Bull. Math. Soc. Sci. Math. Roumanie
Tome 57(105) No. 1, 2014, 73-80

Certain generalizations of Enestrom-Kakeya theorem

by
VINAY KUMAR JAIN

Abstract

We extend the classical Enestrom-Kakeya Theorem to some classes of lacunary poly-
nomials with complex coefficients.
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1 Introduction

The following result ( [1], [3], [4, p. 136, Th. (30,3)]) is well known in the theory of the
distribution of zeros of polynomials.

Theorem A. (Enestrém-Kakeya theorem). If f(z) = Y j_, arz” is a polynomial of degree
n such that

(p 2> Qp_1 = OGp—3 > ... > a1 > ag > 0,

then f(z) will have all its zeros in |z| < 1.

In [2], Govil and Rahman considered polynomials, with complex coefficients, (i) with in-
creasing moduli of coefficients and (ii) with increasing real parts of coefficients, (real parts of
the coefficients, being assumed to be non-negative), and obtained the following generalizations
of Enestrém-Kakeya theorem.

Theorem B. Let f(z) = }_, apz® be a polynomial of degree n with complex coefficients
such that

largar — 8| < a<7/2,k=0,1,2,...,n,

for some real B and
|an| = lan—1] = [an—2| > ... > |ao|.
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Then f(z) has all its zeros on or inside the circle

. 2sin o =2
|z| = cosav +sina + ——— Z lag].
jan] k=0

Theorem C. Let f(z) =Y _,arz* be a polynomial of degree n. If
Reay=af ,Imap = Br, k=0,1,2,...,n

and
Qp > Qp1>...201 20920, a,>0

then f(z) has all its zeros in or on the circle

-1+ (2) (gowk) .

In this paper we consider some classes of lacunary polynomials and obtain two results that
are analogous to Theorem B and Theorem C. More precisely, we will prove the following two
results.

Theorem 1. Let n,ng,n1,ns,...,n, be non-negative integers such that
O=ng<ni<ng <...<ngp=n (1)

and let
P(2) = g 2™ + Any 2"+ Ay 2" g, 2

be a polynomial of degree n such that
(1) 0 < an,| < lan, | < lan,| < ... < an,], (2)

(ii) for certain real numbers a and (

larg an, —B| <a<m/2,5=0,1,2,... .k (3)
and
(iii) no two adjacent coefficients a,,;’s (j =0,1,...,k) are equal i.e.
Gng 7 Qnys Qny 7 Qngs -« -5 Qny_y 7 Gy - (4)

Further let
I L

M,,; = max |— L Li=1,2,...k, (5)
|z|=1 Un; — Qp,_,
with
M = 1r£1jagxk My, . (6)

Then all the zeros of p(z) lie in

k—1
94
|z] < M < cosa+sina + Sma2|anj\

‘an‘ =0
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Theorem 2. Let n,ng,ni,ns,...,n, be non-negative integers such that
O=np<m<ng<...<ng=n

and let
P(2) = Ung 2™ + ap, 2" + any 2™+ a2

be a polynomial of degree n such that

(Z) Qn; = Qn; +iﬁnj7j:071a"'7kla
(18) 0 < apg < apy < apy < oo < gy, >0

and
(iii) no two adjacent coefficients an; ’s(j =0,1,...,k) are equal i.e.

ano 7é a‘nlaa/’nq # an27-~-aank_1 7é a"nk'

Further let
My,,j=1,2,....k

and M, be as in Theorem 1. Then all the zeros of p(z) lie in
5 K
|2 < M 1+a7_20|ﬂnj\
=

2 Required lemmas

For the proofs of the theorems we require the following lemmas.

Lemma 1. If p(z) is a polynomial of degree n then for R > 1

< n
e (=) < R (maxlp(2)]).

n

with equality only for p(z) = \z™.
Proof of Lemma 1. Tt is a simple consequence of maximum modulus principle.

Lemma 2. 1If a; and aj_; are two complex numbers with

|Arg aj — B
|Arg aj—1 — B

a< /2,

<
< a<7/2,

for certain real 8 and « then

laj — aj-1]* < (Jaj| = |aj-1])?cos®a + (la;] + |a;-1])*sin*a.
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This lemma is due to Govil and Rahman [2, Proof of Theorem 2].

Lemma 3. Under the same hypothesis as in Lemma 2

laj —aj 1| < llaj| — |aj1f|cosa + (Ja;| + |a;-1]) sin o

Proof of Lemma 8. It follows easily from Lemma 2.

3 Proofs of the theorems

Proof of Theorem 1. We have

nj MNj—1

(1=2p(z) = =ane™ o (@™ = a2
(Qny_ 2™ — ap, 2™ 2t 4+
(Any 2™ = g 2™ ) + @y 2™,
= —ap2" 4 pi(2), say.
Now for |z| = R(> 1)
k i .
(@) < Z lan; — anj_1||anjz"; ~ iy 2T | + |an, | R™,
j=1

(by (9) and (10)),

IN

k
Z |anj - aﬂj—1|MnJ‘an + [any | R™,
j=1

(by (5) and Lemma 1).
But
M, >1,j=1,2,....k (by (5))

and therefore
M >1, (by (6)),

which, by (11), (6) and (1), implies that for |z| = R(> 1)

k
|p1(2)| < MR" Z |anj - a"”fj—l' + Ia’7l0| )

j=1
k

IN

j=1 j=1

k
MRn{ (|an,| = lan,_,|) cos o + Z(M”J*l' + |an, |) sina +

| | (cos o + Sina)}, (by (2),(3) and Lemma 3),

k—1

=0

MR"{|an\(cosa +sina) + QSina(Z |anj|)}.

(13)

(14)
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Further, by (10), we have for |z| = R(> 1)

(1=2)p(2)] = |an| R = |pa(2)], (15)

k—1

> an|R™ — MRn{\an\(cosa +sina) + ZSina(Z |anj|)}, (by (14)),
=0

> 0,

for
2sina [ e
R>M cosoz—l—sina—&—w jzz:o|anj\ ,

and Theorem 1 follows.

Remark 1. In some cases, even if (iii) (i.e. relation (4)) is not satisfied, we can proceed,
as in the proof, with a minor modification, to get (13), thereby allowing us to complete the proof
of Theorem 1. For instance, let

a’no = a’nl?a”l’h # a/nza an2 # a’ngaa’n3 = an4> an4 = an57

ans # an57a"ﬂ5 7é a”ﬂ77 ce 7a"ﬂk72 # ankflaa/nkfl = a’nk'

For the possibility under consideration, we will not consider My, My, , My, _, (involved in (5))
and will have

no+1 n
M,, = max|Zo—m® "t a2
n =
' [2]=1 Ang — Ang + Qpy

> 1

|, (instead of the expression in (5)), (16)

(17)

M,,, as in (5), (18)
(19)

Uns 2™ — Ay 2™+ @, 2™ — @, 2™+ 0, 28— g, 22T

M,, = max| , 19
[z|=1 Qpg — Qny + Qp, — Gng + Qng — Gny
(instead of the expression in (5)),
> 1, (20)
Mnsa
M.,
'  (as in (5)), (21)
M,

MNk—29
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n

Mnk — max | Qp, 2% — ank,lznk—lJrl + ankilznk—l _ ank,ank_2+1 | (22)
|z|=1 Ap, — Qpy_y + Ay — Gy
(instead of the expression in (5)),
= b (23)
M = maX(Mn17Mn23Mn5,Mn6,...,Mnkiz’Mnk), (24)

(instead of the expression in (6)),
1, (by (17),(20),(23) and (12)),

Y

(1 - Z)p('z) = _anzn—H + (ankznk - ank—lznk71+1 + ank—lznk71 - ank—2znk72+1)
F @y 2™ 2 = apy_ 2" 3T L (Apg 2™ — @, 2"
F(Ans 2™ = Ay 2™ A, 2™ =y 2™ 0,2 — A, 2T
+(an2zn2 _ anl Zn1+1) + (anlzrn _ anozno+1 + ano)’

= *anszrl + pl(z)a
thereby helping us to write, (as in proof of Theorem 1), for |z| = R(> 1)
|p1(z)\ < ‘ank — Qny_y +Any_y — ank72|MnkRnk +
k—2
Z |an, = an;_,|Mn, R" +
3=6

‘ans — Qny + any — Qng + ang — a’n2|Mn5Rn5 + |a’ﬂ2 — Qn, |M’ﬂ2Rn2
+|a‘n1 — G, + a‘n0|Mn1Rn17
(by (16),(18),(19), (21),(22), (5) and Lemma 1),

k—2
< MR"{|ank — Qny_y + Anp_y — ank—2| + Z |anj - a"j—ll +
j=6
‘an5 — Qny + Any — Qng + ang — a‘n2| + |an2 - a‘n1| +
(G, = g + g} (by (20)),
<

k
MR" Z|anj _O’TL]'71| + ‘an0| )
j=1

i.e. (13).
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Proof of Theorem 2. As in the proof of Theorem 1, we have for |z| = R(> 1)

M=

P € MR (S lan, |+ o o (b (19))
j=
< mr f(am )+ iuﬁnﬂ 16, + (@ng 180
(2;1(7)%(1(8)), "~
< MR"(an—i—sz:LanD.
j=0

Further, as in the proof of Theorem 1, we have for |z| = R(> 1)

[(1=2)p(z)] = aa|R"" = [pa(2)], (by (15)),

k
> @R = MR +23 (Bt
=0
(by (7),(8) and (25)),
> 0,

for

k
2
R>M 1+Q—Z|an| :

n j=0
and Theorem 2 follows.

Remark 2. Remark 1, associated with Theorem 1, is true for Theorem 2 also.
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