On the approximation of the Thue-Morse generating sequence

by
Artūras Dubickas

Abstract

Let $T(x)=1+x+x^{3}+x^{6}+\ldots$ be the generating function of the Thue-Morse sequence. We show that for any coprime nonzero integers $a \in \mathbb{Z}$ and $b \in \mathbb{N}$ satisfying $b>a^{2}$ the irrationality exponent of $T(a / b)$ does not exceed $(2 \log b-2 \log |a|) /(\log b-2 \log |a|)$. We also prove that infinitely many partial quotients of the number $T(\pm 1 / b)$, where $b \geqslant 2$ is an integer, lie in the set $\{c-1, c\}$ for some integer $c=c(\pm 1, b) \geqslant 2$. For instance, the continued fraction of $T(-1 / 3)$ has infinitely many partial quotients smaller than or equal to 3 . In passing, we obtain the following Lagrange type result: if for an irrational number α whose continued fraction expansion has only finitely many partial quotients smaller than or equal to $t-1$, where $t \geqslant 2$ is an integer, and some coprime integers p, q, where q is large enough, we have $|\alpha-p / q|<(t-1) / t q^{2}$ then p / q is a convergent to α.

Key Words: Thue-Morse sequence, irrationality measure, continued fraction, Lagrange's theorem.
2010 Mathematics Subject Classification: Primary 11J04;
Secondary 11J70, 11J82.

1 Introduction

Let ξ be a real irrational number. Recall that the irrationality exponent (or irrationality measure) of ξ is the supremum $\mu(\xi)$ of real numbers μ such that the inequality $|\xi-p / q|<q^{-\mu}$ has infinitely many solutions in rational numbers p / q, where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. For almost every real number ξ its irrationality exponent is equal to 2 , but for almost every 'concrete' irrational number ξ this is very difficult to prove and, usually, only upper bounds on the irrationality exponent $\mu(\xi)$ are known. A very helpful tool in approximation of a number by rational fractions is its continued fraction expansion, but once again there are not so many numbers ξ for which this expansion is known or at least one can say something nontrivial about it. Recall that the m th convergent to the continued fraction expansion of

$$
\xi=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}=\left[a_{0}, a_{1}, a_{2}, \ldots\right]
$$

where $a_{0} \in \mathbb{Z}$ and $a_{1}, a_{2}, \cdots \in \mathbb{N}$, is the rational number $p_{m} / q_{m}=\left[a_{0}, a_{1}, \ldots, a_{m}\right]$, where $p_{m} \in \mathbb{Z}, q_{m} \in \mathbb{N}$ and $\operatorname{gcd}\left(p_{m}, q_{m}\right)=1$. The numbers $a_{1}, a_{2}, a_{3}, \ldots$ are called partial quotients of this continued fraction.

In this paper we shall investigate some diophantine properties of the Thue-Morse generating function at rational points. More precisely, let $\mathbf{t}=\left(t_{n}\right)_{n=0}^{\infty}$ be the Thue-Morse sequence

$$
01101001100101101001011001101001 \ldots,
$$

where $t_{n}=0$ if the sum of binary digits of n is even and $t_{n}=1$ otherwise. Let also

$$
T(x):=\sum_{i=0}^{\infty} t_{i} x^{i-1}=1+x+x^{3}+x^{6}+x^{7}+x^{10}+\ldots
$$

be the infinite series associated with \mathbf{t}. We shall only consider the function $T(x)$ for $x \in \mathbb{R}$ satisfying $0<|x|<1$. The sequence \mathbf{t} is a famous one and appears in many unrelated subjects (see, e. g., [4] and [5]). Apparently, Mahler was the first who in [14] investigated the arithmetic properties of values of functions satisfying some functional equations at algebraic points. In particular, $T(x)$ is such a function, since

$$
\begin{equation*}
P(x):=\prod_{j=0}^{\infty}\left(1-x^{2^{j}}\right)=\frac{1}{1-x}-2 x T(x) \tag{1.1}
\end{equation*}
$$

and $P(x)=(1-x) P\left(x^{2}\right)$. The diophantine properties of the numbers $T(1 / b)$, where $b \geqslant 2$ is an integer, have been recently investigated by Adamczewski, Bugeaud, Cassaigne and Rivoal in [1], [2], [6].

In this direction we prove that
Theorem 1. For any nonzero integers $a \in \mathbb{Z}$ and $b \in \mathbb{N}$ satisfying $\operatorname{gcd}(a, b)=1$ and $b>a^{2}$ the irrationality exponent of $T(a / b)$ does not exceed

$$
(2 \log b-2 \log |a|) /(\log b-2 \log |a|)
$$

For $a=1$ one obtains $\mu(T(1 / b))=2$ for each $b \geqslant 2$ which is the result of Bugeaud [6] (note that we also have $\mu(T(-1 / b))=2)$. Theorem 1 follows from the same construction as in [6] which in turn is based on a result of Allouche, Peyrière, Wen and Wen [3]. For $a= \pm 1$ one can get some nontrivial information about the continued fraction expansion of the number $T(a / b)$:

Theorem 2. Let $a= \pm 1$ and let $b \geqslant 2$ be an integer. If $(a, b) \neq(-1,2),(-1,3)$ then for each sufficiently large n the number $b^{2^{n}-2}(b-a)\left(b^{2^{n-1}}+1\right)$ is a denominator of some convergent to $T(a / b)$ and the continued fraction expansion of $T(a / b)$ has infinitely many partial quotients in the set $\{c-1, c\}$, where $\left.c=c(a, b):=\left\lfloor b / P\left(b^{-2}\right)(1-a / b)^{3}\right)\right\rfloor$ and $P(x)$ is defined in (1.1). Furthermore, the continued fraction of $T(-1 / 3)$ has infinitely many partial quotients smaller than or equal to 3 .

Here is a table of values for the number

$$
C(a, b):=\frac{b}{P\left(b^{-2}\right)(1-a / b)^{3}}
$$

when $a=1$ and $2 \leqslant b \leqslant 7$ with two correct digits

a	1	1	1	1	1	1
b	2	3	4	5	6	7
$C(a, b)$	22.84	11.53	10.15	10.18	10.67	11.35
$c(a, b)=\lfloor C(a, b)\rfloor$	22	11	10	10	10	11

and that for $a=-1$ and $3 \leqslant b \leqslant 7$ (with two correct digits):

a	-1	-1	-1	-1	-1
b	3	4	5	6	7
$C(a, b)$	1.44	2.19	3.01	3.88	4.78
$c(a, b)=\lfloor C(a, b)\rfloor$	1	2	3	3	4

Note that $C(\pm 1, b) \sim b$ as $b \rightarrow \infty$. For instance, we have $C(1,100)=103.07 \ldots$ and $C(-1,100)=97.06 \ldots$.

The first part of Theorem 2 for $a=1$ proves that the fraction $p_{n}(b) / q_{n}(b)$ considered in Theorem 5.1 of [2] is in its reduced form which was left open in [2]. Of course, this also implies Conjecture 5.2 of [2], although a better (in fact, best possible) result is already given in [6]. In the proof of Theorem 2 we shall use arguments similar to those used in [7], where the continued fraction of the constant $T(1 / 2) / 4$ was considered.

To cover the case $a / b=-1 / 3$ of Theorem 2 we shall use the following result:
Theorem 3. Suppose α is an irrational number whose continued fraction expansion has only finitely many partial quotients smaller than or equal to $t-1$, where $t \geqslant 2$ is an integer. If for some coprime integers p, q, where $q>0$ is large enough, we have

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|<\frac{t-1}{t q^{2}} \tag{1.2}
\end{equation*}
$$

then p / q is a convergent to α.
Recall that the classical Lagrange's theorem asserts that if $|\alpha-p / q|<1 / 2 q^{2}$ then p / q is a convergent to α, so Theorem 3 weakens its assumption for each $t \geqslant 3$.

We will also show that the constant $(t-1) / t$ in Theorem 3 is best possible, namely, there exists an irrational number α whose continued fraction expansion has partial quotients greater than or equal to t such that the inequality (1.2) holds for infinitely many rational fractions p / q which are not convergents to α. (More precisely, we will take $(p, q)=\left(p_{m}+p_{m-1}, q_{m}+q_{m-1}\right)$, where p_{m} / q_{m} is the m th convergent to α.) Because of this, the pair $(a, b)=(-1,2)$ is an exception in Theorem 2. Indeed, since $C(-1,2)<1$, by the formula (6.2) below, for $T(-1 / 2)$ and the rational fractions $p / q=p_{n}(-1,2) / q_{n}(-1,2)$ we only have $|T(-1 / 2)-p / q|<c_{0} / q^{2}$ with some $c_{0}>1$. Thus, using the methods of this paper, we cannot say anything about the partial quotients of $T(-1 / 2)$, since Theorem 3 cannot be applied to $\alpha=T(-1 / 2)$ and some $t \in \mathbb{N}$.

In the next section we give the proof of Theorem 3. In Section 3 we give some identities and analytical estimates. Section 4 is devoted to some arithmetical results. Finally, in Sections 5 and 6 we complete the proofs of Theorems 1 and 2, respectively.

2 Continued fractions

Below, we shall use the following standard lemma (see, e. g., [15]):
Lemma 1. Let $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ be an irrational number with convergents $\left(p_{m} / q_{m}\right)_{m=0}^{\infty}$. Then for each $m \geqslant 0$ we have

$$
\begin{aligned}
q_{m} \alpha-p_{m} & =\frac{(-1)^{m}}{q_{m} \alpha_{m+1}+q_{m-1}} \\
& =\frac{(-1)^{m}}{\left(\left[a_{m+1}, a_{m+2}, a_{m+3}, \ldots\right]+\left[0, a_{m}, a_{m-1}, \ldots, a_{1}\right]\right) q_{m}}
\end{aligned}
$$

where $\alpha_{m+1}:=\left[a_{m+1}, a_{m+2}, a_{m+3}, \ldots\right]$.
The following result was first proved by Fatou (see [11], [12], p. 16 and also [9], [10], [16] for more recent work on this problem):

Lemma 2. Suppose α is an irrational number with convergents $\left(p_{m} / q_{m}\right)_{m=0}^{\infty}$. If for two coprime integers $p \in \mathbb{Z}$ and $q \geqslant 2$ we have

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}}
$$

then $p=p_{m}+\theta p_{m-1}$ and $q=q_{m}+\theta q_{m-1}$ for some $m \in \mathbb{N}$ and some $\theta \in\{-1,0,1\}$.
Proof of Theorem 3: Assume that p / q is not a convergent to α, namely, $q \neq q_{m}$ for $m \in \mathbb{N}$ (otherwise there is nothing to prove). We need to show that in two cases $(p, q)=\left(p_{m+1}-\right.$ $\left.p_{m}, q_{m+1}-q_{m}\right)$ and $(p, q)=\left(p_{m}+p_{m-1}, q_{m}+q_{m-1}\right)$ with $m \in \mathbb{N}$ that are possible by Lemma 2 the stronger bound (1.2) on $|\alpha-p / q|$ of the theorem leads to a contradiction.

Indeed, as

$$
p_{m+1}+\left(1-a_{m+1}\right) p_{m}=a_{m+1} p_{m}+p_{m-1}+\left(1-a_{m+1}\right) p_{m}=p_{m}+p_{m-1}
$$

(and, similarly, $q_{m+1}+\left(1-a_{m+1}\right) q_{m}=q_{m}+q_{m-1}$), in order to combine these two cases into one we may assume that for some nonnegative integer m

$$
p=p_{m+1}+\ell p_{m}, \quad q=q_{m+1}+\ell q_{m}
$$

with $\ell=-1$ or $\ell=1-a_{m+1}$, where $a_{m+1} \geqslant 2$. Then, by Lemma $1, q_{m+1}=a_{m+1} q_{m}+q_{m-1}$ and $\alpha_{m+1}=a_{m+1}+1 / \alpha_{m+2}$, we find that

$$
\begin{aligned}
q \alpha-p & =\left(q_{m+1}+\ell q_{m}\right) \alpha-\left(p_{m+1}+\ell p_{m}\right)=\frac{(-1)^{m+1}}{q_{m+1} \alpha_{m+2}+q_{m}}+\frac{\ell(-1)^{m}}{q_{m} \alpha_{m+1}+q_{m-1}} \\
& =\frac{(-1)^{m+1}}{q_{m+1} \alpha_{m+2}+q_{m}}+\frac{\ell(-1)^{m}}{a_{m+1} q_{m}+q_{m-1}+q_{m} / \alpha_{m+2}} \\
& =\frac{(-1)^{m+1}\left(1-\ell \alpha_{m+2}\right)}{q_{m+1} \alpha_{m+2}+q_{m}}
\end{aligned}
$$

On the approximation of the Thue-Morse generating sequence

Now, from $|q \alpha-p|<(t-1) / t q=(t-1) / t\left(q_{m+1}+\ell q_{m}\right)$ (see (1.2)) it follows that

$$
1+|\ell| \alpha_{m+2}=\left|1-\ell \alpha_{m+2}\right|=|q \alpha-p|\left(q_{m+1} \alpha_{m+2}+q_{m}\right)<\frac{(t-1)\left(q_{m+1} \alpha_{m+2}+q_{m}\right)}{t\left(q_{m+1}+\ell q_{m}\right)}
$$

where $\ell=-1$ or $\ell=1-a_{m+1}$ and $a_{m+1} \geqslant 2$. Thus

$$
t\left(|\ell| \alpha_{m+2}+1\right)\left(q_{m+1}-|\ell| q_{m}\right)<(t-1)\left(q_{m+1} \alpha_{m+2}+q_{m}\right)
$$

Dividing by q_{m}, we find that

$$
t-1>\left(t\left(|\ell| \alpha_{m+2}+1\right)-(t-1) \alpha_{m+2}\right) q_{m+1} / q_{m}-t|\ell|\left(|\ell| \alpha_{m+2}+1\right)
$$

The coefficient for q_{m+1} / q_{m} on the right hand side is positive, so, using the inequality $q_{m+1} / q_{m}>$ a_{m+1}, we further obtain

$$
\begin{aligned}
t-1 & >\left(t\left(|\ell| \alpha_{m+2}+1\right)-(t-1) \alpha_{m+2}\right) a_{m+1}-t|\ell|\left(|\ell| \alpha_{m+2}+1\right) \\
& =\left(t|\ell| a_{m+1}-(t-1) a_{m+1}-t|\ell|^{2}\right) \alpha_{m+2}+t a_{m+1}-t|\ell|
\end{aligned}
$$

Next, let us write this inequality in the form

$$
\begin{equation*}
(|\ell|+1) t-1-t a_{m+1}>\left(t|\ell| a_{m+1}-(t-1) a_{m+1}-t|\ell|^{2}\right) \alpha_{m+2} \tag{2.1}
\end{equation*}
$$

By the condition of the theorem, $a_{m+1} \geqslant t$, since $q=q_{m+1}+\ell q_{m}>q_{m}$ is large enough and so m is large enough.

For $\ell=-1$, the left hand side of (2.1) is $2 t-1-t a_{m+1} \leqslant 2 t-1-t^{2}=-(t-1)^{2} \leqslant 0$, whereas its right hand side is nonegative in view of

$$
t a_{m+1}-(t-1) a_{m+1}-t=a_{m+1}-t \geqslant 0
$$

and $\alpha_{m+2}>0$. Therefore, (2.1) cannot hold. Similarly, for $\ell=1-a_{m+1}$, the the left hand side of (2.1) is equal to -1 , but the right hand side is nonnegative in view of

$$
\begin{aligned}
t\left(a_{m+1}-1\right) a_{m+1}-(t-1) a_{m+1}-t\left(a_{m+1}-1\right)^{2} & =t\left(a_{m+1}-1\right)-(t-1) a_{m+1} \\
& =a_{m+1}-t \geqslant 0
\end{aligned}
$$

so (2.1) cannot hold too. This completes the proof of Theorem 3.
Finally, to show that the constant $(t-1) / t$ of Theorem 3 is best possible we consider α whose continued fraction expansion is such that for infinitely many $m \in \mathbb{N}$ we have $a_{m+1}=t$ and the neighboring partial quotients a_{m}, a_{m+2} both tend to infinity as $m \rightarrow \infty$. Put $p=$ $p_{m+1}-\left(a_{m+1}-1\right) p_{m}=p_{m}+p_{m-1}$ and $q=q_{m}+q_{m-1}$ for those m. Note that $\operatorname{gcd}(p, q)=1$, because $\operatorname{gcd}(p, q)$ divides $\left|p q_{m}-q p_{m}\right|=\left|p_{m-1} q_{m}-q_{m-1} p_{m}\right|=1$. Therefore, p / q is not a convergent of α. As above, using $q_{m+1}=a_{m+1} q_{m}+q_{m-1}=t q_{m}+q_{m-1}$, we obtain

$$
q \alpha-p=\frac{(-1)^{m+1}\left(1+\left(a_{m+1}-1\right) \alpha_{m+2}\right)}{q_{m+1} \alpha_{m+2}+q_{m}}=\frac{(-1)^{m+1}\left(t-1+1 / \alpha_{m+2}\right)}{\left(t+1 / \alpha_{m+2}\right)\left(q-q_{m-1}\right)+q_{m-1}} .
$$

Thus

$$
q^{2}|\alpha-p / q|=\frac{t-1+1 / \alpha_{m+2}}{t+1 / \alpha_{m+2}+\left(1-t-1 / \alpha_{m+2}\right) q_{m-1} / q}
$$

tends to $(t-1) / t$ as $m \rightarrow \infty$, since the quantities $q_{m-1} / q<q_{m-1} / q_{m}<1 / a_{m}$ and $1 / \alpha_{m+2}<$ $1 / a_{m+2}$ both tend to zero as $m \rightarrow \infty$.

3 Analytical results

Set

$$
s_{n}(x):=\sum_{i=0}^{2^{n}-1} t_{i} x^{i-1} \quad \text { and } \quad \bar{s}_{n}(x):=\sum_{i=0}^{2^{n}-1}\left(1-t_{i}\right) x^{i-1}
$$

Then

$$
\begin{gather*}
s_{n}(x)+\bar{s}_{n}(x)=x^{-1}+1+x+\cdots+x^{2^{n}-2}=\frac{1-x^{2^{n}}}{x(1-x)} \tag{3.1}\\
s_{n+1}(x)=s_{n}(x)+x^{2^{n}} \bar{s}_{n}(x) \tag{3.2}\\
s_{n}(x)-\bar{s}_{n}(x)=-\frac{1}{x} \prod_{j=0}^{n-1}\left(1-x^{2^{j}}\right), \tag{3.3}
\end{gather*}
$$

and

$$
\begin{equation*}
T(x)=s_{n}(x)+x^{2^{n}} \bar{s}_{n}(x)+x^{2 \cdot 2^{n}} \bar{s}_{n}(x)+x^{3 \cdot 2^{n}} s_{n}(x)+\ldots \tag{3.4}
\end{equation*}
$$

for each $n \in \mathbb{N}$. The pattern of s_{n} and \bar{s}_{n} in $s_{n} \bar{s}_{n} \bar{s}_{n} s_{n} \ldots$ in (3.4) is the same as that of 0 and 1 in the original sequence \mathbf{t}. Using (3.1) we find that

$$
\begin{equation*}
R_{n}(x):=s_{n}(x)+\left(x^{2^{n}}+x^{2 \cdot 2^{n}}+x^{3 \cdot 2^{n}}+\ldots\right) \bar{s}_{n}(x)=\frac{1-2 x^{2^{n}}}{1-x^{2^{n}}} s_{n}(x)+\frac{x^{2^{n}-1}}{1-x} \tag{3.5}
\end{equation*}
$$

Therefore, by (3.3),

$$
\begin{aligned}
T(x)-R_{n}(x) & =\left(s_{n}(x)-\bar{s}_{n}(x)\right)\left(x^{3 \cdot 2^{n}}+x^{5 \cdot 2^{n}}+x^{6 \cdot 2^{n}}+x^{8 \cdot 2^{n}}+x^{9 \cdot 2^{n}}+\ldots\right) \\
& =-\left(x^{3 \cdot 2^{n}-1}+x^{5 \cdot 2^{n}-1}+x^{6 \cdot 2^{n}-1}+\ldots\right) \prod_{j=0}^{n-1}\left(1-x^{2^{j}}\right)
\end{aligned}
$$

Hence, putting

$$
\begin{equation*}
P_{n}(x):=\prod_{j=0}^{n-1}\left(1-x^{2^{j}}\right) \tag{3.6}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
|x|^{3 \cdot 2^{n}-1}\left|P_{n}(x)\right|<\left|T(x)-R_{n}(x)\right|<\frac{|x|^{3 \cdot 2^{n}-1}\left|P_{n}(x)\right|}{1-x^{2^{n}}} \tag{3.7}
\end{equation*}
$$

for each $x \in \mathbb{R}$ satisfying $0<|x|<1$.
In [6] it was shown that
Lemma 3. For each $k \in \mathbb{N}$ and each $m \geqslant 0$ there are polynomials $P_{k, m}(x) \in \mathbb{Z}[x]$ of degree at most $2^{m} k-1$ and $Q_{k, m}(x) \in \mathbb{Z}[x]$ of degree at most $2^{m} k$ such that

$$
\left|P(x)-\frac{P_{k, m}(x)}{Q_{k, m}(x)}\right| \asymp|x|^{2^{m+1} k}
$$

for every $x \neq 0$ satisfying $|x| \leqslant 1 / 2$, where the constants in \asymp depend on k only. (Recall that $f \asymp g$ if there are two positive constants c_{1} and c_{2} such that $c_{1} g \leqslant f \leqslant c_{2} g$.) Furthermore, the integers $q_{k, m}:=b^{2^{m} k} Q_{k, m}(a / b)$, where $a \in \mathbb{Z} \backslash\{0\}, b \in \mathbb{N}$ and $|a / b| \leqslant 1 / 2$, satisfy

$$
q_{k, m} \asymp b^{2^{m} k}
$$

where the constants in \asymp depend on k only.

4 Arithmetical results

Put $F_{n}(a, b):=b^{2^{n}}+a^{2^{n}}$ and let $\left(k_{n}\right)_{n=1}^{\infty}$ be a sequence defined by $k_{1}:=1$ and

$$
\begin{equation*}
k_{n+1}:=\left(b^{2^{n-1}}-a^{2^{n-1}}\right) k_{n}+a^{2^{n}-1}=\left(F_{n-1}(a, b)-2 a^{2^{n-1}}\right) k_{n}+a^{2^{n}-1} \tag{4.1}
\end{equation*}
$$

for $n=1,2, \ldots$ Then
Lemma 4. For any integers a and b satisfying $0<|a|<b$ and $\operatorname{gcd}(a, b)=1$ we have

$$
r_{n}:=\frac{s_{n}(a / b)}{1-(a / b)^{2^{n}}}=\frac{b^{2} k_{n}}{(b-a) F_{n-1}(a, b)} .
$$

Furthermore, the fraction on the right hand side is in its reduced form for each $n \in \mathbb{N}$.
Proof: Put for brevity F_{n} for $F_{n}(a, b)$. Note that for $n=1$ we have $s_{1}(x)=1$. Hence

$$
r_{1}=\frac{1}{1-(a / b)^{2}}=\frac{b^{2}}{b^{2}-a^{2}}=\frac{b^{2} k_{1}}{(b-a)(b+a)}=\frac{b^{2} k_{1}}{(b-a) F_{0}}
$$

is in its reduced form in view of $\operatorname{gcd}\left(b^{2}, b^{2}-a^{2}\right)=1$. Assume that the assertion of the lemma holds for some $n \in \mathbb{N}$. Then, by (3.1) and (3.2), we obtain

$$
\begin{aligned}
r_{n+1} & =\frac{s_{n+1}(a / b)}{1-(a / b)^{2^{n+1}}}=\frac{s_{n}(a / b)+(a / b)^{2^{n}} \bar{s}_{n}(a / b)}{1-(a / b)^{2^{n+1}}} \\
& =\frac{s_{n}(a / b)}{1+(a / b)^{2^{n}}}+\frac{(a / b)^{2^{n}-1}}{(1-a / b)\left(1+(a / b)^{2^{n}}\right)} \\
& =\frac{r_{n}\left(1-(a / b)^{2^{n}}\right)}{1+(a / b)^{2^{n}}}+\frac{(a / b)^{2^{n}-1}}{(1-a / b)\left(1+(a / b)^{2^{n}}\right)} \\
& =\frac{r_{n}\left(F_{n}-2 a^{2^{n}}\right)}{F_{n}}+\frac{a^{2^{n}-1} b^{2}}{(b-a) F_{n}} .
\end{aligned}
$$

Hence, using equality $F_{n}-2 a^{2^{n}}=\left(b^{2^{n-1}}-a^{2^{n-1}}\right) F_{n-1}$ and the induction hypothesis on r_{n}, we find that

$$
\begin{aligned}
(b-a) F_{n} r_{n+1} & =r_{n}(b-a)\left(F_{n}-2 a^{2^{n}}\right)+a^{2^{n}-1} b^{2} \\
& =\frac{b^{2} k_{n}}{(b-a) F_{n-1}}(b-a)\left(b^{2^{n-1}}-a^{2^{n-1}}\right) F_{n-1}+a^{2^{n}-1} b^{2}=b^{2} k_{n+1}
\end{aligned}
$$

in view of (4.1). This yields $r_{n+1}=b^{2} k_{n+1} /(b-a) F_{n}$, which is the required inequality for $n+1$.
It remains to prove that $\operatorname{gcd}\left(b^{2} k_{n+1},(b-a) F_{n}\right)=1$. Observe that

$$
\begin{aligned}
2 a k_{n+1}-F_{n} & =2 a k_{n}\left(F_{n-1}-2 a^{2^{n-1}}\right)+2 a^{2^{n}}-F_{n} \\
& =2 a k_{n}\left(F_{n-1}-2 a^{2^{n-1}}\right)-\left(b^{2^{n}}-a^{2^{n}}\right) \\
& =\left(2 a k_{n}-F_{n-1}\right)\left(F_{n-1}-2 a^{2^{n-1}}\right) \\
& +F_{n-1}\left(F_{n-1}-2 a^{2^{n-1}}\right)-\left(b^{2^{n}}-a^{2^{n}}\right) \\
& =\left(2 a k_{n}-F_{n-1}\right)\left(F_{n-1}-2 a^{2^{n-1}}\right) \\
& =\left(2 a k_{n}-F_{n-1}\right)(b-a) F_{0} F_{1} \ldots F_{n-2} .
\end{aligned}
$$

Applying this inequality for n, etc. we see that the right hand side is equal to $\left(2 a k_{1}-F_{0}\right)(b-$ a) ${ }^{n} F_{0}^{n-1} F_{1}^{n-2} \ldots F_{n-2}$. Hence

$$
\begin{equation*}
2 a k_{n+1}-F_{n}=-(b-a)^{n+1} F_{0}^{n-1} F_{1}^{n-2} \ldots F_{n-2} . \tag{4.2}
\end{equation*}
$$

Assume that there is a prime number p which divides both $b^{2} k_{n+1}$ and $(b-a) F_{n}$. Clearly, if $p \mid b$ then p does not divide neither $b-a$ nor F_{n}. Next, suppose that $p \mid k_{n+1}$.

Observe that

$$
\begin{equation*}
\operatorname{gcd}\left(b^{2^{m}}-a^{2^{m}}, F_{n}\right)=1 \tag{4.3}
\end{equation*}
$$

for any integers $0 \leqslant m \leqslant n$, because a and b are coprime. In particular, (4.3) implies that $b-a$ and F_{n} are coprime. Assume first that $p \mid(b-a)$. Then equality (4.2) combined with $p \mid k_{n+1}$ yields $p \mid F_{n}$, a contradiction. Otherwise, when $p \mid F_{n}$, equality (4.2) (combined with (4.3)) shows that p must divide some F_{m} with $0 \leqslant m \leqslant n-2$. Then p also divides $F_{m}\left(b^{2^{m}}-a^{2^{m}}\right)=b^{2^{m+1}}-a^{2^{m+1}}$, which contradicts to (4.3).

Lemma 5. For any integers a and b satisfying $0<|a|<b$ and $\operatorname{gcd}(a, b)=1$ the fraction

$$
\begin{equation*}
R_{n}(a / b)=\frac{\left(b^{2^{n}}-2 a^{2^{n}}\right) k_{n}+a^{2^{n}-1} F_{n-1}}{(b-a) b^{2^{n}-2} F_{n-1}} \tag{4.4}
\end{equation*}
$$

is in its reduced form for each $n \in \mathbb{N}$.
Proof: Indeed, by (3.5) and Lemma 4, we have

$$
\begin{aligned}
R_{n}(a / b) & =\left(1-2(a / b)^{2^{n}}\right) r_{n}+\frac{(a / b)^{2^{n}-1}}{1-a / b}=\frac{\left(b^{2^{n}}-2 a^{2^{n}}\right) b^{2} k_{n}}{(b-a) b^{2^{n}} F_{n-1}}+\frac{a^{2^{n}-1}}{(b-a) b^{2^{n}-2}} \\
& =\frac{\left(b^{2^{n}}-2 a^{2^{n}}\right) k_{n}+a^{2^{n}-1} F_{n-1}}{(b-a) b^{2^{n}-2} F_{n-1}},
\end{aligned}
$$

which implies (4.4). What is left is to show that for each $n \in \mathbb{N}$

$$
\begin{equation*}
\operatorname{gcd}\left(\ell_{n},(b-a) b^{2^{n}-2} F_{n-1}\right)=1 \tag{4.5}
\end{equation*}
$$

where $\ell_{n}:=\left(b^{2^{n}}-2 a^{2^{n}}\right) k_{n}+a^{2^{n}-1} F_{n-1}$. In all what follows we assume that $n \geqslant 2$, because for $n=1$ the numbers $\ell_{1}=b^{2}-a^{2}+a b$ and $(b-a) b^{2-2} F_{0}=b^{2}-a^{2}$ are coprime in view of $\operatorname{gcd}(a, b)=1$.

For a contradiction assume that for some positive integer $n \geqslant 2$ a prime number p divides both $\ell_{n}=\left(b^{2^{n}}-2 a^{2^{n}}\right) k_{n}+a^{2^{n}-1} F_{n-1}$ and $(b-a) b^{2^{n}-2} F_{n-1}$. We will consider three cases
(i) $p \mid(b-a)$;
(ii) $p \mid b$;
(iii) $p \mid F_{n-1}$.

In case (i), the number $\ell_{n}=\left(b^{2^{n}}-2 a^{2^{n}}\right) k_{n}+a^{2^{n}-1} F_{n-1}$ modulo p is equal to

$$
-a^{2^{n}} k_{n}+2 a^{2^{n}+2^{n-1}-1}=a^{2^{n}+2^{n-1}-1}
$$

in view of $k_{n} \equiv a^{2^{n-1}-1}(\bmod (b-a))$. So ℓ_{n} is not divisible by p.
In case (ii), ℓ_{n} modulo p is equal to

$$
-2 a^{2^{n}} k_{n}+a^{2^{n}+2^{n-1}-1}=a^{2^{n}}\left(a^{2^{n-1}-1}-2 k_{n}\right)
$$

As $p \nmid a$, it remains to prove that $t_{n}:=2 k_{n}-a^{2^{n-1}-1}$ is not divisible by p. From (4.1) we derive that

$$
\begin{aligned}
t_{n+1}=2 k_{n+1}-a^{2^{n}-1} & =\left(b^{2^{n-1}}-a^{2^{n-1}}\right)\left(t_{n}+a^{2^{n-1}-1}\right)+a^{2^{n}-1} \\
& =\left(b^{2^{n-1}}-a^{2^{n-1}}\right) t_{n}+b^{2^{n-1}} a^{2^{n-1}-1}
\end{aligned}
$$

Hence $t_{2}=2 b-a \equiv-a(\bmod p)$ and $t_{n+1} \equiv-a^{2^{n-1}} t_{n}(\bmod p)$ for each $n \geqslant 2$. This implies $p \nmid t_{n}$.

Finally, in case (iii), the number ℓ_{n} modulo p is equal to $-a^{2^{n}} k_{n}$, because p divides $b^{2^{n}}-$ $a^{2^{n}}=F_{n-1}\left(b^{2^{n-1}}-a^{2^{n-1}}\right)$. By Lemma 4 , the numbers k_{n} and F_{n-1} are coprime. Since F_{n-1} and a are coprime too, we conclude that $p \nmid \ell_{n}$.

The following lemma is a corollary of Lemma 4.1 in [2]:
Lemma 6. Let $\delta>0, \theta \geqslant 1$ and ξ be real numbers. If there is a sequence p_{n} / q_{n} of rational numbers and some positive constants c_{0}, c_{1}, c_{2} such that

$$
q_{n}<q_{n+1} \leqslant c_{0} q_{n}^{\theta}
$$

and

$$
\frac{c_{1}}{q_{n}^{1+\delta}} \leqslant\left|\xi-\frac{p_{n}}{q_{n}}\right| \leqslant \frac{c_{2}}{q_{n}^{1+\delta}}
$$

for each $n \geqslant n_{0}$ then

$$
\mu(\xi) \leqslant \frac{(\delta+1) \theta}{\delta}
$$

5 Proof of Theorem 1

Set $\alpha:=P(a / b)$. By (1.1), we have $\mu(T(a / b))=\mu(\alpha)$. Evidently, $b>a^{2}$ implies $|a / b| \leqslant 1 / 2$. So, by Lemma 3 applied to $x=a / b$, we obtain

$$
\begin{equation*}
\left|\alpha-p_{k, m} / q_{k, m}\right| \asymp|a / b|^{2^{m+1} k} \tag{5.1}
\end{equation*}
$$

where $p_{k, m}:=b^{2^{m} k} P_{k, m}(a / b) \in \mathbb{Z}, q_{k, m}:=b^{2^{m} k} Q_{k, m}(a / b) \in \mathbb{N}, a \in \mathbb{Z} \backslash\{0\}$, and

$$
\begin{equation*}
q_{k, m} \asymp b^{2^{m} k} \tag{5.2}
\end{equation*}
$$

Now, as in [6], fix $K \in \mathbb{N}$ and consider an increasing sequence $\mathcal{Q}=\left(Q_{K, n}\right)_{n=1}^{\infty} \subset \mathbb{N}$ composed of all integers $q_{k, m}$ with k odd in the range $1 \leqslant k \leqslant 2^{K}-1$ and $m \geqslant m_{0}(K)$. It is easy to see that if

$$
\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}=\left\{2^{m} k \mid k=1, \ldots, 2^{K}-1, m=m_{0}(K), m_{0}(K)+1, \ldots\right\}
$$

then $a_{n+1} \leqslant\left(1+2^{1-K}\right) a_{n}$ for each sufficiently large n (see Lemma 2 in [6]). By (5.2), the nth element of the sequence \mathcal{Q}, namely, $Q_{K, n}$, is approximately $b^{a_{n}}$. Hence

$$
\begin{equation*}
Q_{K, n}<Q_{K, n+1}<Q_{K, n}^{1+2^{-K+2}} \tag{5.3}
\end{equation*}
$$

for each sufficiently large n. Utilizing $|a / b|=|a| / b=b^{\log |a| / \log b-1}$ and (5.2), we obtain

$$
|a / b|^{2^{m+1} k} \asymp q_{k, m}^{-2(1-\log |a| / \log b)} .
$$

Thus, by (5.1), there are $P_{K, n} \in \mathbb{Z}$ (corresponding to $\left.Q_{K, n}\right)$ such that

$$
\left|\alpha-P_{K, n} / Q_{K, n}\right| \asymp Q_{K, n}^{-2(1-\log |a| / \log b)}
$$

where the constant in \asymp depends on K only. Now, by (5.3) and Lemma 6 with $\delta:=1-$ $2 \log |a| / \log b>0$ and $\theta:=1+2^{-K+2}$, we deduce that

$$
\mu(\alpha) \leqslant \frac{(\delta+1) \theta}{\delta}=\left(1+2^{-K+2}\right) \frac{2 \log b-2 \log |a|}{\log b-2 \log |a|}
$$

Letting $K \rightarrow \infty$, we arrive to the required result.

6 Proof of Theorem 2

Suppose $a= \pm 1, b \geqslant 2$ and $n \geqslant 2$. Inserting $x=a / b$ into (3.7) we obtain

$$
b^{-3 \cdot 2^{n}+1}\left|P_{n}(a / b)\right|<\left|T(a / b)-R_{n}(a / b)\right|<\frac{b^{-3 \cdot 2^{n}+1}\left|P_{n}(a / b)\right|}{1-b^{-2^{n}}}
$$

By (3.6),

$$
\begin{aligned}
P_{n}(a / b) & =(1-a / b) \prod_{j=1}^{n-1}\left(1-b^{-2^{j}}\right)=\frac{(1-a / b) \prod_{j=1}^{\infty}\left(1-b^{-2^{j}}\right)}{\prod_{j=n}^{\infty}\left(1-b^{-2^{j}}\right)} \\
& =\frac{(1-a / b) P\left(b^{-2}\right)}{P\left(b^{-2^{n}}\right)},
\end{aligned}
$$

thus

$$
\begin{equation*}
\frac{b^{-3 \cdot 2^{n}+1}(1-a / b) P\left(b^{-2}\right)}{P\left(b^{-2^{n}}\right)}<\left|T\left(\frac{a}{b}\right)-R_{n}\left(\frac{a}{b}\right)\right|<\frac{b^{-3 \cdot 2^{n}+1}(1-a / b) P\left(b^{-2}\right)}{\left(1-b^{-2^{n}}\right) P\left(b^{-2^{n}}\right)} \tag{6.1}
\end{equation*}
$$

By Lemma 5, the denominator of $R_{n}(a, b)=p_{n}(a, b) / q_{n}(a, b)$ is

$$
q_{n}(a, b):=(b-a) b^{2^{n}-2} F_{n-1}=b^{2^{n}-2}(b-a)\left(b^{2^{n-1}}+1\right) .
$$

As $q_{n}(a, b) \sim b^{3 \cdot 2^{n-1}-1}(1-a / b)$ for $n \rightarrow \infty$, using (6.1), we find that

$$
\begin{equation*}
q_{n}(a, b)^{2}\left|T(a / b)-\frac{p_{n}(a, b)}{q_{n}(a, b)}\right|<\frac{1}{C(a, b)-\epsilon} \tag{6.2}
\end{equation*}
$$

for each $\epsilon>0$ and each $n \geqslant n(\epsilon)$. This is less than $1 / 2$ for each pair (a, b) (see the table in Section 1), where $a= \pm 1$ and $(a, b) \neq(-1,2),(-1,3)$. So $p_{n}(a, b) / q_{n}(a, b)$ is a convergent to $T(a / b)$ for each sufficiently large n, namely, $p_{n}(a, b) / q_{n}(a, b)=p_{m} / q_{m}$, where $m=m(n)$ and p_{m} / q_{m} is the m th convergent to $T(a / b)=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$.

On the other hand, as

$$
q_{n}(a, b)^{2}=b^{3 \cdot 2^{n}-2}(1-a / b)^{2}\left(1+b^{-2^{n-1}}\right)^{2}>b^{3 \cdot 2^{n}-2}(1-a / b)^{2} P\left(b^{-2^{n}}\right)
$$

from (6.1) we find that

$$
q_{m}^{2}\left|T(a / b)-\frac{p_{m}}{q_{m}}\right|=q_{n}(a, b)^{2}\left|T(a / b)-\frac{p_{n}(a, b)}{q_{n}(a / b)}\right|>\frac{(1-a / b)^{3} P\left(b^{-2}\right)}{b}=\frac{1}{C(a, b)}
$$

Combining this with (6.2) and applying Lemma 1 we obtain

$$
C(a, b)-\epsilon<\left[a_{m+1}, a_{m+2}, a_{m+3}, \ldots\right]+\left[0, a_{m}, a_{m-1}, \ldots, a_{1}\right]<C(a, b)
$$

for each of those m. Since

$$
a_{m+1}<\left[a_{m+1}, a_{m+2}, a_{m+3}, \ldots\right]+\left[0, a_{m}, a_{m-1}, \ldots, a_{1}\right]<a_{m+1}+2
$$

it follows that $C(a, b)-2-\epsilon<a_{m+1}<C(a, b)$. As $C(a, b) \notin \mathbb{Q}$, by selecting ϵ small enough, we obtain $a_{m+1} \in\{c-1, c\}$, where $c=\lfloor C(a, b)\rfloor$, which completes the proof of the theorem for $(a, b) \neq(-1,2),(-1,3)$.

In case $a / b=-1 / 3$, we have $C(-1,3)=81 / 64 P(1 / 9)=1.44 \ldots$ Assume that $T(-1 / 3)=$ $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ has only finitely many partial quotients smaller than or equal to 3 . Then, by Theorem 3 with $t=4$ and (6.2) with $a=-1, b=3$, we find that $p_{n}(-1,3) / q_{n}(-1,3)$ is a
convergent to $T(-1 / 3)$ for n large enough, i.e. $p_{n}(-1,3) / q_{n}(-1,3)$ is equal to p_{m} / q_{m}, where $m=m(n)$ and p_{m} / q_{m} is the m th convergent to $T(-1 / 3)$. As above, using Lemma 1 , we derive that

$$
a_{m+1}<\left[a_{m+1}, a_{m+2}, a_{m+3}, \ldots\right]+\left[0, a_{m}, a_{m-1}, \ldots, a_{1}\right]<C(-1,3)=1.44 \ldots
$$

It follows that $a_{m+1}=1$ for each of those m, which contradicts to our assumption.
Acknowledgement. I thank the referee for pointing out some references related to Theorem 3. This work is supported by grant no. MIP-068/2013/LSS-110000-740 from the Research Council of Lithuania.

References

[1] B. Adamczewski and J. Cassaigne, Diophantine properties of real numbers generated by finite automata, Compos. Math. 142 (2006), pp.1351-pp. 1372.
[2] B. Adamczewski and T. Rivoal, Irrationality measures for some automatic real numbers, Math. Proc. Cambridge Phil. Soc. 147 (2009), pp.659-pp. 678.
[3] J.-P. Allouche, J. Payrière, Z.-X. Wen and Z.-Y. Wen, Hankel determinants of the Thue-Morse sequence, Ann. Inst. Fourier (Grenoble) 48 (1998), pp.1-pp. 27.
[4] J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in: C. Ding, et al. (Eds.), Sequences and their Applications. Proceedings of the International Conference SETA'98, Singapore, December 14-17, 1998, London, Springer, Springer Series in Discrete Mathematics and Theoretical Computer Science, Berlin, 1999, pp.1-pp.16.
[5] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003.
[6] Y. Bugeaud, On the irrationality exponent of the Thue-Morse-Mahler numbers, Ann. Inst. Fourier (Grenoble) 61 (2011), pp.2065-pp. 2076.
[7] Y. Bugeaud and M. Queffélec, On rational approximation of the binary Thue-MorseMahler number, Journal of Integer Sequences 16 (2013), Article 13.2.3, 8 p. (electronic).
[8] E.B. Burger, Exploring the number jungle: A journey into diophantine analysis, Student Mathematical Library 8, Providence, RI: American Mathematical Society, 2000.
[9] A. Dujella, Continued fractions and RSA with small secret exponents, Tatra Mt. Math. Publ. 29 (2004), pp.101-pp. 112.
[10] A. Dujella and B. Ibrahimpašić, On Worley's theorem in Diophantine approximations, Ann. Math. Inform. 35 (2008), pp.61-pp. 73.
[11] P. Fatou, Sur l'approximation des incommenumerables et les series trigonometriques, C. R. Acad. Sci. Paris 139 (1904), pp.1019-pp.1021.
[12] S. LaNG, Introduction to diophantine approximations, Addison-Wesley, Reading, 1966.
[13] L. Lorentzen and H. Waadeland, Continued fractions with applications, Studies in Computational Mathematics 8, Amsterdam: North-Holland, 1992.
[14] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), pp.342-pp.366; corrigendum 103 (1930), pp. 532.
[15] J. Steuding, Diophantine analysis, Discrete Mathematics and its Applications. Boca Raton, FL: Chapman \& Hall/CRC, 2005.
[16] R.T. Worley, Estimating $|\alpha-p / q|$, J. Austral. Math. Soc., Ser. A 31 (1981), pp.202pp. 206 .

Received: 16.05.2013,
Revised: 20.07.2013,
Accepted: 10.01.2014.
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24,

Vilnius LT-03225, Lithuania
Email: arturas.dubickas@mif.vu.lt

