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On the approximation of the Thue-Morse generating sequence

by
ARTURAS DUBICKAS

Abstract

Let T'(x) = 14+z+2>+25+... be the generating function of the Thue-Morse sequence.
We show that for any coprime nonzero integers a € Z and b € N satisfying b > a? the
irrationality exponent of T'(a/b) does not exceed (2logb — 2log |a|)/(logb — 2log |al). We
also prove that infinitely many partial quotients of the number 7'(+1/b), where b > 2 is
an integer, lie in the set {¢c — 1, ¢} for some integer ¢ = ¢(£1,b) > 2. For instance, the
continued fraction of T'(—1/3) has infinitely many partial quotients smaller than or equal
to 3. In passing, we obtain the following Lagrange type result: if for an irrational number
a whose continued fraction expansion has only finitely many partial quotients smaller than
or equal to t — 1, where ¢t > 2 is an integer, and some coprime integers p, g, where q is large
enough, we have |a — p/q| < (t — 1)/t¢® then p/q is a convergent to cv.
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grange’s theorem.
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1 Introduction

Let € be a real irrational number. Recall that the irrationality exponent (or irrationality mea-
sure) of £ is the supremum () of real numbers p such that the inequality |€ — p/q| < ¢”* has
infinitely many solutions in rational numbers p/q, where p € Z and ¢ € N. For almost every
real number ¢ its irrationality exponent is equal to 2, but for almost every ‘concrete’ irrational
number ¢ this is very difficult to prove and, usually, only upper bounds on the irrationality ex-
ponent p(§) are known. A very helpful tool in approximation of a number by rational fractions
is its continued fraction expansion, but once again there are not so many numbers £ for which
this expansion is known or at least one can say something nontrivial about it. Recall that the
mth convergent to the continued fraction expansion of

1
§=a9+ ——— =[ao,a1,a2,...],
a1+a2+...
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where a9 € Z and aj,az,--- € N, is the rational number p,,/¢n = [ao,a1,...,an], where
Pm € Z, Gm € N and ged(pm, ¢m) = 1. The numbers a4, as, as, ... are called partial quotients
of this continued fraction.

In this paper we shall investigate some diophantine properties of the Thue-Morse generating
function at rational points. More precisely, let t = (¢,)52, be the Thue-Morse sequence

01101001100101101001011001101001 .. .,

where t,, = 0 if the sum of binary digits of n is even and ¢,, = 1 otherwise. Let also
T(z):=> tia" ' =1l+a+a®+a%+a"+20+ ..
i=0

be the infinite series associated with t. We shall only consider the function T'(z) for z € R
satisfying 0 < |z| < 1. The sequence t is a famous one and appears in many unrelated subjects
(see, e. g., [4] and [5]). Apparently, Mahler was the first who in [14] investigated the arithmetic
properties of values of functions satisfying some functional equations at algebraic points. In
particular, T'(x) is such a function, since

- 1

P(z):=[J1 -2*) = —— — 22T (x) (1.1)

— T

Jj=0

and P(z) = (1 — x)P(2?). The diophantine properties of the numbers T'(1/b), where b > 2 is
an integer, have been recently investigated by Adamczewski, Bugeaud, Cassaigne and Rivoal
in [1], [2], [6].

In this direction we prove that

Theorem 1. For any nonzero integers a € Z and b € N satisfying ged(a,b) = 1 and b > a® the
irrationality exponent of T'(a/b) does not exceed

(2logb — 2log |al)/(logb — 21og |al).

For a = 1 one obtains u(7T'(1/b)) = 2 for each b > 2 which is the result of Bugeaud [6] (note
that we also have p(T(—1/b)) = 2). Theorem 1 follows from the same construction as in [6]
which in turn is based on a result of Allouche, Peyriere, Wen and Wen [3]. For a = %1 one can
get some nontrivial information about the continued fraction expansion of the number T'(a/b):

Theorem 2. Let a = £1 and let b > 2 be an integer. If (a,b) # (—1,2),(—1,3) then for each
sufficiently large n the number b2n_2(b — a)(me1 + 1) is a denominator of some convergent
to T'(a/b) and the continued fraction expansion of T(a/b) has infinitely many partial quotients
in the set {c — 1,c}, where ¢ = c(a,b) := |b/P(b=2)(1 — a/b)3)] and P(x) is defined in (1.1).
Furthermore, the continued fraction of T(—1/3) has infinitely many partial quotients smaller
than or equal to 3.
Here is a table of values for the number
b
P(b=2)(1 —a/b)3

when @ = 1 and 2 < b < 7 with two correct digits

C(a,b) :=
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a 1 1 1 1 1 1
b 2 3 4 5 6 7

C(a,b) | 22.84 | 11.53 | 10.15 | 10.18 | 10.67 | 11.35
(a,b) = [C(a,b)] 22 11 10 10 10 11

and that for a = —1 and 3 < b < 7 (with two correct digits):

a -1 -1 -1 -1 -1
b 3 4 5 6 7

C(a,b) | 1.44 | 2.19 | 3.01 | 3.88 | 4.78
c(a,b) = |C(a,b)] 1 2 3 3 4

Note that C(£1,b) ~ b as b — oo. For instance, we have C(1,100) = 103.07... and
C(—-1,100) =97.06....

The first part of Theorem 2 for a = 1 proves that the fraction p,(b)/g,(b) considered in
Theorem 5.1 of [2] is in its reduced form which was left open in [2]. Of course, this also implies
Conjecture 5.2 of [2], although a better (in fact, best possible) result is already given in [6]. In
the proof of Theorem 2 we shall use arguments similar to those used in [7], where the continued
fraction of the constant T'(1/2)/4 was considered.

To cover the case a/b = —1/3 of Theorem 2 we shall use the following result:

Theorem 3. Suppose « is an irrational number whose continued fraction exrpansion has only
finitely many partial quotients smaller than or equal to t — 1, where t > 2 is an integer. If for
some coprime integers p,q, where ¢ > 0 is large enough, we have

t-1
‘a - g < (1.2)

then p/q is a convergent to c.

Recall that the classical Lagrange’s theorem asserts that if |a — p/q| < 1/2¢® then p/q is a
convergent to a, so Theorem 3 weakens its assumption for each t > 3.

We will also show that the constant (¢t — 1)/t in Theorem 3 is best possible, namely, there
exists an irrational number o whose continued fraction expansion has partial quotients greater
than or equal to ¢ such that the inequality (1.2) holds for infinitely many rational fractions p/q
which are not convergents to a.. (More precisely, we will take (p,q) = (Pm + Pm—1,4m + Gm-1),
where p,,/qm is the mth convergent to «.) Because of this, the pair (a,b) = (—1,2) is an
exception in Theorem 2. Indeed, since C'(—1,2) < 1, by the formula (6.2) below, for T'(—1/2)
and the rational fractions p/q = p,(—1,2)/qn(—1,2) we only have |T(—1/2) —p/q| < co/q* with
some cg > 1. Thus, using the methods of this paper, we cannot say anything about the partial
quotients of T(—1/2), since Theorem 3 cannot be applied to a« = T'(—1/2) and some ¢ € N.

In the next section we give the proof of Theorem 3. In Section 3 we give some identities and
analytical estimates. Section 4 is devoted to some arithmetical results. Finally, in Sections 5
and 6 we complete the proofs of Theorems 1 and 2, respectively.
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2 Continued fractions

Below, we shall use the following standard lemma (see, e. g., [15]):

Lemma 1. Let o = [ag,a1,0az,...] be an irrational number with convergents (Dm/qm)oo—-
Then for each m > 0 we have

()™

@ = Py = ——————
AmQOm+1 + Gm—1
(_1)7n
o ([@amat1s@mi2s Gmiss---] + [0, @ms @m_1, .-, 01])Gm’
where Qm41 := [Am41s Gmt2, Gt 3y - - -] -

The following result was first proved by Fatou (see [11], [12], p. 16 and also [9], [10], [16] for
more recent work on this problem):

Lemma 2. Suppose « is an irrational number with convergents (pm,/qm)Se—g- If for two coprime
integers p € Z and q > 2 we have
P 1
o<t
q q
then p = pm + 0pm—1 and ¢ = ¢ + 0¢m—1 for some m € N and some 0 € {—1,0,1}.
Proof of Theorem 3: Assume that p/q is not a convergent to a, namely, g # ¢, for m € N
(otherwise there is nothing to prove). We need to show that in two cases (p,q) = (Pm+t1 —
Py Gm+1 — gm) and (p, @) = (Pm + Pm—1,dm + @m—1) with m € N that are possible by Lemma 2

the stronger bound (1.2) on |a — p/q| of the theorem leads to a contradiction.
Indeed, as

Pm+1 + (1 - am+1)pm = Qm+-1Pm + Pm—-1 + (1 - am—i—l)pm = DPm + Pm—1

(and, similarly, ¢m+1 + (1 — @Gmt1)@m = Gm + @m—1), in order to combine these two cases into
one we may assume that for some nonnegative integer m

D =DPm+1 +Dm:s 4= Gms1 +Llgm

with £ = —1 or £ = 1 — @41, where a,,+1 = 2. Then, by Lemma 1, ¢ni+1 = Gmy1Gm + Gm-1
and Qi1 = mt1 + 1/a@m42, we find that

(=pm+t n (=nm
Am+1Cm+2 + dm AmOm+1 T ¢m—1
(=1)m+! n (=nm
G102+ Gm G 1@m + Gm—1 + G/ 2
(=)™ = Launga)

g — p = (¢m+1 + lgm)a — (Pmt1 + lpm) =

qm+1 am+2 + dm
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Now, from |ga —p| < (t —1)/tq = (t — 1) /t(gma1 + Lqm) (see (1.2)) it follows that

(t - 1)(qm+1am+2 + (Im)
t(Qm+1 + &Im)

L+ [amye = [1 = Lam o] = [ga — pl(gmi10mi2 + gm) <

)

where { = —1 or { =1 — @, 41 and @41 = 2. Thus

t(lamy2 + 1) (gm+1 = [¢gm) < (¢ = 1)(@mt10m+2 + Gm).-
Dividing by ¢,,, we find that
t—1> (t([llomz + 1) = (t = Dems2)gmer/gm — tHe|([fomy2 + 1)
The coefficient for ¢;,+1/¢m on the right hand side is positive, so, using the inequality g, +1/¢m >
Gm+1, We further obtain
t=1> (t([llomyz + 1) = (t = Damyz)amrr — He|([fomy2 + 1)
= (tllams1 — (t = Vamsr — tH*)tmya + tama — t|f].
Next, let us write this inequality in the form
(1614 1)t =1~ tamir > {amsr — (= Dapsr — H)am 2. (2.1)

By the condition of the theorem, a,,+1 = ¢, since ¢ = ¢m+t1 + €gm > Gm is large enough and so
m is large enough.

For ¢ = —1, the left hand side of (2.1) is 2t — 1 —ta,41 <2t —1—12 = —(t —1)2 < 0,
whereas its right hand side is nonegative in view of

tam+1 — (t — 1)am+1 —t= Am+1 — t 2 0

and @42 > 0. Therefore, (2.1) cannot hold. Similarly, for £ = 1 — a,,+1, the the left hand side
of (2.1) is equal to —1, but the right hand side is nonnegative in view of

t(am_H — l)CLmJ,_l — (t — l)CLmJ,_l — t(am+1 — 1)2 = t(am+1 — 1) — (t — 1)am+1
=amy1 — 1 =0,

s0 (2.1) cannot hold too. This completes the proof of Theorem 3.

Finally, to show that the constant (t — 1)/t of Theorem 3 is best possible we consider «
whose continued fraction expansion is such that for infinitely many m € N we have a,,+1 =t
and the neighboring partial quotients a,,, a2 both tend to infinity as m — oco. Put p =
P+t — (@mt1 — Dpm = D + Pt and ¢ = G + gy for those m. Note that ged(p,q) = 1,
because ged(p, q) divides |pgm — qPm| = |Pm—19m — ¢m—1Pm| = 1. Therefore, p/q is not a
convergent of a. As above, using ¢m+1 = dm+1¢m + Gm-1 = t¢m + ¢m—1, We obtain

ga—p= (=)™ (1 + (ams1 — Dams2) _ (=)™t —14+1/ami2) .
m+10m+2 + qm (t+1/ami2)(q@ = Gm—1) + Gm-1
Thus
¢*la—p/al = =14 1/oms

t + 1/a7rL+2 + (1 —t— 1/am+2)Qm—1/q
tends to (¢t — 1)/t as m — oo, since the quantities ¢m—1/9 < ¢m-1/0m < 1/am and 1/am10 <
1/am+2 both tend to zero as m — oo.
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3 Analytical results

Set
2" —1 } 2" -1 )
sp(x) == Z tix'™! and 3,(x) = Z (1 —t)at 1.
i=0 1=0
Then B
Sn(x) +3 (x)::E_l—|—1—|—ac—|—~~—&—:r2"_2:i (3.1)
n n x(l _ x)? *
Snp1(2) = sp(x) + 2275, (2), (3.2)
sn(x) — 5 *flﬁlfx (3.3)
n n - T : 7 :
and

T(x) = sp(z) + :EQTLEn(m) + x2‘2"§n(m) + x3‘2"sn(x) +... (3.4)

for each n € N. The pattern of s, and S, in $,5,5,55, ... in (3.4) is the same as that of 0 and
1 in the original sequence t. Using (3.1) we find that

n n n 1— 222" 2"t
Ro(z) i=sp(2) + (2% + 272" +23% +..)35,(z) = Wsn(m) Tz " (3.5)
Therefore, by (3.3),
T(z) — Rp(z) = (sp(x) — 5p(2)) (22" + 252" + 292" 4 282" 292" + )
n—1
=—(@® T 42”2 428 ) T - 2.
7=0
Hence, putting
n—1
Py(z) =[] —2%), (3.6)
7=0
we obtain o1
n : - Pn
2P )] < T () ~ Bala)] < T (3.7

1—22"
for each x € R satisfying 0 < |z| < 1.
In [6] it was shown that

Lemma 3. For each k € N and each m > 0 there are polynomials Py, m(x) € Z[x] of degree at
most 2™k — 1 and Qrm(x) € Z[z] of degree at most 2™k such that

Pk,m(.’t) | |2m+1k

P@) = @)
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for every x # 0 satisfying |x| < 1/2, where the constants in < depend on k only. (Recall that
f = g if there are two positive constants ¢1 and ¢y such that c1g < f < cag.) Furthermore, the
integers Qrm = b> FQp.m(a/b), where a € Z\ {0}, b € N and |a/b| < 1/2, satisfy

- 12"k
qk,m = b )

where the constants in =< depend on k only.

4 Arithmetical results

Put F,(a,b) :=b*" +a®" and let (k,)5%; be a sequence defined by k; := 1 and

n—1

ki1 o= (02" — a2 Dk + a2 = (Fusy(a,b) — 202" Yk 4+ a2 (4.1)
forn=1,2,.... Then
Lemma 4. For any integers a and b satisfying 0 < |a| < b and ged(a,b) = 1 we have

2
- Sn(a/b) _ b2k,

1—(a/b)"  (b—a)F,_1(a,b)’

Furthermore, the fraction on the right hand side is in its reduced form for each n € N.
Proof: Put for brevity F,, for F},(a,b). Note that for n = 1 we have s;(x) = 1. Hence
1 b2 b2k, b2k,

T1-(a/b)? B-a2 (b—a)bta) (b-a)Fy

T1

is in its reduced form in view of ged(b?,b? — a?) = 1. Assume that the assertion of the lemma
holds for some n € N. Then, by (3.1) and (3.2), we obtain

o san(a/b) _ sa(a/b) + (a/b)*" Su(a/b)
T (a/b)2 1— (a/b)2"*"
__sn(a/b) (a/b)*" "
1+ (a/b)* (1 —a/b)(1+ (a/b)*")
_ a1 —(a/b)*") N (a/b)*
1+ (a/b)* (1 —a/b)(1+ (a/b)*")
(B —2a2") a2
B F, (b—a)F,’

b2n—1 2'n.—1)

Hence, using equality F,, — 2a?" = ( —a F,_1 and the induction hypothesis on r,, we

find that
(b—a)Fyrpi1 = rn(b—a)(F, —2a%") + a*" ~1b?
b2k,

(T T Q) (0" — 0¥ ) Fo + 0 T = Bk
n—
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in view of (4.1). This yields r,,+1 = bk, +1/(b—a)F,, which is the required inequality for n+ 1.
It remains to prove that ged(b?kp+1, (b — a)F,) = 1. Observe that

Qakni1 — Fy = 2akn(Fp_y — 2a>" ) + 24%" — F,
= 2ak,(Fp_1 —2a%" ) — (0¥ —a®")
= (2aky — Fp_1)(Fu_y — 22"
(
+Fy 1 (Fyq—2a2" ) = (0" —a?")

n—1

= (2ak, — Fy_1)(Fn_1 — 20" )
= (2akn — Fn—l)(b — a)F0F1 N Fn_Q.

Applying this inequality for n, etc. we see that the right hand side is equal to (2ak; — Fy)(b —
a)"Fy F % F,_y. Hence

2akni1 — Fp = —(b—a)" T FP EPT2LF, . (4.2)

Assume that there is a prime number p which divides both %k, ;1 and (b — a)F,. Clearly,
if p|b then p does not divide neither b — a nor F,,. Next, suppose that p|k,11.
Observe that
ged(V®” —a®" F,) =1 (4.3)
for any integers 0 < m < n, because a and b are coprime. In particular, (4.3) implies that b —a
and F,, are coprime. Assume first that p|(b—a). Then equality (4.2) combined with p|k, 41 yields
p|Fn, a contradiction. Otherwise, when p|F,,, equality (4.2) (combined with (4.3)) shows that p
must divide some F,,, with 0 < m < n—2. Then p also divides Fy, (2" —a2") = 2" —a2""",
which contradicts to (4.3). 0

Lemma 5. For any integers a and b satisfying 0 < |a| < b and ged(a,b) =1 the fraction

(b*" —2a*" k, +a*" "'F,_,
(b - a)b2n_2Fn71

R,(a/b) = (4.4)

is in its reduced form for each n € N.
Proof: Indeed, by (3.5) and Lemma 4, we have

. R Ut Ul R i

—(1-2 2 (a/ = -

Rula/b) = (1= 2a/b) )+ e = G ey (o )i
(b —2a%" kp, +a* ~'F,_;

(b — a)bQ"*QFn_l ’

which implies (4.4). What is left is to show that for each n € N

ged(bn, (b—a)b? "2F,_1) = 1, (4.5)
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where £, := (b*" — 2a*" )k, + a®" ~'F,_;. In all what follows we assume that n > 2, because
for n = 1 the numbers ¢; = b — a? + ab and (b — a)b* 2Fy = b? — a? are coprime in view of
ged(a,b) = 1.

For a contradiction assume that for some positive integer n > 2 a prime number p divides
both £, = (b*" — 2a®" )k, +a® ~'F,_; and (b —a)b*" ~%F,_;. We will consider three cases

(i) pl(b—a);
(i) plb;
(i) p|Fas.
In case (i), the number ¢,, = (b*" — 24" )k,, + a®" ~'F,_; modulo p is equal to

n n n—1__ n n—1__
_a2 kn+2a2 +2 1:a2 +2 1

in view of k, = a2" ! (mod (b— a)). So £, is not divisible by p.
In case (ii), £, modulo p is equal to

n n n—1 n n—1
—2a% "k, +a* T =0 (0 ! - 2k,).

As pta, it remains to prove that ¢, := 2k,, — a2" "'~ is not divisible by p. From (4.1) we derive
that

tn1 = 2kni1 — a7t = (bz"f1 — aQTH)(tn + a2n71_1) 42"t

n—1 n—1 n—1 on—1_
=0 —a* D, +b* d? L

Hence t5 = 2b — a = —a (mod p) and t,41 = —a?"
piitn.

Finally, in case (iii), the number £, modulo p is equal to —a®"k,, because p divides b>" —

t, (mod p) for each n > 2. This implies

a?" = n,l(an_1 - azn_l). By Lemma 4, the numbers k,, and F,,_; are coprime. Since Fj,_;
and a are coprime too, we conclude that p 1 ¢,,. 0

The following lemma is a corollary of Lemma 4.1 in [2]:

Lemma 6. Let 6 > 0, 0 > 1 and & be real numbers. If there is a sequence p,/qn, of rational
numbers and some positive constants cg, c1,co such that

Gn < Gni1 < coq’)

and
b ‘ _bPn| o G
~ ~
q%—i_é dn q711+5
for each n = ng then
6+ 1)0
u(e) < 018

4]
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5 Proof of Theorem 1

Set « := P(a/b). By (1.1), we have u(T(a/b)) = pu(a). Evidently, b > a? implies |a/b| < 1/2.
So, by Lemma 3 applied to x = a/b, we obtain

m+1
|05 7pk,m/Qk,m| = |a/b|2 k;, (51)

where py p, = bzmkPkm(a/b) €L, Qi = meka,m(a/b) €N, aeZ\{0}, and
Qoo = b2"F. (5.2)

Now, as in [6], fix K € N and consider an increasing sequence Q = (Qx )2, C N composed
of all integers g ,,, with k odd in the range 1 < k < 2% — 1 and m > mo(K). It is easy to see
that if

{ay<az<az<..}={2"k | k=1,...,25 =1, m=mo(K),mo(K)+1,...},

then a,1 < (1 +2'"%)a, for each sufficiently large n (see Lemma 2 in [6]). By (5.2), the nth
element of the sequence Q, namely, @k ,, is approximately b*~. Hence

Qrn < Qi < Q2T (5.3)

for each sufficiently large n. Utilizing |a/b| = |a|/b = blo8lel/1o8b=1 and (5.2), we obtain

m+1p —2(1—1 log b
|(l/b|2 qu,ni oglal/log )'

Thus, by (5.1), there are Pk ,, € Z (corresponding to Qk ,) such that

—2(1-1 log b
& = Prc o /Quen] = QN T8I/ 1080)

where the constant in < depends on K only. Now, by (5.3) and Lemma 6 with § := 1 —
2log |a|/logb > 0 and 6 := 1 + 27 5+2 we deduce that

(64 1)

_ 2logb — 2log |a
pla) < CED0 (g4 g2l = 2 logla]

logb — 2log|a|

Letting K — oo, we arrive to the required result.

6 Proof of Theorem 2
Suppose a = £1, b > 2 and n > 2. Inserting = a/b into (3.7) we obtain

=24 Py (a/b)|

b= Pa(a/b)] < [T(a/b) = Ru(a/b)| < —— "
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By (3.6),
nt o (I—a/b) H?i1(1_b_2j>
a/b)=(1l—-a —b) = ] A
Pty = (@=efy 1O =070 = =g 1wy
(1—a/l)PO7?)
I
thus

-32"+1(1 _ —2 a " s, .
S () - ()| < i o

By Lemma 5, the denominator of Ry, (a,b) = pn(a,b)/qn(a,b) is

271,71

gn(a,b) := (b—a)b® 2F,_; =¥ 2(b—a)(*" +1).
As gn(a,b) ~ b32" " =1(1 — a/b) for n — oo, using (6.1), we find that
n 7b 1
nla,b2|T(asp) - 22180 (6.2)

qn(a,b) C(a,b) — ¢

for each € > 0 and each n > n(e). This is less than 1/2 for each pair (a,b) (see the table in
Section 1), where a = £1 and (a,b) # (—1,2),(—1,3). So pn(a,b)/qn(a,b) is a convergent to
T'(a/b) for each sufficiently large n, namely, p,(a,b)/q.(a,b) = pm/qm, where m = m(n) and
Pm/Gm is the mth convergent to T'(a/b) = [ag, a1, as,...].

On the other hand, as

an(a,0)2 =32 "2(1 —a/b)2(1+ 672" )2 > 32" ~2(1 — o/b)2P(b™2"),
from (6.1) we find that

) Pm| 9 pn(a,b) (1—a/b)*P(b~2) 1
9m T(a/b)_qim‘ _QR(a’b) ’T<a/b)_ qn(a/b) > b - C’(a,b)

Combining this with (6.2) and applying Lemma 1 we obtain

C(a,b) — € < [amt1, Gmt2, A3, -] + [0, Gy am—1, - .., a1] < C(a,b)
for each of those m. Since
Am41 < [am+1, U425 Ay 43, - - ] + [O,Clm, App—1y - - - ,al] < Qm+1 + 2,

it follows that C(a,b) — 2 — € < am41 < C(a,b). As C(a,b) ¢ Q, by selecting e small enough,
we obtain a1 € {c—1,c}, where ¢ = |C(a,b)], which completes the proof of the theorem for
(av b) 7é (71, 2)7 (71, 3)

In case a/b = —1/3, we have C(—1,3) = 81/64P(1/9) = 1.44.... Assume that T(—1/3) =
[ag, a1, as,...] has only finitely many partial quotients smaller than or equal to 3. Then, by
Theorem 3 with ¢ = 4 and (6.2) with a = —1, b = 3, we find that p,(—1,3)/¢,(—1,3) is a
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convergent to T'(—1/3) for n large enough, i.e. p,(—1,3)/¢.(—1,3) is equal to p,,/¢m, where
m = m(n) and pn,/qm is the mth convergent to T(—1/3). As above, using Lemma 1, we derive
that

Amt1 < [@ma1, Gmt2, Gmts, - | + [0, amy 1, ..., a1] < C(=1,3) = 1.44....

It follows that a,,+1 = 1 for each of those m, which contradicts to our assumption.
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