduced
on PE, which implies that Γ admits an acute triangulation with size 18.

Lemma 3.2. Let ABE be a triangle with AH⊥BE (H ∈relintBE). Then for
any two points S ∈relintBH and T ∈relintHE, ABE can be triangulated into at
most 22 non-obtuse triangles such that the only side vertices on BE are S, H
and T , and the angles at all vertices different from H are acute.

Proof. Consider S′ ∈ relintAB, T ′ ∈ relintAE with S′S ⊥ BE, T ′T ⊥ BE.

Figure 7: Three new vertices introduced on BE

Case 1. S′T ′ ‖ BE.
Let H ′ = S′T ′ ∩ AH. Then ABE can be triangulated into 8 right triangles

as shown in Figure 7(a). First we can slightly slide H ′ in direction
−−→
AH ′ such

that AS′H ′, S′SH ′, AH ′T ′, H ′TT ′ become acute. Second we slightly slide S′
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in direction
−−→
AS′ and T ′ in direction

−−→
AT ′ such that all the angles except for the

angles SHH ′ and H ′HT become acute.
Case 2. S′T ′ ∦ BE.
We may assume without loss of generality that |S′S| < |T ′T |. Let S′P ‖ BE,

as shown in Figure 7(b). Then P is a pivot of AHE. By Proposition 2.5, AHE
can be triangulated into at most 18 acute triangles and therefore ABE can be
triangulated into 22 non-obtuse triangles such that the only side vertices on BE

are S, H and T . Now we slightly slide H ′ in direction
−−→
AH ′, and after that slightly

slide S′ in direction
−−→
AS′ such that only the angle SHH ′ becomes a right angle.

Lemma 3.3. Let ABE be a triangle with AH⊥BE (H ∈relintBE). Then for
any three points S1, S2 ∈relintBH and T ∈relintHE, ABE can be triangulated
into at most 42 non-obtuse triangles such that the only side vertices on BE are
S1, S2, H and T , and the angles at all vertices different from H are acute.

Figure 8: Four new vertices introduced on BE

Proof. Consider S1
′, S2

′ ∈ relintAB, T ′ ∈ relintAE with S1
′S1⊥BE, S2

′S2⊥BE,
T ′T⊥BE.

Case 1. |S1
′S1| < |T ′T |.

Let S1
′P2 ‖ BE, as shown in Figure 8 (a). Then P1 (resp. P2) is a pivot

of AS1
′S1H (resp. AHE). By Proposition 2.5, AS1

′S1H (resp. AHE) can
be triangulated into at most 21 (resp. 18) acute triangles and therefore ABE
admits a non-obtuse triangulation with size at most 40, where only S1

′BS1 is
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a right triangle. Now we slightly slide S1
′ in direction

−−→
AS1

′, then we obtain an
acute triangulation of ABE.

Case 2. |S1S1
′| = |TT ′|.

See Figure 8 (b), then P is a pivot of AS1
′S1H and therefore ABE can be

triangulated into at most 26 non-obtuse triangles. Next we slightly slide H ′ in

direction
−−→
AH ′, and after that slightly slide S1

′ in direction
−−→
AS1

′, T ′ in direction
−−→
AT ′ such that only the angle H ′HT remains a right angle.

Case 3. |S1S1
′| > |TT ′|.

Let P1T
′ ‖ BE, S2

′P2⊥AH, as shown in Figure 8 (c). Then P1 (resp. P2)
is a pivot of S2

′BS2 (resp. AS2
′OT ′). and therefore by Proposition 2.5, S2

′BS2

(resp. AS2
′OT ′) can be triangulated into 18 (resp. 19) acute triangles. Thus

ABE admits a non-obtuse triangulation with size at most 42. Next we slightly

slide H ′ in direction
−−→
AH ′, and after that slightly slide T ′ in direction

−−→
AT ′ such

that only the angles S2HH ′, H ′HT remain right angles.

Lemma 3.4. Every pentagon without acute corners can be triangulated into at
most 54 acute triangles.

Proof. If the pentagon Γ has no acute corner, then it is convex. Let Γ = ABCDE
be such a pentagon; we may assume, without loss of generality, that BE is the
longest diagonal, which implies that ∠EBC < π

2
, ∠BED < π

2
. Let AH⊥BE

with H ∈ relintBE.
Case 1. Both ∠BCH and ∠EDH are less than π

2
.

Figure 9: Both ∠BCH and ∠EDH are less than π
2

Since at least one of ∠EHD and ∠BHC is less than π
2
, we may assume

without loss of generality that ∠EHD < π
2
.

Claim. The quadrilateral BCDH can be triangulated into at most 10 acute
triangles such that there is exactly one new vertex introduced on BH and at
most one new vertex introduced on DH.

Proof of the Claim. Note that ∠CBH < π
2
, ∠BCH < π

2
. If ∠HDC ≥ π

2
,

by Proposition 2.2, HBCD admits an acute triangulation with size 9 such that
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there is no new vertex introduced on DH and exactly one new vertex intro-
duced on BH. If ∠HDC < π

2
and |DH| < |CD|, then let M ∈ CD such that

|DM | = |DH|. Apply Proposition 2.2 to HBCM , and then we obtain an acute
triangulation of HBCD with size 10 such that there is no new vertex introduced
on DH and exactly one new vertex introduced on BH. If ∠HDC < π

2
and

|DH| ≥ |CD|, then let M ∈ DH such that |DM | = |CD| − ǫ, where ǫ is a small
positive number. Similarly, HBCD can be triangulated into 10 acute triangles
such that there is exactly one new vertex introduced on DH and exactly one new
vertex introduced on BH. The proof of the Claim is complete.

If there is no new vertex on DH, then let DT⊥HE, as shown in Figure 9 (a).
By Lemma 3.2, ABE can be triangulated into at most 22 non-obtuse triangles
such that the only side vertices on BE are S, H and T . Therefore Γ can be
triangulated into at most 10 + 2 + 22 = 34 non-obtuse triangles. If there is a
vertex on DH then, by Proposition 2.1 HDE can be triangulated into 4 acute
triangles such that there is exactly one new vertex introduced on HE. Similarly,
we can triangulate Γ into at most 10+4+22 = 36 non-obtuse triangles. Finally, in

both triangulations we slightly slide H in direction
−−→
AH at first and then slightly

slide T in direction
−→
ET , and obtain the desired acute triangulations.

Case 2. Both ∠BCH and ∠EDH are greater than or equal to π
2
.

Figure 10: Both ∠BCH and ∠EDH are greater than or equal to π
2

If ∠CHD < π
2
, then CHD is an acute triangle. Let CS⊥BH, DT⊥HE,

as shown in Figure 10 (a). By Lemma 3.2, ABE can be triangulated into at
most 22 non-obtuse triangles and therefore Γ can be triangulated into at most
5 + 22 = 27 non-obtuse triangles, which can be converted into acute by slidings
similar to those used in Case 1.

If ∠CHD ≥ π
2

then the supporting line of AH intersects the relative interior of
CD at a point H ′, as shown in Figure 10 (b). Since ∠HCH ′ < π

2
and ∠BCH ′ >

π
2
, there is a point M ∈ relintBH such that ∠MCH ′ = π

2
. Similarly, there

is a point N ∈relintHE such that ∠NDH ′ = π
2
. Because ∠MCB < π/2 and

∠CBM < π/2, and because ∠AHB = π/2, M is a pivot of ABCH ′, and similarly
N is a pivot of AH ′DE. By the use of Proposition 2.5, both ABCH ′ and AH ′DE
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can be triangulated into at most 4×4+2×3−1 = 21 acute triangles such that H
is the only new vertex introduced on AH ′. Hence ABCDE can be triangulated
into at most 21 × 2 = 42 acute triangles.

Case 3. One of ∠BCH and ∠EDH is less than π
2

while the other is not.
We may assume without loss of generality that ∠EDH < π

2
, ∠BCH ≥ π

2
.

Figure 11: ∠EDH < π
2
, ∠BCH ≥ π

2
.

If ∠HDC is acute, then let CS⊥BH, HN⊥CD, as shown in Figure 11 (a).
Since ∠HED < π

2
, by Proposition 2.2, HNDE can be triangulated into at most

9 acute triangles such that there is no new vertex introduced on HN ∪ ND.
Further, since ∠HDE < π

2
, there is exactly one new vertex introduced on HE.

Now we slightly slide N in direction
−−→
CD such that the angle HNC becomes acute.

By Lemma 3.2, ABE can be triangulated into at most 22 non-obtuse triangles
and therefore Γ can be triangulated into at most 3 + 9 + 22 = 34 non-obtuse
triangles, and all of them can be converted into acute by properly slidings of H
and S.

If ∠HDC ≥ π
2

then, by Proposition 2.2, the quadrilateral BCDH can be
triangulated into at most 9 acute triangles such that there is no new vertex
introduced on DH. Further, since ∠BCH ≥ π

2
, there are exactly two new vertices

introduced on BH, as shown in Figure 11 (b). Let HN⊥DE and slightly slide

N in direction
−−→
DE such that the angle HND becomes acute. Let NT⊥HE. By

Lemma 3.3, ABE can be triangulated into at most 42 non-obtuse triangles such
that the only side vertices on BE are S1, S2, H and T , and the angles at all
vertices different from H are acute. Thus Γ can be triangulated into at most

9 + 3 + 42 = 54 non-obtuse triangles. Now we slightly slide H in direction
−−→
AH

and after that slightly slide T in direction
−→
ET , and obtain an acute triangulation

of Γ.

Combining Lemma 3.1 and Lemma 3.4, we have the following theorem.

Theorem 3.5. Every planar pentagon can be triangulated into at most 54 acute
triangles.



404 Liping Yuan

4 Acute triangulations of double pentagons

Let Γd denote the double pentagon formed from a given convex pentagon Γ and
its congruent copy Γ′. For any point P in Γ, let P ′ denote the corresponding
point in Γ′.

From Section 3 we know that Γ admits an acute triangulation T with |T | ≤ 54.
But, if T has a vertex with degree 2 (here we regard T as a plane graph), then
T ∪T ′ can not form a triangulation of Γd, and the details can be seen in the proof
of Lemma 4.1. If T has no vertex with degree 2, then T ∪ T ′ obviously forms
an acute triangulation of Γd. However, since edges of an acute triangulation of
Γd are allowed to cross the common boundary of Γ and Γ′, it is motivated to
triangulate Γd in a different way, to obtain a size less than 2|T |, as shown in the
proof of Lemma 4.3.

Lemma 4.1. If the pentagon Γ has at least one acute angle, then Γd can be
triangulated into at most 68 acute triangles.

Proof. By Lemma 3.1, Γ admits an acute triangulation T of size at most 32.
Furthermore, there are at most 2 vertices in T with degree 2. Obviously Γd can
be divided into at most 42 acute triangles by T ∪ T ′. Now let A be a vertex
with degree 2 in T . This vertex belongs to two congruent triangles T , T ′, one
on each face of Γd. Since the triangles T and T ′ have two sides in common,
by the definition we know that the division obtained does not form a proper
triangulation of Γd. Now suppose that T = T ′ = △EAF , and G ∈ bdΓ is the
other adjacent vertex of F . Now we slide F slightly into the interior of Γ in
direction perpendicular to AF such that all the triangles having F as a vertex in
Γ remain acute and both of AFF ′ and GFF ′ are acute as well. Recalling that
there are at most 2 vertices in T with degree 2, we can conclude that Γd can be
triangulated into at most 68 acute triangles.

Lemma 4.2. Consider the side AB of Γ and H ∈ intΓ satisfying ∠AHB > π
2
.

Let DAB = ABH ∪ ABH ′. If M ∈relintAH∪relintBH, then DAB admits a
triangulation with precisely the points M , M ′ as side vertices and at most

(i) 20 non-obtuse triangles if ABH has two angles smaller than π
4
;

(ii) 30 non-obtuse triangles otherwise,
such that all triangles are acute excepting those at M , M ′.

Proof. By unfolding DAB in the plane, we obtain a quadrilateral HAH ′B with
AB ∩ HH ′ = O. We may assume without loss of generality that M ∈relintAH.
Since ∠AHB is obtuse, there is a point U ∈relint AO such that UH⊥HB. Let l
denote the line passing through M and perpendicular to AH.

Case 1. l ∩ AU = {X}.
Then X is a pivot of AH ′H. By Proposition 2.5, AH ′H can be triangulated

into at most 18 acute triangles such that only one new vertex O is introduced on
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Figure 12: l ∩ AU = {X}

HH ′. Now we slightly slide O in direction
−−→
BO. So DAB admits a triangulation

with at most 20 acute triangles in which only M , M ′ are side vertices.
Case 2. l ∩ AU = ∅.
We suppose that l ∩ HU = {Y }.

Figure 13: l ∩ AU = ∅

(i) Assume first that both acute angles of ABH are less than π
4
; then DAB

can be triangulated into 8 non-obtuse triangles AY M , AY ′M ′, HMY , H ′M ′Y ′,
HY B, H ′Y ′B, BY Y ′ and AY Y ′, as shown in Figure 13. Now we slightly slide

Y in direction
−−→
MY (and Y ′ in direction

−−−→
M ′Y ′) such that only the four triangles

adjacent to M or M ′ are right triangles.
(ii) Otherwise, we use the fact (easy to check) that Y is a pivot of ABH. By

Proposition 2.5, ABH can be triangulated into at most 15 acute triangles and
therefore DAB can be triangulated into at most 30 acute triangles such that M ,
M ′ are the only side vertices.

Lemma 4.3. If a convex pentagon Γ has no acute corner, then Γd can be trian-
gulated into at most 76 acute triangles.

Proof. If Γ has no acute corner, then it has at most two angles which are greater
than or equal to 3π

4
.

Case 1. Two angles of Γ are greater than or equal to 3π
4

.
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Figure 14: Two angles of Γ are greater than or equal to 3π
4

Then Γ has two angles equal to 3π
4

and three angles equal to π
2
. So Γ has

two possible non-isomorphic configurations as shown in Figure 14, and there is
a pivot in intΓ for each of them. By Proposition 2.5 Γ can be triangulated into
at most 26 acute triangles and therefore Γd can be triangulated into at most 52
acute triangles.

Case 2. At most one angle of Γ is greater than or equal to 3π
4

.
Subcase 2.1. Γ has a pivot in its interior.
Then as in Case 1, Γd can be triangulated into at most 52 acute triangles.
Subcase 2.2. Γ has no pivot in its interior.
(a) All of the five angles of Γ are obtuse.

Figure 15: Region RCD

For each side of Γ = ABCDE, say side CD, let RCD denote the strip be-
tween the perpendicular lines to CD at C and D. Let RCD = intΓ ∩ RCD,
as shown in Figure 15. Then any point P ∈ RCD is facing CD in Γ. With
F = {RAB,RBC ,RCD,RDE ,REA}, P is a pivot of Γ if and only if P ∈ ∩S∈FS.
Consequently, Γ has no pivot in its interior means that ∩S∈FS = ∅. Notice that
each member of F is a convex set, so by Helly’s Theorem there are three sides
e, f , g of Γ such that Re ∩ Rf ∩ Rg = ∅. Furthermore, it is easy to check that
e, f and g are not consecutive. Thus we may assume without loss of generality
that e = AE, f = BC, g = CD and the parallelogram CRST = RBC ∩ RCD
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lies to the right of RAE (here we define the direction
−−→
BC as the right direction),

as shown in Figure 16. Recall that the angle at A in Γ is obtuse, so B and T
are separated by RAE . Let HF = RAE ∩ lBT (here lBT denotes the line passing
through the points B and T ), hence HF ⊂ relintBT .

Figure 16: Γ has no pivot in its interior

We establish a Cartesian coordinate system with B as origin, BC as x−axis
and BT as y−axis. Let {G} = lEF ∩lDS . The angles of Γ being obtuse, ∠GFH >
π
2

and therefore ∠AHG = ∠HGF < π
2
. So EAHG is a right trapezoid with

∠EGH > π
2
. Notice that ∠GHC > ∠GBC > π

2
, thus GHCD is a quadrilateral

with ∠GHC > π
2
, ∠GDC = π

2
. Furthermore, kAH < 0 (here kAH denotes the

slope of lAH), kEG < 0 and kGD < 0 implies that both ∠AHB and ∠DGE are
greater than π

2
.

Now we slightly slide H away from AB in direction perpendicular to AB

and slightly slide G in direction
−−→
EG such that ∠HAE, ∠HBC, ∠GDC are less

than π
2

while the properties of the triangles ABH and DEG are not changed
(here, the property of an obtuse triangle means that both of its acute angles
are less than π

4
or not). Now we consider an acute triangulation of EAHG.

Let Z be the orthogonal projection of G on EH. Clearly, Z ∈ relinEH. Since
EAH is an acute triangle, by Proposition 2.1, EAH can be triangulated into 4
acute triangles such that Z is the only side vertex on EH, and there is exactly

one new vertex introduced on AH. Slightly slide Z in direction
−→
GZ, hence the

quadrilateral EAHG can be triangulated into 6 acute triangles such that there
is no new vertex introduced on EG ∪ GH while there is exactly one new vertex
introduced on AH, say, M . Similarly, GHCD can be triangulated into 6 acute
triangles such that there is no new vertex introduced on GH ∪ CH while there
is precisely one new vertex introduced on DG, say, N . Recall that at most one
angle of Γ is greater than or equal to 3π

4
, so at most one of the triangles AHB
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and DEG has an acute angle which is greater than or equal to π
4
. Then by

Lemma 4.2, at most one of AHB ∪ AH ′B and DEG ∪ DEG′ admits a non-
obtuse triangulation with size at most 30, while the other admits one with size
at most 20. Further, M , M ′ (resp. N , N ′) are the only side vertices lying on
AHB ∪ AH ′B (resp. DEG ∪ DEG′). Notice that the polygon AHBCDGE
admits an acute triangulation with size 6+1+6 = 13 such that there are exactly
two new vertices M , N introduced on its boundary. Thus Γd can be triangulated
into at most 13× 2 + 20 + 30 = 76 non-obtuse triangles, which can be converted
into acute triangles by slightly sliding M , M ′, N , N ′ if necessary.

(b) Γ has at least one right angle.
Similarly to the discussion at (a), we may assume that RBC ∩RCD ∩RAE = ∅

and the parallelogram CRST = RBC ∩ RCD lies to the right of RAE (here we

define the direction
−−→
BC as the right direction). Then it is easy to deduce that

∠ABC, ∠BCD and ∠DEA must be greater than π
2
. Now if ∠EAB = π

2
(or

∠CDE = π
2
), then we chose a point on lBS (or lEF ) which is very close to B (or

E) on the role of the point H (or G) at (a). The configuration obtained has the
same property as that described in Figure 16 except that ∠EAH (or ∠GDC) is
less than π

2
instead of being equal to π

2
. By a method similar to the one used in

(a) we can also triangulate Γd into at most 76 acute triangles.

Combining Lemma 4.1 and Lemma 4.3, we obtain the following theorem.

Theorem 4.4. Every double pentagon can be triangulated into at most 76 acute
triangles.

Remark.

− the results in this paper are based on inductive constructions;
− if a new point is used to triangulate a double pentagon, its correspondent

on the opposite face is also used. This symmetry seems a strong restriction, and
removing it could improve the upper bound.
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