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Abstract

Recently, Miao and Wang considered the GSI method for solving nonsingular saddle
point problems and studied the convergence of the GSI method. In this paper, we prove
the semi-convergence of the GSI method when it is applied to solve the singular saddle
point problems.
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1 Introduction

Consider the saddle point problems of the form(
A B
BT 0

)(
x
y

)
=

(
b
q

)
, (1.1)

where A ∈ Rm×m is symmetric positive definite, B ∈ Rm×n is a matrix of rank r, b ∈ Rm
and q ∈ Rn are given vectors, with m ≥ n. When r = n, note that the coefficient matrix
is nonsingular and the saddle point problem (1.1) has a unique solution. When r < n, the
coefficient matrix is singular, in such case, we assume that the saddle point problem (1.1) is
consistent [22].

The saddle point problem (1.1) appears in many engineering and scientific computing appli-
cations such as constrained optimization, the finite element method to Stokes equations, fluid
dynamics and weighted linear squares problem [6, 13, 17, 19]. (1.1) is also termed as a Karsh-
Kuhn-Tucker (KKT) system, or an augmented system, or an equilibrium system [10, 11, 12].

For its property of large and sparsity, (1.1) is suitable for being solved by the iterative
methods. For nonsingular saddle point problem (1.1), there are many efficient iterative methods
have been studied in the literature [13, 17, 14, 19, 7, 2, 3, 1, 18], see [4] for a comprehensive
survey. Recently, Miao and Wang studied the generalized stationary iterative (GSI) method
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[20] for nonsingular saddle point problem (1.1), see [18]. Note that the GSI method, studied in
[18], includes SOR-like method [13] and GAOR method [14] as special cases.

In most cases, the matrix B is full column rank in scientific computing and engineering
applications, but not always. If r < n, (1.1) is a singular saddle point problem. Zheng, Bai
and Yang [22] show that the GSOR method [3] can be used to solve the singular saddle point
problem (1.1), and it is semi-convergent. Li et al. [15, 16] give the semi-convergent analyses
of the GSSOR method [21] and the inexact Uzawa methods [9, 8] for the singular saddle point
problem (1.1).

In this paper, the GSI method for solving singular saddle point problem (1.1) is further
investigated and the semi-convergence conditions are proposed, which generalize the result of
Miao and Wang [18] for the nonsingular saddle point problems to the singular saddle point
problems.

Throughout this paper, for A ∈ Rm×m, AT , σ(A) and ρ(A) denote the transpose, the
spectral set and the spectral radius of the matrix A, respectively. In is the identity matrix with
order n.

2 The semi-convergence of the GSI method

Firstly, some basic concepts and lemmas are given for latter use. For a matrix C ∈ Rp×p, we
call C = M −N a splitting if M is nonsingular. Let T = M−1N , then solving linear systems
Cz = c is equivalent to considering the following iterative scheme

xk+1 = Txk + c, k = 0, 1, 2, · · · . (2.1)

When C is nonsingular, for any initial vector x0 the iteration scheme (2.1) converges to the
exact solution of the system of linear equations Cz = c if and only if ρ(T ) < 1. But for the
singular matrix C, we have 1 ∈ σ(T ) and ρ(T ) ≥ 1, so that one can require only the semi-
convergence of the iterative scheme (2.1). By [5], the iterative scheme (2.1) is semi-convergent
if and only if the following three conditions are satisfied:

(1) The spectral radius of the iterative matrix T is equal to one, i.e., ρ(T ) = 1;

(2) The elementary divisors of the iterative matrix T associated with λ = 1 ∈ σ(T ) are linear,
i.e., rank(Ip − T )2 = rank(Ip − T ), here rank(·) denotes the rank of the corresponding
matrix;

(3) If λ ∈ σ(T ) with |λ| = 1, then λ = 1, i.e., ϑ(T ) < 1, where

ϑ(T ) = max{|λ|, λ ∈ σ(T ), λ 6= 1}

is called the semi-convergence factor of the iterative scheme (2.1).

We call a matrix T is semi-convergent provided it satisfies the above three conditions, and
iterative method (2.1) is semi-convergent if T is a semi-convergent matrix. When C is singular,
the semi-convergence property about the iteration scheme (2.1) are described in the following
two lemmas.
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Lemma 1. [5] Let C = M−N with M nonsingular, T = M−1N . Then for any initial vector x0
the iterative scheme (2.1) is semi-convergent to a solution x? of the system of linear equations
Cz = c if and only if the matrix T is semi-convergent.

Lemma 2. [22] Let H ∈ Rl×l with positive integers l. Then the partitioned matrix

T =

(
H 0
L It

)
is semi-convergent if and only if either of the following conditions holds true:

(1) L = 0 and H is semi-convergent;

(2) ρ(H) < 1.

Secondly, we review the GSI method presented in [18]. Following [13], we rewrite system
(1.1) as (

A B
−BT 0

)(
x
y

)
=

(
b
−q

)
(2.2)

for the sake of simplicity. For the coefficient matrix of the linear system (2.2), we make the
following splitting:(

A B
−BT 0

)
≡
(

αA 0
−βBT αQ

)
−
(

(α− 1)A −B
(1− β)BT αQ

)
, (2.3)

where α and β are real parameters with α 6= 0, Q ∈ Rn×n is a nonsingular matrix.
With the splitting (2.3), the GSI iterative scheme [20] for augmented system (2.2) is defined

as (
x(k+1)

y(k+1)

)
= Tα,β

(
x(k)

y(k)

)
+ (αD − βL)−1

(
b
−q

)
, k = 0, 1, 2, · · · (2.4)

where

Tα,β =

( (
1− 1

α

)
Im

1
αA
−1B

2α−β−1
α2 Q−1BT In − 1

α2Q
−1BTA−1B

)
(2.5)

is the GSI iteration matrix.

Algorithm 1. GSI Method:
1. Given the initial vectors x(0), y(0), the relaxation parameters α, β and the nonsingular

matrix Q.
2. For i = 0, 1, · · · , until convergence, compute{

x(k+1) = (1− 1
α )x(k) + 1

αA
−1(b−By(k)),

y(k+1) = y(k) + 1
αQ
−1 {BT [x(k+1) + (1− β)x(k)]− q

}
.

Remark 1. It is worth mentioning that the GSI method (2.4) becomes the SOR-like method
[13] when α = 1

ω and β = 1, and the GAOR method [14] when α = 1
ω and β = γ

ω .
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Finally, we discuss the semi-convergence of the GSI method. When the coefficient matrix
of (1.1) is nonsingular, the convergence of GSI method is studied in [18]. When r < n, the
coefficient matrix of (1.1) is singular, the following theorem describes the semi-convergence
property when the GSI method is applied to solve the singular saddle point poblem (1.1).

Theorem 1. Let A ∈ Rm×m, Q ∈ Rn×n be symmetric positive definite matrices, and B ∈
Rm×n be a matrix of rank r with r < n. Denote the largest eigenvalues of the matrix Q−1BTA−1B
by µmax. Then the GSI method is semi-convergent to a solution of the singular saddle point
problem (1.1) if α and β satisfies

α > max {1

2
,

√
µmax

2
}

and

1− α

µmax
< β <

1

2
+
α(2α− 1)

µmax
. (2.6)

Proof: By Lemma 1, we only need to demonstrate the semi-convergence of the iteration matrix
Tα,β , defined by equation (2.5), of the GSI method.

Let B = U(Br, 0)V ∗ be the singular value decomposition of B, where Br = (Σr, 0)T ∈
Rm×n with Σr = diag(σ1, σ2, · · · , σr), U , V are unitary matrices. Then

P =

(
U 0
0 V

)
is an (m + n)-by-(m + n) unitary matrix. Let T̂α,β = P ∗Tα,βP , then the matrix Tα,β has the

same eigenvalues with matrix T̂α,β . Here, we have used (·)∗ to denote the conjugate transpose of
the corresponding complex matrix. Hence, we only need to demonstrate the semi-convergence
of the matrix T̂α,β .

Define matrices

Â = U∗AU, B̂ = U∗BV and Q̂ = V ∗QV.

Then it holds that B̂ = (Br, 0) and

Q̂−1 =

(
V ∗1 Q

−1V1 V ∗1 Q
−1V2

V ∗2 Q
−1V1 V ∗2 Q

−1V2

)
,

here we have partitioned the unitary matrix V into the block form V = (V1, V2) confirmly to
the partition of the matrix B. Through direct operations, we have

U∗A−1BV = (U∗A−1U)(U∗BV )

= Â−1(Br, 0)

= (Â−1Br, 0),

V ∗Q−1BTU = (V ∗Q−1V )(V ∗BTU)

=

(
V ∗1 Q

−1V1B
T
r

V ∗2 Q
−1V1B

T
r

)
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and

V ∗Q−1BTA−1BV = (V ∗Q−1V )(V ∗BTU)(U∗A−1U)(U∗BV )

= Q̂−1(Br, 0)T Â−1(Br, 0)

= Q̂−1
(
BTr Â

−1Br 0
0 0n−r

)
. (2.7)

Hence,

T̂α,β = P ∗Tα,βP

=

( (
1− 1

α

)
Im

1
αU
∗A−1BV

2α−β−1
α2 V ∗Q−1BTU In − 1

α2V
∗Q−1BTA−1BV

)
=

(
Ĥα,β 0

L̂α,β In−r

)
,

where

Ĥα,β =

( (
1− 1

α

)
Im

1
α Â
−1Br

2α−β−1
α2 (V ∗1 Q

−1V1)BTr Ir − 1
α2 (V ∗1 Q

−1V1)BTr Â
−1Br

)
and

L̂α,β =

(
2α− β − 1

α2
(V ∗2 Q

−1V1)BTr , −
1

α2
(V ∗2 Q

−1V1)BTr Â
−1Br

)
.

As L̂α,β 6= 0, from Lemma 2 we know that the matrix T̂α,β is semi-convergent if and only if

ρ(Ĥα,β) < 1. Hence, in what follows, we will give out the restrictions for the parameters α and

β such that ρ(Ĥα,β) < 1.
Consider the following nonsingular saddle point problem(

Â Br
−BTr 0

)(
x̂
ŷ

)
=

(
b̂
−q̂

)
. (2.8)

If the coefficient matrix of the nonsingular saddle point problem (2.8) be splitted as(
Â Br
−BTr 0

)
=

(
αÂ 0

−βBTr αQ̂1

)
−

(
(α− 1)Â −Br

(1− β)BTr αQ̂1

)

with the preconditioning matrix Q̂1 = (V ∗1 Q
−1V1)−1, then the GSI method for solving (2.8)

can be well defined, and the iteration matrix is Ĥα,β . From Theorem 2.4 in [18], we know that

ρ(Ĥα,β) < 1 if α and β satisfies

α > max {1

2
,

√
µmax

2
}

and

1− α

µmax
< β <

1

2
+
α(2α− 1)

µmax
,
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here µmax is the largest eigenvalue of the matrix Q̂−11 BTr Â
−1Br. By (2.7), we can see that µmax

is also the largest eigenvalue of the matrix Q−1BTA−1B.
The proof is completed.

The GSI method has the SOR-like method [13] and the GAOR method [14] as its special
cases, thus from Theorem 1, we can derive the following corollaries directly.

Corollary 1. Let A and Q be symmetric positive definite, and B is a matrix of rank r with
r < n. Denote the largest eigenvalues of the matrix Q−1BTA−1B by µmax. Then the SOR-like
method is semi-convergent to a solution of the singular saddle point problems (1.1) if

0 < ω <
4

1 +
√

1 + 4µmax
.

Corollary 2. Let A and Q be symmetric positive definite, and B is a matrix of rank r with
r < n. Denote the largest eigenvalues of the matrix Q−1BTA−1B by µmax. Then the GAOR
method is semi-convergent to a solution of the singular saddle point problems (1.1) if ω and γ
satisfies

0 < ω < min{2, 2
√
µmax

}

and

ω − 1

µmax
< γ <

ω

2
+

2− ω
ωµmax

.

Note that min{2, 2√
µmax
} ≤ 2, from Theorem 2.3 in [15], we known that the condition in

Corollary 2 is the sufficient but necessary condition.

3 Conclusion

In this paper, we consider the GSI method for solving singular saddle point problems. The
semi-convergence conditions are given, which generalize the result of Miao and Wang [18] for
nonsingular saddle point problems to singular saddle point problems. Meanwhile, from the proof
of Theorem 1, we note that the semi-convergence factor of the GSI method for the singular
saddle point problem (1.1) is the convergence factor of the GSI method for the nonsingular
saddle point problem (2.8).
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