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On the approximation of the Thue-Morse generating sequence
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Abstract

Let T (x) = 1+x+x3 +x6 + . . . be the generating function of the Thue-Morse sequence.
We show that for any coprime nonzero integers a ∈ Z and b ∈ N satisfying b > a2 the
irrationality exponent of T (a/b) does not exceed (2 log b− 2 log |a|)/(log b− 2 log |a|). We
also prove that infinitely many partial quotients of the number T (±1/b), where b > 2 is
an integer, lie in the set {c − 1, c} for some integer c = c(±1, b) > 2. For instance, the
continued fraction of T (−1/3) has infinitely many partial quotients smaller than or equal
to 3. In passing, we obtain the following Lagrange type result: if for an irrational number
α whose continued fraction expansion has only finitely many partial quotients smaller than
or equal to t−1, where t > 2 is an integer, and some coprime integers p, q, where q is large
enough, we have |α− p/q| < (t− 1)/tq2 then p/q is a convergent to α.
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1 Introduction

Let ξ be a real irrational number. Recall that the irrationality exponent (or irrationality mea-
sure) of ξ is the supremum µ(ξ) of real numbers µ such that the inequality |ξ − p/q| < q−µ has
infinitely many solutions in rational numbers p/q, where p ∈ Z and q ∈ N. For almost every
real number ξ its irrationality exponent is equal to 2, but for almost every ‘concrete’ irrational
number ξ this is very difficult to prove and, usually, only upper bounds on the irrationality ex-
ponent µ(ξ) are known. A very helpful tool in approximation of a number by rational fractions
is its continued fraction expansion, but once again there are not so many numbers ξ for which
this expansion is known or at least one can say something nontrivial about it. Recall that the
mth convergent to the continued fraction expansion of

ξ = a0 +
1

a1 + 1
a2+...

= [a0, a1, a2, . . . ],
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where a0 ∈ Z and a1, a2, · · · ∈ N, is the rational number pm/qm = [a0, a1, . . . , am], where
pm ∈ Z, qm ∈ N and gcd(pm, qm) = 1. The numbers a1, a2, a3, . . . are called partial quotients
of this continued fraction.

In this paper we shall investigate some diophantine properties of the Thue-Morse generating
function at rational points. More precisely, let t = (tn)∞n=0 be the Thue-Morse sequence

01101001100101101001011001101001 . . . ,

where tn = 0 if the sum of binary digits of n is even and tn = 1 otherwise. Let also

T (x) :=

∞∑
i=0

tix
i−1 = 1 + x+ x3 + x6 + x7 + x10 + . . .

be the infinite series associated with t. We shall only consider the function T (x) for x ∈ R
satisfying 0 < |x| < 1. The sequence t is a famous one and appears in many unrelated subjects
(see, e. g., [4] and [5]). Apparently, Mahler was the first who in [14] investigated the arithmetic
properties of values of functions satisfying some functional equations at algebraic points. In
particular, T (x) is such a function, since

P (x) :=

∞∏
j=0

(1− x2
j

) =
1

1− x
− 2xT (x) (1.1)

and P (x) = (1 − x)P (x2). The diophantine properties of the numbers T (1/b), where b > 2 is
an integer, have been recently investigated by Adamczewski, Bugeaud, Cassaigne and Rivoal
in [1], [2], [6].

In this direction we prove that

Theorem 1. For any nonzero integers a ∈ Z and b ∈ N satisfying gcd(a, b) = 1 and b > a2 the
irrationality exponent of T (a/b) does not exceed

(2 log b− 2 log |a|)/(log b− 2 log |a|).

For a = 1 one obtains µ(T (1/b)) = 2 for each b > 2 which is the result of Bugeaud [6] (note
that we also have µ(T (−1/b)) = 2). Theorem 1 follows from the same construction as in [6]
which in turn is based on a result of Allouche, Peyrière, Wen and Wen [3]. For a = ±1 one can
get some nontrivial information about the continued fraction expansion of the number T (a/b):

Theorem 2. Let a = ±1 and let b > 2 be an integer. If (a, b) 6= (−1, 2), (−1, 3) then for each

sufficiently large n the number b2
n−2(b − a)(b2

n−1

+ 1) is a denominator of some convergent
to T (a/b) and the continued fraction expansion of T (a/b) has infinitely many partial quotients
in the set {c − 1, c}, where c = c(a, b) := bb/P (b−2)(1 − a/b)3)c and P (x) is defined in (1.1).
Furthermore, the continued fraction of T (−1/3) has infinitely many partial quotients smaller
than or equal to 3.

Here is a table of values for the number

C(a, b) :=
b

P (b−2)(1− a/b)3

when a = 1 and 2 6 b 6 7 with two correct digits
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a 1 1 1 1 1 1
b 2 3 4 5 6 7

C(a, b) 22.84 11.53 10.15 10.18 10.67 11.35
c(a, b) = bC(a, b)c 22 11 10 10 10 11

and that for a = −1 and 3 6 b 6 7 (with two correct digits):

a −1 −1 −1 −1 −1
b 3 4 5 6 7

C(a, b) 1.44 2.19 3.01 3.88 4.78
c(a, b) = bC(a, b)c 1 2 3 3 4

Note that C(±1, b) ∼ b as b → ∞. For instance, we have C(1, 100) = 103.07 . . . and
C(−1, 100) = 97.06 . . . .

The first part of Theorem 2 for a = 1 proves that the fraction pn(b)/qn(b) considered in
Theorem 5.1 of [2] is in its reduced form which was left open in [2]. Of course, this also implies
Conjecture 5.2 of [2], although a better (in fact, best possible) result is already given in [6]. In
the proof of Theorem 2 we shall use arguments similar to those used in [7], where the continued
fraction of the constant T (1/2)/4 was considered.

To cover the case a/b = −1/3 of Theorem 2 we shall use the following result:

Theorem 3. Suppose α is an irrational number whose continued fraction expansion has only
finitely many partial quotients smaller than or equal to t− 1, where t > 2 is an integer. If for
some coprime integers p, q, where q > 0 is large enough, we have∣∣∣α− p

q

∣∣∣ < t− 1

tq2
(1.2)

then p/q is a convergent to α.

Recall that the classical Lagrange’s theorem asserts that if |α− p/q| < 1/2q2 then p/q is a
convergent to α, so Theorem 3 weakens its assumption for each t > 3.

We will also show that the constant (t − 1)/t in Theorem 3 is best possible, namely, there
exists an irrational number α whose continued fraction expansion has partial quotients greater
than or equal to t such that the inequality (1.2) holds for infinitely many rational fractions p/q
which are not convergents to α. (More precisely, we will take (p, q) = (pm + pm−1, qm + qm−1),
where pm/qm is the mth convergent to α.) Because of this, the pair (a, b) = (−1, 2) is an
exception in Theorem 2. Indeed, since C(−1, 2) < 1, by the formula (6.2) below, for T (−1/2)
and the rational fractions p/q = pn(−1, 2)/qn(−1, 2) we only have |T (−1/2)−p/q| < c0/q

2 with
some c0 > 1. Thus, using the methods of this paper, we cannot say anything about the partial
quotients of T (−1/2), since Theorem 3 cannot be applied to α = T (−1/2) and some t ∈ N.

In the next section we give the proof of Theorem 3. In Section 3 we give some identities and
analytical estimates. Section 4 is devoted to some arithmetical results. Finally, in Sections 5
and 6 we complete the proofs of Theorems 1 and 2, respectively.
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2 Continued fractions

Below, we shall use the following standard lemma (see, e. g., [15]):

Lemma 1. Let α = [a0, a1, a2, . . . ] be an irrational number with convergents (pm/qm)∞m=0.
Then for each m > 0 we have

qmα− pm =
(−1)m

qmαm+1 + qm−1

=
(−1)m

([am+1, am+2, am+3, . . . ] + [0, am, am−1, . . . , a1])qm
,

where αm+1 := [am+1, am+2, am+3, . . . ].

The following result was first proved by Fatou (see [11], [12], p. 16 and also [9], [10], [16] for
more recent work on this problem):

Lemma 2. Suppose α is an irrational number with convergents (pm/qm)∞m=0. If for two coprime
integers p ∈ Z and q > 2 we have ∣∣∣α− p

q

∣∣∣ < 1

q2

then p = pm + θpm−1 and q = qm + θqm−1 for some m ∈ N and some θ ∈ {−1, 0, 1}.

Proof of Theorem 3: Assume that p/q is not a convergent to α, namely, q 6= qm for m ∈ N
(otherwise there is nothing to prove). We need to show that in two cases (p, q) = (pm+1 −
pm, qm+1− qm) and (p, q) = (pm+ pm−1, qm+ qm−1) with m ∈ N that are possible by Lemma 2
the stronger bound (1.2) on |α− p/q| of the theorem leads to a contradiction.

Indeed, as

pm+1 + (1− am+1)pm = am+1pm + pm−1 + (1− am+1)pm = pm + pm−1

(and, similarly, qm+1 + (1 − am+1)qm = qm + qm−1), in order to combine these two cases into
one we may assume that for some nonnegative integer m

p = pm+1 + `pm, q = qm+1 + `qm

with ` = −1 or ` = 1 − am+1, where am+1 > 2. Then, by Lemma 1, qm+1 = am+1qm + qm−1
and αm+1 = am+1 + 1/αm+2, we find that

qα− p = (qm+1 + `qm)α− (pm+1 + `pm) =
(−1)m+1

qm+1αm+2 + qm
+

`(−1)m

qmαm+1 + qm−1

=
(−1)m+1

qm+1αm+2 + qm
+

`(−1)m

am+1qm + qm−1 + qm/αm+2

=
(−1)m+1(1− `αm+2)

qm+1αm+2 + qm
.
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Now, from |qα− p| < (t− 1)/tq = (t− 1)/t(qm+1 + `qm) (see (1.2)) it follows that

1 + |`|αm+2 = |1− `αm+2| = |qα− p|(qm+1αm+2 + qm) <
(t− 1)(qm+1αm+2 + qm)

t(qm+1 + `qm)
,

where ` = −1 or ` = 1− am+1 and am+1 > 2. Thus

t(|`|αm+2 + 1)(qm+1 − |`|qm) < (t− 1)(qm+1αm+2 + qm).

Dividing by qm, we find that

t− 1 > (t(|`|αm+2 + 1)− (t− 1)αm+2)qm+1/qm − t|`|(|`|αm+2 + 1).

The coefficient for qm+1/qm on the right hand side is positive, so, using the inequality qm+1/qm >
am+1, we further obtain

t− 1 > (t(|`|αm+2 + 1)− (t− 1)αm+2)am+1 − t|`|(|`|αm+2 + 1)

= (t|`|am+1 − (t− 1)am+1 − t|`|2)αm+2 + tam+1 − t|`|.

Next, let us write this inequality in the form

(|`|+ 1)t− 1− tam+1 > (t|`|am+1 − (t− 1)am+1 − t|`|2)αm+2. (2.1)

By the condition of the theorem, am+1 > t, since q = qm+1 + `qm > qm is large enough and so
m is large enough.

For ` = −1, the left hand side of (2.1) is 2t − 1 − tam+1 6 2t − 1 − t2 = −(t − 1)2 6 0,
whereas its right hand side is nonegative in view of

tam+1 − (t− 1)am+1 − t = am+1 − t > 0

and αm+2 > 0. Therefore, (2.1) cannot hold. Similarly, for ` = 1− am+1, the the left hand side
of (2.1) is equal to −1, but the right hand side is nonnegative in view of

t(am+1 − 1)am+1 − (t− 1)am+1 − t(am+1 − 1)2 = t(am+1 − 1)− (t− 1)am+1

= am+1 − t > 0,

so (2.1) cannot hold too. This completes the proof of Theorem 3.
Finally, to show that the constant (t − 1)/t of Theorem 3 is best possible we consider α

whose continued fraction expansion is such that for infinitely many m ∈ N we have am+1 = t
and the neighboring partial quotients am, am+2 both tend to infinity as m → ∞. Put p =
pm+1 − (am+1 − 1)pm = pm + pm−1 and q = qm + qm−1 for those m. Note that gcd(p, q) = 1,
because gcd(p, q) divides |pqm − qpm| = |pm−1qm − qm−1pm| = 1. Therefore, p/q is not a
convergent of α. As above, using qm+1 = am+1qm + qm−1 = tqm + qm−1, we obtain

qα− p =
(−1)m+1(1 + (am+1 − 1)αm+2)

qm+1αm+2 + qm
=

(−1)m+1(t− 1 + 1/αm+2)

(t+ 1/αm+2)(q − qm−1) + qm−1
.

Thus

q2|α− p/q| = t− 1 + 1/αm+2

t+ 1/αm+2 + (1− t− 1/αm+2)qm−1/q

tends to (t − 1)/t as m → ∞, since the quantities qm−1/q < qm−1/qm < 1/am and 1/αm+2 <
1/am+2 both tend to zero as m→∞.
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3 Analytical results

Set

sn(x) :=

2n−1∑
i=0

tix
i−1 and sn(x) :=

2n−1∑
i=0

(1− ti)xi−1.

Then

sn(x) + sn(x) = x−1 + 1 + x+ · · ·+ x2
n−2 =

1− x2n

x(1− x)
, (3.1)

sn+1(x) = sn(x) + x2
n

sn(x), (3.2)

sn(x)− sn(x) = − 1

x

n−1∏
j=0

(1− x2
j

), (3.3)

and

T (x) = sn(x) + x2
n

sn(x) + x2·2
n

sn(x) + x3·2
n

sn(x) + . . . (3.4)

for each n ∈ N. The pattern of sn and sn in snsnsnsn . . . in (3.4) is the same as that of 0 and
1 in the original sequence t. Using (3.1) we find that

Rn(x) := sn(x) + (x2
n

+ x2·2
n

+ x3·2
n

+ . . . )sn(x) =
1− 2x2

n

1− x2n
sn(x) +

x2
n−1

1− x
. (3.5)

Therefore, by (3.3),

T (x)−Rn(x) = (sn(x)− sn(x))(x3·2
n

+ x5·2
n

+ x6·2
n

+ x8·2
n

+ x9·2
n

+ . . . )

= −(x3·2
n−1 + x5·2

n−1 + x6·2
n−1 + . . . )

n−1∏
j=0

(1− x2
j

).

Hence, putting

Pn(x) :=

n−1∏
j=0

(1− x2
j

), (3.6)

we obtain

|x|3·2
n−1|Pn(x)| < |T (x)−Rn(x)| < |x|

3·2n−1|Pn(x)|
1− x2n

(3.7)

for each x ∈ R satisfying 0 < |x| < 1.
In [6] it was shown that

Lemma 3. For each k ∈ N and each m > 0 there are polynomials Pk,m(x) ∈ Z[x] of degree at
most 2mk − 1 and Qk,m(x) ∈ Z[x] of degree at most 2mk such that∣∣∣P (x)− Pk,m(x)

Qk,m(x)

∣∣∣ � |x|2m+1k
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for every x 6= 0 satisfying |x| 6 1/2, where the constants in � depend on k only. (Recall that
f � g if there are two positive constants c1 and c2 such that c1g 6 f 6 c2g.) Furthermore, the
integers qk,m := b2

mkQk,m(a/b), where a ∈ Z \ {0}, b ∈ N and |a/b| 6 1/2, satisfy

qk,m � b2
mk,

where the constants in � depend on k only.

4 Arithmetical results

Put Fn(a, b) := b2
n

+ a2
n

and let (kn)∞n=1 be a sequence defined by k1 := 1 and

kn+1 := (b2
n−1

− a2
n−1

)kn + a2
n−1 = (Fn−1(a, b)− 2a2

n−1

)kn + a2
n−1 (4.1)

for n = 1, 2, . . . . Then

Lemma 4. For any integers a and b satisfying 0 < |a| < b and gcd(a, b) = 1 we have

rn :=
sn(a/b)

1− (a/b)2n
=

b2kn
(b− a)Fn−1(a, b)

.

Furthermore, the fraction on the right hand side is in its reduced form for each n ∈ N.

Proof: Put for brevity Fn for Fn(a, b). Note that for n = 1 we have s1(x) = 1. Hence

r1 =
1

1− (a/b)2
=

b2

b2 − a2
=

b2k1
(b− a)(b+ a)

=
b2k1

(b− a)F0

is in its reduced form in view of gcd(b2, b2 − a2) = 1. Assume that the assertion of the lemma
holds for some n ∈ N. Then, by (3.1) and (3.2), we obtain

rn+1 =
sn+1(a/b)

1− (a/b)2n+1 =
sn(a/b) + (a/b)2

n

sn(a/b)

1− (a/b)2n+1

=
sn(a/b)

1 + (a/b)2n
+

(a/b)2
n−1

(1− a/b)(1 + (a/b)2n)

=
rn(1− (a/b)2

n

)

1 + (a/b)2n
+

(a/b)2
n−1

(1− a/b)(1 + (a/b)2n)

=
rn(Fn − 2a2

n

)

Fn
+

a2
n−1b2

(b− a)Fn
.

Hence, using equality Fn− 2a2
n

= (b2
n−1 − a2n−1

)Fn−1 and the induction hypothesis on rn, we
find that

(b− a)Fnrn+1 = rn(b− a)(Fn − 2a2
n

) + a2
n−1b2

=
b2kn

(b− a)Fn−1
(b− a)(b2

n−1

− a2
n−1

)Fn−1 + a2
n−1b2 = b2kn+1
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in view of (4.1). This yields rn+1 = b2kn+1/(b−a)Fn, which is the required inequality for n+1.
It remains to prove that gcd(b2kn+1, (b− a)Fn) = 1. Observe that

2akn+1 − Fn = 2akn(Fn−1 − 2a2
n−1

) + 2a2
n

− Fn
= 2akn(Fn−1 − 2a2

n−1

)− (b2
n

− a2
n

)

= (2akn − Fn−1)(Fn−1 − 2a2
n−1

)

+ Fn−1(Fn−1 − 2a2
n−1

)− (b2
n

− a2
n

)

= (2akn − Fn−1)(Fn−1 − 2a2
n−1

)

= (2akn − Fn−1)(b− a)F0F1 . . . Fn−2.

Applying this inequality for n, etc. we see that the right hand side is equal to (2ak1 − F0)(b−
a)nFn−10 Fn−21 . . . Fn−2. Hence

2akn+1 − Fn = −(b− a)n+1Fn−10 Fn−21 . . . Fn−2. (4.2)

Assume that there is a prime number p which divides both b2kn+1 and (b− a)Fn. Clearly,
if p|b then p does not divide neither b− a nor Fn. Next, suppose that p|kn+1.

Observe that
gcd(b2

m

− a2
m

, Fn) = 1 (4.3)

for any integers 0 6 m 6 n, because a and b are coprime. In particular, (4.3) implies that b− a
and Fn are coprime. Assume first that p|(b−a). Then equality (4.2) combined with p|kn+1 yields
p|Fn, a contradiction. Otherwise, when p|Fn, equality (4.2) (combined with (4.3)) shows that p

must divide some Fm with 0 6 m 6 n−2. Then p also divides Fm(b2
m −a2m) = b2

m+1 −a2m+1

,
which contradicts to (4.3).

Lemma 5. For any integers a and b satisfying 0 < |a| < b and gcd(a, b) = 1 the fraction

Rn(a/b) =
(b2

n − 2a2
n

)kn + a2
n−1Fn−1

(b− a)b2n−2Fn−1
(4.4)

is in its reduced form for each n ∈ N.

Proof: Indeed, by (3.5) and Lemma 4, we have

Rn(a/b) = (1− 2(a/b)2
n

)rn +
(a/b)2

n−1

1− a/b
=

(b2
n − 2a2

n

)b2kn
(b− a)b2nFn−1

+
a2

n−1

(b− a)b2n−2

=
(b2

n − 2a2
n

)kn + a2
n−1Fn−1

(b− a)b2n−2Fn−1
,

which implies (4.4). What is left is to show that for each n ∈ N

gcd(`n, (b− a)b2
n−2Fn−1) = 1, (4.5)
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where `n := (b2
n − 2a2

n

)kn + a2
n−1Fn−1. In all what follows we assume that n > 2, because

for n = 1 the numbers `1 = b2 − a2 + ab and (b − a)b2−2F0 = b2 − a2 are coprime in view of
gcd(a, b) = 1.

For a contradiction assume that for some positive integer n > 2 a prime number p divides
both `n = (b2

n − 2a2
n

)kn + a2
n−1Fn−1 and (b− a)b2

n−2Fn−1. We will consider three cases

(i) p|(b− a);

(ii) p|b;

(iii) p|Fn−1.

In case (i), the number `n = (b2
n − 2a2

n

)kn + a2
n−1Fn−1 modulo p is equal to

−a2
n

kn + 2a2
n+2n−1−1 = a2

n+2n−1−1

in view of kn ≡ a2
n−1−1 (mod (b− a)). So `n is not divisible by p.

In case (ii), `n modulo p is equal to

−2a2
n

kn + a2
n+2n−1−1 = a2

n

(a2
n−1−1 − 2kn).

As p - a, it remains to prove that tn := 2kn−a2
n−1−1 is not divisible by p. From (4.1) we derive

that

tn+1 = 2kn+1 − a2
n−1 = (b2

n−1

− a2
n−1

)(tn + a2
n−1−1) + a2

n−1

= (b2
n−1

− a2
n−1

)tn + b2
n−1

a2
n−1−1.

Hence t2 = 2b − a ≡ −a (mod p) and tn+1 ≡ −a2
n−1

tn (mod p) for each n > 2. This implies
p - tn.

Finally, in case (iii), the number `n modulo p is equal to −a2nkn, because p divides b2
n −

a2
n

= Fn−1(b2
n−1 − a2n−1

). By Lemma 4, the numbers kn and Fn−1 are coprime. Since Fn−1
and a are coprime too, we conclude that p - `n.

The following lemma is a corollary of Lemma 4.1 in [2]:

Lemma 6. Let δ > 0, θ > 1 and ξ be real numbers. If there is a sequence pn/qn of rational
numbers and some positive constants c0, c1, c2 such that

qn < qn+1 6 c0q
θ
n

and
c1

q1+δn

6
∣∣∣ξ − pn

qn

∣∣∣ 6 c2

q1+δn

for each n > n0 then

µ(ξ) 6
(δ + 1)θ

δ
.
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5 Proof of Theorem 1

Set α := P (a/b). By (1.1), we have µ(T (a/b)) = µ(α). Evidently, b > a2 implies |a/b| 6 1/2.
So, by Lemma 3 applied to x = a/b, we obtain

|α− pk,m/qk,m| � |a/b|2
m+1k, (5.1)

where pk,m := b2
mkPk,m(a/b) ∈ Z, qk,m := b2

mkQk,m(a/b) ∈ N, a ∈ Z \ {0}, and

qk,m � b2
mk. (5.2)

Now, as in [6], fix K ∈ N and consider an increasing sequence Q = (QK,n)∞n=1 ⊂ N composed
of all integers qk,m with k odd in the range 1 6 k 6 2K − 1 and m > m0(K). It is easy to see
that if

{a1 < a2 < a3 < . . . } = {2mk | k = 1, . . . , 2K − 1, m = m0(K),m0(K) + 1, . . . },

then an+1 6 (1 + 21−K)an for each sufficiently large n (see Lemma 2 in [6]). By (5.2), the nth
element of the sequence Q, namely, QK,n, is approximately ban . Hence

QK,n < QK,n+1 < Q1+2−K+2

K,n (5.3)

for each sufficiently large n. Utilizing |a/b| = |a|/b = blog |a|/ log b−1 and (5.2), we obtain

|a/b|2
m+1k � q−2(1−log |a|/ log b)k,m .

Thus, by (5.1), there are PK,n ∈ Z (corresponding to QK,n) such that

|α− PK,n/QK,n| � Q−2(1−log |a|/ log b)K,n ,

where the constant in � depends on K only. Now, by (5.3) and Lemma 6 with δ := 1 −
2 log |a|/ log b > 0 and θ := 1 + 2−K+2, we deduce that

µ(α) 6
(δ + 1)θ

δ
= (1 + 2−K+2)

2 log b− 2 log |a|
log b− 2 log |a|

.

Letting K →∞, we arrive to the required result.

6 Proof of Theorem 2

Suppose a = ±1, b > 2 and n > 2. Inserting x = a/b into (3.7) we obtain

b−3·2
n+1|Pn(a/b)| < |T (a/b)−Rn(a/b)| < b−3·2

n+1|Pn(a/b)|
1− b−2n

.
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By (3.6),

Pn(a/b) = (1− a/b)
n−1∏
j=1

(1− b−2
j

) =
(1− a/b)

∏∞
j=1(1− b−2j )∏∞

j=n(1− b−2j )

=
(1− a/b)P (b−2)

P (b−2n)
,

thus
b−3·2

n+1(1− a/b)P (b−2)

P (b−2n)
<
∣∣∣T(a

b

)
−Rn

(a
b

)∣∣∣ < b−3·2
n+1(1− a/b)P (b−2)

(1− b−2n)P (b−2n)
. (6.1)

By Lemma 5, the denominator of Rn(a, b) = pn(a, b)/qn(a, b) is

qn(a, b) := (b− a)b2
n−2Fn−1 = b2

n−2(b− a)(b2
n−1

+ 1).

As qn(a, b) ∼ b3·2n−1−1(1− a/b) for n→∞, using (6.1), we find that

qn(a, b)2
∣∣∣T (a/b)− pn(a, b)

qn(a, b)

∣∣∣ < 1

C(a, b)− ε
(6.2)

for each ε > 0 and each n > n(ε). This is less than 1/2 for each pair (a, b) (see the table in
Section 1), where a = ±1 and (a, b) 6= (−1, 2), (−1, 3). So pn(a, b)/qn(a, b) is a convergent to
T (a/b) for each sufficiently large n, namely, pn(a, b)/qn(a, b) = pm/qm, where m = m(n) and
pm/qm is the mth convergent to T (a/b) = [a0, a1, a2, . . . ].

On the other hand, as

qn(a, b)2 = b3·2
n−2(1− a/b)2(1 + b−2

n−1

)2 > b3·2
n−2(1− a/b)2P (b−2

n

),

from (6.1) we find that

q2m

∣∣∣T (a/b)− pm
qm

∣∣∣ = qn(a, b)2
∣∣∣T (a/b)− pn(a, b)

qn(a/b)

∣∣∣ > (1− a/b)3P (b−2)

b
=

1

C(a, b)
.

Combining this with (6.2) and applying Lemma 1 we obtain

C(a, b)− ε < [am+1, am+2, am+3, . . . ] + [0, am, am−1, . . . , a1] < C(a, b)

for each of those m. Since

am+1 < [am+1, am+2, am+3, . . . ] + [0, am, am−1, . . . , a1] < am+1 + 2,

it follows that C(a, b) − 2 − ε < am+1 < C(a, b). As C(a, b) /∈ Q, by selecting ε small enough,
we obtain am+1 ∈ {c− 1, c}, where c = bC(a, b)c, which completes the proof of the theorem for
(a, b) 6= (−1, 2), (−1, 3).

In case a/b = −1/3, we have C(−1, 3) = 81/64P (1/9) = 1.44 . . . . Assume that T (−1/3) =
[a0, a1, a2, . . . ] has only finitely many partial quotients smaller than or equal to 3. Then, by
Theorem 3 with t = 4 and (6.2) with a = −1, b = 3, we find that pn(−1, 3)/qn(−1, 3) is a
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convergent to T (−1/3) for n large enough, i.e. pn(−1, 3)/qn(−1, 3) is equal to pm/qm, where
m = m(n) and pm/qm is the mth convergent to T (−1/3). As above, using Lemma 1, we derive
that

am+1 < [am+1, am+2, am+3, . . . ] + [0, am, am−1, . . . , a1] < C(−1, 3) = 1.44 . . . .

It follows that am+1 = 1 for each of those m, which contradicts to our assumption.
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[10] A. Dujella and B. Ibrahimpašić, On Worley’s theorem in Diophantine approximations,
Ann. Math. Inform. 35 (2008), pp.61–pp.73.

[11] P. Fatou, Sur l’approximation des incommenumerables et les series trigonometriques, C.
R. Acad. Sci. Paris 139 (1904), pp.1019–pp.1021.

[12] S. Lang, Introduction to diophantine approximations, Addison-Wesley, Reading, 1966.



On the approximation of the Thue-Morse generating sequence 71

[13] L. Lorentzen and H. Waadeland, Continued fractions with applications, Studies in
Computational Mathematics 8, Amsterdam: North-Holland, 1992.

[14] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgle-
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