Bull. Math. Soc. Sci. Math. Roumanie
Tome 57(105) No. 1, 2014, 35-43

A note on the Diophantine equation $\left(x^{p}-1\right) /(x-1)=p^{e} y^{q}$

by
Han Di and Guan Wenji

Abstract

Let p, q be odd primes, and let $e \in\{0,1\}$. In this paper, using a lower bound for two logarithms in the complex case, we prove that if $p \equiv 3(\bmod 4)$ and $q>220 p(\log p)^{2}$, then the equation $\left(x^{p}-1\right) /(x-1)=p^{e} y^{q}$ has no positive integer solution (x, y) with $\min \{x, y\}>1$.

Key Words: Higher diophantine equation, Nagell-Ljunggren equation, Gel' fondBaker method.
2010 Mathematics Subject Classification: Primary 11D41, Secondary 11D45.

1 Introduction

Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ be the sets of all integers, positive integers and rational numbers respectively. Let p, q be distinct odd primes, and let $e \in\{0,1\}$. The equation

$$
\begin{equation*}
\frac{x^{p}-1}{x-1}=p^{e} y^{q}, x, y \in \mathbb{N}, \min \{x, y\}>1 \tag{1.1}
\end{equation*}
$$

is usually called the Nagell-Ljunggren equation. It is conjectured that (1.1) has no solution (x, y). This conjecture was proved for some special cases (see Problem D10 of [3] and its references). But, in general, the problem is far from solved.

In [2], Y. Bugeaud, G. Hanrot and M. Mignotte proved that if $p \not \equiv 1(\bmod 8)$ and $q>$ $64000 p(\log p)^{2}$, then (1.1) has no solution (x, y). In this paper, we give a substantial improvement of the constant for $p \equiv 3(\bmod 4)$. More precisely, we prove the following result:

Theorem. If $p \equiv 3(\bmod 4)$ and $q>220 p(\log p)^{2}$, then (1.1) has no solution (x, y).

2 Preliminaries

Let p be an odd prime. Further let $\zeta=e^{2 \pi \sqrt{-1} / p}, m=(p-1) / 2$ and

$$
S=\left\{r \mid r \in \mathbb{N}, 1 \leq r \leq p-1,\left(\frac{r}{p}\right)=1\right\}
$$

$$
\begin{equation*}
\bar{S}=\left\{\bar{r} \mid \bar{r} \in \mathbb{N}, 1 \leq \bar{r} \leq p-1,\left(\frac{\bar{r}}{p}\right)=-1\right\} \tag{2.1}
\end{equation*}
$$

where $\left(\frac{*}{p}\right)$ is the Legendre symbol.
Lemma 2.1. ([1]). Let a be a positive integer with $a>1$. If $a \not \equiv 1(\bmod p)$, then every prime divisor l of $\left(a^{p}-1\right) /(a-1)$ satisfies $l \equiv 1(\bmod 2 p)$. If $a \equiv 1(\bmod p)$, then $p \|\left(a^{p}-1\right) /(a-1)$ and every prime divisor l of $\left(a^{p}-1\right) / p(a-1)$ satisfies $l \equiv 1(\bmod 2 p)$.

Lemma 2.2. ([4, Proposition 6.3 .1 and Theorem 6.4.1]). For any integer k with $p \nmid k$, let

$$
\begin{equation*}
G(k, p)=\sum_{i=0}^{p-1} \zeta^{k i^{2}} \tag{2.2}
\end{equation*}
$$

Then we have

$$
G(k, p)=\left(\frac{k}{p}\right) \sqrt{(-1)^{m} p}
$$

Lemma 2.3. If $p>3$ and $p \equiv 3(\bmod 4)$, then we have

$$
\begin{equation*}
\frac{X^{p}-1}{X-1}=A^{2}(X)+p B^{2}(X) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
A(X)=\sum_{i=0}^{m} \frac{a_{i}}{2} X^{m-i} \in \frac{1}{2} \mathbb{Z}[X], \quad B(X)=\sum_{i=0}^{m} \frac{b_{i}}{2} X^{m-i} \in \frac{1}{2} \mathbb{Z}[X] \tag{2.4}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
A(X)+B(X) \sqrt{-p}=\prod_{r \in S}\left(X-\zeta^{r}\right), A(X)-B(X) \sqrt{-p}=\prod_{\bar{r} \in \bar{S}}\left(X-\zeta^{\bar{r}}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{0}=2, a_{m}=-2, b_{0}=b_{m}=0, a_{j}=-a_{m-j}, b_{j}=b_{m-j}, j=1,2, \cdots, m-1 \tag{2.6}
\end{equation*}
$$

Proof: This is the special case of Lemma 2 of $[7]$ for $Y=1$.

Lemma 2.4. If $p>3, p \equiv 3(\bmod 4)$ and X is an integer, then $A(X)$ and $B(X)$ are coprime integers.

Proof: Since $p>3$ and $p \equiv 3(\bmod 4), m$ is an odd integer with $m>1$. By Lemma 2.3 , we see from (2.4) that

$$
A(X)=\left(X^{m}-1\right)+\sum_{j=1}^{(m-1) / 2} \frac{a_{j}}{2}\left(X^{m-2 j}-1\right) X^{j}
$$

$$
\begin{equation*}
B(X)=\sum_{j=1}^{(m-1) / 2} \frac{b_{j}}{2}\left(X^{m-2 j}+1\right) X^{j} \tag{2.7}
\end{equation*}
$$

where a_{j} and b_{j} are integers for $j=1, \cdots,(m-1) / 2$. Since $\left(X^{m-2 j} \pm 1\right) X^{j}$ is an even integer for any integer X, we see from (2.7) that $A(X)$ and $B(X)$ are integers.

Let $d=\operatorname{gcd}(A(X), B(X))$. Since $d^{2} \mid\left(X^{p}-1\right) /(X-1)$ by (2.3), using Lemma 2.1, we have

$$
\begin{equation*}
\operatorname{gcd}(d, 2 p X)=1 \tag{2.8}
\end{equation*}
$$

On the other hand, by (2.5), we get $X \equiv \zeta^{r}(\bmod d)$ and $X \equiv \zeta^{\bar{r}}(\bmod d)$, where $r \in S$ and $\bar{r} \in \bar{S}$. Since $r \neq \bar{r}$, it implies that the discriminant of $\mathbb{Q}(\zeta)$ is divisible by d, namely, $d \mid-p^{p-2}$. Therefore, by (2.8), we get $d=1$. Thus, $A(X)$ and $B(X)$ are coprime integers. The lemma is proved.

Lemma 2.5. If $p>3, p \equiv 3(\bmod 4)$ and $X>2 p$, then $|B(X)|<X^{m-1}$.
Proof: Let

$$
\begin{equation*}
\prod_{r \in S}\left(X-\zeta^{r}\right)=X^{m}+\delta_{1} X^{m-1}+\cdots+\delta_{m} \tag{2.9}
\end{equation*}
$$

By (2.4), (2.5) and (2.9), we have $\delta_{m}=-1$ and

$$
\begin{equation*}
\delta_{k}=\frac{1}{2}\left(a_{k}+b_{k} \sqrt{-p}\right), k=1, \cdots, m-1 . \tag{2.10}
\end{equation*}
$$

Let

$$
\begin{equation*}
s_{k}=\sum_{r \in S} \zeta^{r k}, k=1, \cdots, m-1 \tag{2.11}
\end{equation*}
$$

By Lemma 2.2, we see from (2.1), (2.2) and (2.11) that $1+2 s_{k}=G(k, p)$ and

$$
\begin{equation*}
s_{k}=\frac{1}{2}\left(-1+\left(\frac{k}{p}\right) \sqrt{-p}\right), k=1, \cdots, m-1 . \tag{2.12}
\end{equation*}
$$

By the Newton formula between coefficients and roots of a polynomial, we get from (2.9) and (2.11) that

$$
\begin{equation*}
\delta_{k}=-\frac{1}{k}\left(s_{k}+\delta_{1} s_{k-1}+\cdots+\delta_{k-1} s_{1}\right), k=1, \cdots, m-1 \tag{2.13}
\end{equation*}
$$

For $k=1$, we have $\delta_{1}=-s_{1}=(1-\sqrt{-p}) / 2$, and hence, $a_{1}=1$ and $b_{1}=-1$ by (2.10). For $k>1$, we now assume that

$$
\begin{equation*}
\max \left\{\left|a_{j}\right|,\left|b_{j}\right|\right\} \leq p^{j-1}, j=1, \cdots, k-1 \tag{2.14}
\end{equation*}
$$

By (2.10) and (2.12), we have

$$
\begin{align*}
& \delta_{i} s_{k-i}=\frac{1}{4}\left(a_{i}+b_{i} \sqrt{-p}\right)\left(-1+\left(\frac{k-i}{p}\right) \sqrt{-p}\right) \tag{2.15}\\
& =\frac{1}{4}\left(\left(-a_{i}-\left(\frac{k-i}{p}\right) b_{i} p\right)+\left(\left(\frac{k-i}{p}\right) a_{i}-b_{i}\right) \sqrt{-p}\right),
\end{align*}
$$

$i=1, \cdots, k-1$.
Therefore, by (2.10), (2.13) and (2.15), we get

$$
\begin{equation*}
2 k a_{k}=1+\sum_{i=1}^{k-1}\left(-a_{i}-\left(\frac{k-i}{p}\right) b_{i} p\right), 2 k b_{k}=\sum_{i=1}^{k-1}\left(\left(\frac{k-i}{p}\right) a_{i}-b_{i}\right) . \tag{2.16}
\end{equation*}
$$

Further, since $|((k-j) / p)|=1$ for $j=1, \cdots, k-1$, we obtain from (2.14) and (2.16) that

$$
\begin{aligned}
& \left|a_{k}\right| \leq \frac{1}{2 k}\left(1+\sum_{i=1}^{k-1}\left(\left|a_{i}\right|+\left|b_{i}\right| p\right)\right) \\
& \leq \frac{1}{2 k}\left(1+\left(1+p+\cdots+p^{k-2}\right)+\left(p+p^{2}+\cdots+p^{k-1}\right)\right)<p^{k-1} \\
& \quad\left|b_{k}\right| \leq \frac{1}{2 k}\left(1+\sum_{i=1}^{k-1}\left(\left|a_{i}\right|+\left|b_{i}\right|\right)\right) \\
& \quad \leq \frac{1}{2 k}\left(1+2\left(1+p+\cdots+p^{k-2}\right)\right)<p^{k-1}
\end{aligned}
$$

By the inductive method, we find from (2.14) and (2.17) that

$$
\begin{equation*}
\max \left\{\left|a_{k}\right|,\left|b_{k}\right|\right\} \leq p^{k-1}, k=1, \cdots, m-1 . \tag{2.18}
\end{equation*}
$$

Thus, by (2.4), (2.6) and (2.18), if $X>2 p$, then

$$
\begin{aligned}
|B(X)| & \leq \sum_{k=1}^{m-1} \frac{\left|b_{k}\right|}{2} X^{m-k}=X^{m-1} \sum_{k=1}^{m-1} \frac{\left|b_{k}\right|}{2 X^{k-1}} \\
& \leq X^{m-1} \sum_{k=1}^{m-1} \frac{p^{k-1}}{2(2 p)^{k-1}}=X^{m-1} \sum_{k=1}^{m-1} \frac{1}{2^{k}}<X^{m-1}
\end{aligned}
$$

The lemma is proved.

Lemma 2.6. ([6, Theorem 3]) Let D, k be positive integers such that $D>3, k>1$ and $\operatorname{gcd}(k, 2 D)=1$. Let $h(-4 D)$ denote the class number of binary quadratic primitive forms of discriminant $-4 D$. If (X, Y, Z) is a solution of the equation

$$
\begin{equation*}
X^{2}+D Y^{2}=k^{Z}, \quad X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0 \tag{2.19}
\end{equation*}
$$

then we have

$$
\begin{gather*}
Z=Z_{1} t, t \in \mathbb{N} \tag{2.20}\\
X+Y \sqrt{-D}=\lambda_{1}\left(X_{1}+\lambda_{2} Y_{1} \sqrt{-D}\right)^{t}, \lambda_{1}, \lambda_{2} \in\{ \pm 1\} \tag{2.21}
\end{gather*}
$$

where X_{1}, Y_{1}, Z_{1} are positive integers satisfying

$$
\begin{equation*}
X_{1}^{2}+D Y_{1}^{2}=k^{Z_{1}}, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1, Z_{1} \mid h(-4 D) \tag{2.22}
\end{equation*}
$$

Lemma 2.7. For any odd prime p, we have $h(-4 p)<p$.
Proof: We can verify that the lemma holds for $p \leq 17$. By Lemma 2 of [8], if $h(-4 p) \geq p$, then

$$
\begin{equation*}
p \leq h(-4 p)<\frac{4}{\pi} \sqrt{p} \log (2 e \sqrt{p}) \tag{2.23}
\end{equation*}
$$

But, (2.23) is false for $p>17$. Thus, the lemma is proved.

Lemma 2.8. ([5, Théorème 3]) Let α be a complex algebraic number such that $|\alpha|=1$ and α is not a root of unity. Further let $h(\alpha)$ and $\log \alpha$ denote the absolute logarithmic height and the principal value of the logarithm of α respectively. Let $\Lambda=b_{1} \log \alpha-b_{2} \pi \sqrt{-1}$, where b_{1}, b_{2} are positive integers. Then we have

$$
\begin{equation*}
\log |\Lambda| \geq-8.87 A H^{2} \tag{2.24}
\end{equation*}
$$

where

$$
\begin{align*}
d & =\frac{1}{2}[\mathbb{Q}(\alpha): \mathbb{Q}], \quad A=\max \{20,10.98|\log \alpha|+d h(\alpha)\} \\
H & =\max \left\{17, \frac{\sqrt{d}}{10}, d \log \left(\frac{b_{1}}{68.9}+\frac{b_{2}}{2 A}\right)+2.35 d+5.03\right\} \tag{2.25}
\end{align*}
$$

Lemma 2.9. ([9, Theorem 1]) If $q \geq(p-1)^{2}$, then (1.1) has no solution (x, y).

3 Proof of Theorem

Let p, q be odd primes such that $p \equiv 3(\bmod 4)$ and

$$
\begin{equation*}
q>220 p(\log p)^{2} \tag{3.1}
\end{equation*}
$$

Since $100 p(\log p)^{2}>(p-1)^{2}$ if $p<8000$, by Lemma 2.9, the theorem holds for $p<8000$. Therefore, it suffices to prove the theorem for

$$
\begin{equation*}
p>8000 . \tag{3.2}
\end{equation*}
$$

We now assume that (1.1) has a solution (x, y). Then, by Lemma 2.1, we have $y \equiv 1(\bmod$ $2 p)$ and

$$
\begin{equation*}
y \geq 2 p+1 \tag{3.3}
\end{equation*}
$$

Further, since $q>p$ by (3.1), we get from (1.1) and (3.3) that $x^{p}>\left(x^{p}-1\right) /(x-1)=p^{e} y^{q} \geq$ $y^{q}>y^{p} \geq(2 p+1)^{p}$. It implies that

$$
\begin{equation*}
x>2 p+1 \tag{3.4}
\end{equation*}
$$

We first consider the case that $e=0$. Then, (1.1) can be written as

$$
\begin{equation*}
\frac{x^{p}-1}{x-1}=y^{q} . \tag{3.5}
\end{equation*}
$$

Since $p>3$ and $p \equiv 3(\bmod 4)$, by Lemmas 2.3 and 2.4 , we see from (3.5) that the equation

$$
\begin{equation*}
X^{2}+p Y^{2}=y^{Z}, X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0 \tag{3.6}
\end{equation*}
$$

has the solution

$$
\begin{equation*}
(X, Y, Z)=(A(x), B(x), q) \tag{3.7}
\end{equation*}
$$

Since $e=0$, by Lemma 2.1, we have $\operatorname{gcd}(y, 2 p)=1$. Therefore, applying Lemma 2.6 to (3.7), we get

$$
\begin{gather*}
q=Z_{1} t, t \in \mathbb{N} \tag{3.8}\\
A(x)+B(x) \sqrt{-p}=\lambda_{1}\left(X_{1}+\lambda_{2} Y_{1} \sqrt{-p}\right)^{t}, \lambda_{1}, \lambda_{2} \in\{ \pm 1\} \tag{3.9}
\end{gather*}
$$

where X_{1}, Y_{1}, Z_{1} are positive integers satisfying

$$
\begin{equation*}
X_{1}^{2}+p Y_{1}^{2}=y^{Z_{1}}, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{1} \mid h(-4 p) \tag{3.11}
\end{equation*}
$$

Since q is an odd prime with $q>p$, by Lemma 2.7, we see from (3.8) and (3.11) that $Z_{1}=1$ and $t=q$. Therefore, by (3.9) and (3.10), we have

$$
\begin{equation*}
A(x)+B(x) \sqrt{-p}=\lambda_{1}\left(X_{1}+\lambda_{2} Y_{1} \sqrt{-p}\right)^{q}, \lambda_{1}, \lambda_{2} \in\{ \pm 1\} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{1}^{2}+p Y_{1}^{2}=y, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1 \tag{3.13}
\end{equation*}
$$

Let

$$
\begin{equation*}
\theta=X_{1}+Y_{1} \sqrt{-p}, \bar{\theta}=X_{1}-Y_{1} \sqrt{-p} \tag{3.14}
\end{equation*}
$$

By (3.12) and (3.14), we get

$$
\begin{equation*}
B(x)= \pm \frac{\theta^{q}-\bar{\theta}^{q}}{2 \sqrt{-p}} \tag{3.15}
\end{equation*}
$$

Further let $\alpha=\theta / \bar{\theta}$. By (3.13) and (3.14), we have

$$
\begin{equation*}
|\theta|=|\bar{\theta}|=\sqrt{y} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
y \alpha^{2}-2\left(X_{1}^{2}-p Y_{1}^{2}\right) \alpha+y=0 \tag{3.17}
\end{equation*}
$$

Therefore, we see from $(3.3),(3.16)$ and (3.17) that α is a complex algebraic number such that $|\alpha|=1,[\mathbb{Q}(\alpha): \mathbb{Q}]=2$ and α is not a root of unity.

By (3.15) and (3.16), we have

$$
\begin{equation*}
|B(x)|=\frac{\left|\bar{\theta}^{q}\right|}{2 \sqrt{p}}\left|\alpha^{q}-1\right|=\frac{y^{q / 2}}{2 \sqrt{p}}\left|\alpha^{q}-1\right| . \tag{3.18}
\end{equation*}
$$

Using Lemma 2.5, by (3.4), we have

$$
\begin{equation*}
|B(x)|<x^{(p-3) / 2} \tag{3.19}
\end{equation*}
$$

On the other hand, by (3.5), we get $y^{q / 2}>x^{(p-1) / 2}$. Therefore, by (3.18) and (3.19), we obtain

$$
\begin{equation*}
\frac{2 \sqrt{p}}{x}>\left|\alpha^{q}-1\right| \tag{3.20}
\end{equation*}
$$

Using the maximum modulus principle, for any complex number z, we have either $\left|e^{z}-1\right| \geq$ $1 / 2$ or $\left|e^{z}-1\right|>2|z-k \pi \sqrt{-1}| / \pi$ for some integers k. Therefore, by (3.20), we have either

$$
\begin{equation*}
\frac{2 \sqrt{p}}{x}>\frac{1}{2} \tag{3.21}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\pi \sqrt{p}}{x}>|q \log \alpha-k \pi \sqrt{-1}|, k \in \mathbb{Z},|k| \leq q \tag{3.22}
\end{equation*}
$$

However, by $(3.4),(3.21)$ is impossible. Thus, by (3.22), we get

$$
\begin{equation*}
\log (\pi \sqrt{p})>\log x+\log |\Lambda| \tag{3.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=q \log \alpha-k \pi \sqrt{-1} \tag{3.24}
\end{equation*}
$$

Applying Lemma 2.8 to (3.24), Λ satisfies (2.24), where

$$
\begin{align*}
A & =\max \{20,10.89|\log \alpha|+h(\alpha)\} \tag{3.25}\\
H & =\max \left\{17, \log \left(\frac{q}{68.9}+\frac{q}{2 A}\right)+7.38\right\} \tag{3.26}
\end{align*}
$$

By (3.1), (3.2), (3.3), (3.16) and (3.17), we have $0<|\log \alpha| \leq \pi, h(\alpha)=\log \sqrt{y}, 40.69<$ $10.98 \pi+\log \sqrt{y}$ and $17<7.38+\log (q / 68.9)$. Hence, by (3.25) and (3.26), we get

$$
\begin{equation*}
6.20<\log \sqrt{2 p+1} \leq \log \sqrt{y}<A \leq 10.98 \pi+\log \sqrt{y} \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
H \leq 7.38+\log \left(\frac{q}{68.9}+\frac{q}{2 A}\right)<7.38+\log \left(\frac{q}{68.9}+\frac{q}{81.38}\right)<3.77+\log q \tag{3.28}
\end{equation*}
$$

Since $x^{p}>\left(x^{p}-1\right) /(x-1)=y^{q}$, we have $p \log x>q \log y$. Substitute (2.24) into (3.23), we get

$$
\begin{equation*}
\log (\pi \sqrt{p})+8.87 A H^{2}>\log x>\frac{q}{p} \log y>220(\log p)^{2}(\log y) \tag{3.29}
\end{equation*}
$$

By (3.27), (3.28) and (3.29), we have

$$
\begin{equation*}
\frac{\log \pi+\frac{1}{2} \log p}{(\log p)^{2}(\log y)}+8.87\left(\frac{10.98 \pi+\frac{1}{2} \log y}{\log y}\right)\left(\frac{3.77+\log q}{\log p}\right)^{2}>220 \tag{3.30}
\end{equation*}
$$

By (3.2) and (3.3), we have

$$
\begin{gather*}
\frac{\log \pi+\frac{1}{2} \log p}{(\log p)^{2}(\log y)}<\frac{1}{(\log p)^{2}}<\frac{1}{(\log 8000)^{2}}<0.02, \\
\frac{10.98 \pi+\frac{1}{2} \log y}{\log y}=\frac{10.98 \pi}{\log y}+\frac{1}{2}<\frac{10.98 \pi}{\log 16000}+\frac{1}{2}<4.07 . \tag{3.31}
\end{gather*}
$$

Using Lemma 2.9, we have $q<(p-1)^{2}$. It implies that

$$
\begin{equation*}
\frac{3.77+\log q}{\log p}<\frac{3.77+2 \log p}{\log p}<\frac{3.77}{\log 8000}+2<2.42 \tag{3.32}
\end{equation*}
$$

Thus, by (3.30), (3.31) and (3.32), we get $220>0.02+8.87 \times 4.07 \times(2.42)^{2}>220$, a contradiction.

We final consider the case that $e=1$. Then, by Lemmas 2.3 and 2.4, we see from (1.1) and (2.3) that $p \mid A(x)$ and (3.6) has the solution.

$$
\begin{equation*}
(X, Y, Z)=\left(B(x), \frac{A(x)}{p}, q\right) \tag{3.33}
\end{equation*}
$$

Therefore, by Lemmas 2.6 and 2.7, we get from (3.33)

$$
\begin{equation*}
|B(x)|=\frac{1}{2}\left|\theta^{q}+\bar{\theta}^{q}\right|=\frac{\left|\bar{\theta}^{q}\right|}{2}\left|\beta^{q}-1\right|=\frac{y^{q / 2}}{2}\left|\beta^{q}-1\right|, \tag{3.34}
\end{equation*}
$$

where $\beta=-\theta / \bar{\theta}, \theta$ and $\bar{\theta}$ are defined as in (3.14). Thus, using the same method as in the proof of the case that $e=0$, we can deduce from (3.34) that (1.1) has no solution (x, y) for $e=1$. The theorem is proved.

Acknowledgments

The authors would like to thank the referee for carefully examining this paper and providing a number of important comments.

References

[1] G. D. Birhoff, H. S. Vandiver, On the integral divisors of $a^{n}-b^{n}$, Ann. of Math. (2), 5 (1904), 173-180.
[2] Y. Bugeaud, G. Hanrot and M. Mignotte, Sur l'équation diophantienne $\left(x^{n}-1\right) /(x-$ 1) $=y^{q}$ III, Proc. London Math. Soc. 84 (2002), 59-78.
[3] R. K. Guy, Unsolved problems in number theory, 3rd ed., Springer Verlag, New York, 2004.
[4] K. Lreland and M. Rosen, A classical in introduction to modern number theory, Springer Verlag, New York, 1982.
[5] M. Laurent, M. Mignotte and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation J. Number Theory 55(1995), 285-321
[6] M. H. Le, Some exponential diophantine equations I: The equation $D_{1} x^{2}-D_{2} y^{2}=\lambda k^{z}$, J. Number Theory 55 (1995), 209-221.
[7] M. H. Le, On Cohn's conjecture concerning the diophantine equation $x^{2}+2^{m}=y^{n}$, Arch. Math. 78 (2002), 26-35.
[8] M. H. Le, On the diophantine equation $y^{x}-x^{y}=z^{2}$, Rocky Mountain J. Math. 37 (2007), 1181-1185.
[9] P. Mihăilescu, New bounds and conditions for the equation of Nagell-Ljunggren, J. Number Theory 124 (2007), 380-395.

Received: 10.11.2012,
Revised: 11.07.2013,
Accepted: 02.08.2013.
Mathematical and Information Department
Weinan Teacher's University,
Weinan, Shaanxi, P.R.China
E-mail: guanwenji-2003@yahoo.com.cn

Department of Mathematics,
Northwest University, Xi'an, Shaanxi, P.R.China
E-mail: handi515@163.com

