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Abstract

We consider the system of differential equations

(P )


−∆p(x)u = λ

p(x)
1 g(x)a(u) + µ

p(x)
1 c(x)f(v) in Ω,

−∆q(x)v = λ
q(x)
2 g(x)b(v) + µ

q(x)
2 c(x)h(u) in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with C2 boundary ∂Ω, 1 < p(x), q(x) ∈ C1(Ω̄)
are functions, the operator ∆p(x)u = div(|∇u|p(x)−2∇u) is called p(x)-Laplacian λ1, λ2,
µ1 and µ2 are positive parameters and g, c are continuous functions and f, h, a, b are C1

nondecreasing functions satisfying f(0), h(0), a(0), b(0) ≥ 0. We discuss the existence of
positive solution via sub-super solutions.
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1 Introduction

The study of differential equatons and variational problems with variable exponent has been a
new and interesting topic. It arises from nonlinear elasticity theory, electrorheological fluids,
etc.(see [3, 10, 13]). Many results have been obtained on this kind of problems, for example
[1, 3, 4, 5, 6, 9]. In [2], the authors discussed the existence of at least one positive solution of
the system

(I)

 −∆p(x)u = λp(x)F (x, u, v) in Ω,
−∆p(x)v = λp(x)G(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where p(x) ∈ C1(Ω̄) is a function, F (x, u, v) = [g(x)a(u)+f(v)], G(x, u, v) = [g(x)b(v)+h(u)], λ
is a positive parameter and Ω ⊂ RN is a bounded domain. But in the present paper we extend
the problem (I) to problem (P). In this paper, we mainly consider the existence of positive weak
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solutions for the problem (P) and we have proved the existence of at least one positive solution
for the problem (P).

To study p(x)-Laplacian problems, we need some theory on the spaces Lp(x)(Ω),
W 1,p(x)(Ω) and properties of p(x)-Laplacian which we will use later (see [5, 11]). If Ω ⊂ RN is
an open domain, we write

C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for x ∈ Ω}

h+ = sup
x∈Ω

h(x), h− = inf
x∈Ω

h(x), for any h ∈ C(Ω̄).

Throughout the paper, we will assume that:

(H1) Ω ⊂ RN is an open bounded domain with C2 boundary ∂Ω.

(H2) p(x), q(x) ∈ C1(Ω̄) are functions and 1 < p− ≤ p+ and 1 < q− ≤ q+.

(H3) a, b, f, h : [0,∞]→ R are C1, nondecreasing functions such that f(0), h(0), a(0), b(0) ≥ 0
and limu→+∞ a(u) = limu→+∞ b(u) = limu→+∞ f(u) = limu→+∞ h(u) = +∞.

(H4) lim
u→+∞

f [M(h(u))
1

(p−−1) ]

up−−1
= 0, ∀M > 0.

(H5) g, c : Ω̄→ [1,∞] are continuous functions such that
A1 = min

x∈ Ω̄
g(x), A2 = max

x∈ Ω̄
g(x), B1 = min

x∈ Ω̄
c(x), B2 = max

x∈ Ω̄
c(x).

(H6) lim
u→+∞

a(u)

up−−1
= 0, lim

u→+∞

b(u)

up−−1
= 0.

Definition 1. If (u, v) ∈
(
W

1,p(x)
0 (Ω),W

1,q(x)
0 (Ω)

)
, (u, v) is called a weak solution of (P) if it

satisfies{ ∫
Ω
|∇u|p(x)−2∇u · ∇ϕdx =

∫
Ω
λ
p(x)
1 g(x)a(u) + µ

p(x)
1 c(x)f(v)ϕdx, ∀ ϕ ∈W 1,p(x)

0 (Ω),∫
Ω
|∇v|q(x)−2∇v · ∇ψdx =

∫
Ω
λ
q(x)
2 g(x)b(v) + µ

q(x)
2 c(x)h(u)ψdx, ∀ ψ ∈W 1,q(x)

0 (Ω).

Lemma 1. (Comparison Principle).

Let u, v ∈ W 1,p(x)(Ω) satisfying Au− Av ≥ 0 in (W
1,p(x)
0 (Ω))∗, ϕ(x) = min{u(x)− v(x), 0}. If

ϕ(x) ∈W 1,p(x)
0 (Ω)(i.e.u ≥ v on ∂Ω), then u ≥ v a.e. in Ω.

Here and hereafter, we will use the notation d(x, ∂Ω) to denote the distance of x ∈ Ω to the
boundary of Ω.
Denote d(x) = d(x, ∂Ω) and ∂Ωε = {x ∈ Ω | d(x, ∂Ω) < ε}. Since ∂Ω is C2 regularly, then
there exists a constant δ ∈ (0, 1) such that d(x) ∈ C2(∂Ω3δ), and |∇d(x)| ≡ 1.
Denote

v1(x) =


γd(x), d(x) < δ,

γδ +
∫ d(x)

δ
γ( 2δ−t

δ )
2

p−−1 (λp
+

1 A1 + µp
+

1 B1)
2

p−−1 dt, δ ≤ d(x) < 2δ,

γδ +
∫ 2δ

δ
γ( 2δ−t

δ )
2

p−−1 (λp
+

1 A1 + µp
+

1 B1)
2

p−−1 dt, 2δ ≤ d(x).
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Obviously, 0 ≤ v1(x) ∈ C1(Ω̄). Considering

−∆p(x)w(x) = η in Ω, w = 0 on ∂Ω, (1)

we have the following result

Lemma 2. (see [7]). If positive parameter η is large enough and w is the unique solution of
(1), then we have
(i) For any θ ∈ (0, 1) there exists a positive constant C1 such that

C1η
1

p+−1+θ ≤ max
x∈Ω̄

w(x);

(ii) There exists a positive constant C2 such that

max
x∈Ω̄

w(x) ≤ C2η
1

p−−1

2 Existence results

In the following, when there be no misunderstanding, we always use Ci to denote positive
constants.

Theorem 1. On the conditions of (H1)− (H6), then (P ) has a positive solution.

Proof: We shall establish Theorem 1 by constructing a positive subsolution (Φ1,Φ2) and su-
persolution (z1, z2) of (P ), such that Φ1 ≤ z1 and Φ2 ≤ z2.
According to the sub-supersolution method for p(x)-Laplacian equations (see [8]), then (P) has
a positive solution.
Step 1. We construct a subsolution of (P).
Let σ ∈ (0, δ) is small enough. Denote

φ1(x) =


ekd(x) − 1, d(x) < σ,

ekσ − 1 +

∫ d(x)

σ

kekσ(
2δ − t
2δ − σ

)
2

p−−1 dt, σ ≤ d(x) < 2δ,

ekσ − 1 +

∫ 2δ

σ

kekσ(
2δ − t
2δ − σ

)
2

p−−1 dt, 2δ ≤ d(x).

φ2(x) =


ekd(x) − 1, d(x) < σ,

ekσ − 1 +

∫ d(x)

σ

kekσ(
2δ − t
2δ − σ

)
2

q−−1 dt, σ ≤ d(x) < 2δ,

ekσ − 1 +

∫ 2δ

σ

kekσ(
2δ − t
2δ − σ

)
2

q−−1 dt, 2δ ≤ d(x).

It is easy to see that φ1, φ2 ∈ C1(Ω̄). Denote

α = min

{
inf p(x)− 1

4(sup |∇p(x)|+ 1)
,

inf q(x)− 1

4(sup |∇q(x)|+ 1)
, 1

}
.
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By computation

−∆p(x)φ1 =



−k(kekd(x))p(x)−1
[
(p(x)− 1) +

(
d(x) + ln k

k

)
∇p∇d+ ∆d

k

]
, d(x) < σ,{

1
2δ−σ

2(p(x)−1)
p−−1 −

(
2δ−d
2δ−σ

)[(
ln kekσ

(
2δ−d
2δ−σ

) 2

p−−1

)
∇p∇d+ ∆d

]}
×(kekσ)p(x)−1

(
2δ−d
2δ−σ

) 2(p(x)−1)

p−−1
−1

, σ < d(x) < 2δ,

0, 2δ < d(x).

From (H3) and (H4), there exists a positive constant M > 1 such that

f(M − 1) ≥ 1, h(M − 1) ≥ 1, a(M − 1) ≥ 1, b(M − 1) ≥ 1.

Let σ = 1
k lnM , then

σk = lnM. (2)

If k is sufficiently large, from (2), we have

−∆p(x)φ1 ≤ −kp(x)α, d(x) < σ. (3)

Let kα = (λ1A1 + µ1B1), then

kp(x)α ≥ −(λ
p(x)
1 A1 + µ

p(x)
1 B1)

from (3), then we have

−∆p(x)φ1 ≤ λp(x)
1 A1+µ

p(x)
1 B1 ≤ λp(x)

1 g(x)a(φ1)+µ
p(x)
1 c(x)f(φ2), d(x) < σ. (4)

Since d(x) ∈ C2(∂Ω3δ), then there exists a positive constant C3 such that

−∆p(x)φ1 ≤ (kekσ)p(x)−1
(

2δ−d
2δ−σ

) 2(p(x)−1)

p−−1
−1

.

∣∣∣∣∣
{

2(p(x)− 1)

(2δ − σ)(p− − 1)
−
(

2δ − d
2δ − σ

)[(
ln kekσ

(
2δ − d
2δ − σ

) 2

p−−1

)
∇p∇d+ ∆d

]}∣∣∣∣∣
≤ C3(kekσ)p(x)−1 ln k, σ < d(x) < 2δ.

If k is sufficiently large, let kα = (λ1A1 + µ1B1), we have

C3(kekσ)p(x)−1 ln k = C3(kM)p(x)−1 ln k ≤ λp(x)
1 A1 + µ

p(x)
1 B1.

then
−∆p(x)φ1 ≤ λp(x)

1 A1 + µ
p(x)
1 B1, σ < d(x) < 2δ.

Since φ1(x) ≥ 0 and a , f are nondecreasing, then we have

−∆p(x)φ1 ≤ λp(x)
1 g(x)a(φ1) + µ

p(x)
1 c(x)f(φ2), σ < d(x) < 2δ. (5)
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Obviously

−∆p(x)φ1 = 0 ≤ λp(x)
1 A1 + µ

p(x)
1 B1 ≤ λp(x)

1 g(x)a(φ1) + µ
p(x)
1 c(x)f(φ2), 2δ < d(x). (6)

Combining (4), (5) and (6), we can conclude that

−∆p(x)φ1 ≤ λp(x)
1 g(x)a(φ1) + µ

p(x)
1 c(x)f(φ2), a.e. on Ω. (7)

Similarly

−∆q(x)φ2 ≤ λq(x)
2 g(x)b(φ2) + µ

q(x)
2 c(x)h(φ1), a.e. on Ω. (8)

From (7) and (8), we can see that (φ1, φ2) is a subsolution of (P ).
Step 2. We construct a supersolution of (P ).
We consider

−∆p(x)z1 = (λp
+

1 A2 + µp
+

1 B2)µ in Ω,

−∆q(x)z2 = (λq
+

2 A2 + µq
+

2 B2)h
(
β
[
(λp

+

1 A2 + µp
+

1 B2)µ
])

in Ω,

z1 = z2 = 0 on ∂Ω,

where β = β((λp
+

1 A2 + µp
+

1 B2)µ) = maxx∈Ω̄ z1(x). We shall prove that (z1, z2) is a supersolu-
tion for (P ).
From Lemma 2, we have

max
x∈Ω̄

z1(x) ≤ C2

[
(λp

+

1 A2 + µp
+

1 B2)µ
] 1

p−−1

and

max
x∈Ω̄

z2(x) ≤ C2

(
λq

+

2 A2 + µq
+

2 B2

)
h
([

(λp
+

1 A2 + µp
+

1 B2)µ
]) 1

q−−1

For ψ ∈W 1,q(x)
0 (Ω) with ψ ≥ 0, it is easy to see that∫

Ω

|∇z2|q(x)−2∇z2·∇ψdx ≥
∫

Ω

λq
+

2 A2h
(
β
[
(λp

+

1 A2+µp
+

1 B2)µ
])
ψdx+

∫
Ω

µq
+

2 B2h(z1)ψdx. (9)

Since lim
u→+∞

f [M(h(u))
1

(p−−1) ]

up−−1
= 0, when µ is sufficiently large, combining Lemma 2 and (H6),

then we have

h
(
β
[
(λp

+

1 A2+µp
+

1 B2)µ
])
≥ b(z2) (10)

Hence∫
Ω

|∇z2|q(x)−2∇z2·∇ψdx ≥
∫

Ω

λq
+

2 g(x)b(z2)ψdx+

∫
Ω

µq
+

2 c(x)h(z1)ψdx. (11)
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Also ∫
Ω

|∇z1|p(x)−2∇z1 · ∇ϕdx =

∫
Ω

(λp
+

1 A2 + µp
+

1 B2)µϕdx

By (H4), (H6), when µ is sufficiently large, combining Lemma 2 and (H6), we have

(λp
+

1 A2 + µp
+

1 B2)µ ≥
( 1

C2
β
[
(λp

+

1 A2 + µp
+

1 B2)µ
])p−−1

≥ λp
+

1 A2a(z1) + µp
+

1 B2f(z2)

Then∫
Ω

|∇z1|p(x)−2∇z1 · ∇ϕdx ≥
∫

Ω

λp
+

1 g(x)a(z1)ϕdx+

∫
Ω

µp
+

1 c(x)f(z2)ϕdx. (12)

According to (11) and (12), we can conclude that (z1, z2) is a supersolution for (P).
It only remains to prove that φ1 ≤ z1 and φ2 ≤ z2.
In the definition of v1(x), let γ = 2

δ (maxx∈Ω̄ φ(x) + maxx∈Ω̄ |∇1φ(x)|). We claim that

φ1(x) ≤ v1(x), ∀x ∈ Ω. (13)

From the definition of v1, it is easy to see that

φ1(x) ≤ 2 max
x∈Ω̄

φ1(x) ≤ v1(x), when d(x) = δ,

and
φ1(x) ≤ 2 max

x∈Ω̄
φ1(x) ≤ v1(x), when d(x) ≥ δ.

It only remains to prove that

φ1(x) ≤ v1(x), when d(x) < δ.

Since v1 − φ1 ∈ C1(∂Ωδ), then there exists a point x0 ∈ ∂Ωδ such that

v1(x0)− φ1(x0) = min
x0∈∂Ωδ

[v1(x)− φ1(x)].

If v1(x0)− φ1(x0) < 0, it is easy to see that 0 < d(x0) < δ, and then

∇v1(x0)−∇φ1(x0) = 0.

From the definition of v1, we have

|∇v1(x0)| = γ =
2

δ
(max
x∈Ω̄

φ1(x) + max
x∈Ω̄
|∇φ1(x)|) > |∇φ1(x0)|.

It is a contradiction to ∇v1(x0)−∇φ1(x0) = 0. Thus (13) is valid.
Obviously, there exists a positive constant C4 such that

γ ≤ C4(λ1 + µ1).
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Since d(x) ∈ C2(∂Ω3δ), according to the proof of Lemma 2, then there exist positive constant
C5, C6 such that

−∆p(x)v1(x) ≤ C∗γp(x)−1+θ ≤ C5λ
p(x)−1+θ + C6µ

p(x)−1+θ
1 , a.e. in Ω, where θ ∈ (0, 1).

When η ≥ λp
+

1 + µp
+

1 is large enough, we have

−∆p(x)v1(x) ≤ η.

According to the comparison principle, we have

v1(x) ≤ w(x), ∀x ∈ Ω. (14)

From (13) and (14), when η ≥ λp
+

1 + µp
+

1 is sufficiently large, we have

φ1(x) ≤ v1(x) ≤ w(x), ∀x ∈ Ω. (15)

According to the comparison principle, when µ is large enough, we have

v1(x) ≤ w(x) ≤ z1(x), ∀x ∈ Ω.

Combining the definition of v1(x) and (15), it is easy to see that

φ1(x) ≤ v1(x) ≤ w(x) ≤ z1(x), ∀x ∈ Ω.

When µ ≥ 1 and λ1 +µ1 is large enough, from Lemma 2, we can see that β[(λp
+

1 A2 +µp
+

1 B2)µ]

is large enough, then (λp
+

1 A2 +µp
+

1 B2)h
(
β
[
(λp

+

1 A2 +µp
+

1 B2)µ
])

is large enough. Similarly, we

have φ2 ≤ z2.
This completes the proof.

3 Asymptotic behavior of positive solutions

In this section, when parameters λ1, µ1, λ2, µ2 → +∞, we will discuss the asymptotic behavior of
maximum of solutions about parameters λ1, µ1, λ2, µ2 and the asymptotic behavior of solutions
near boundary about parameters λ1, µ1, λ2, µ2.

Theorem 2. On the conditions of (H1) − (H6), if (u, v) is a solution of (P ) which has been
given in Theorem 1, then

(i) There exist positive constants C1 and C2 such that

C1(λ1+µ1) ≤ max
x∈Ω

u(x) ≤ C2

(
(λp

+

1 A2+µp
+

1 B2)µ
) 1

p−−1
(16)

C1(λ1+µ1) ≤ max
x∈Ω

v(x) ≤ C2

{
(λq

+

2 A2+µq
+

2 B2)h
(
C2

[
λp

+

1 A2+µp
+

1 B2)µ
] 1

q−−1
)} 1

q−−1

(17)
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(ii) for any θ ∈ (0, 1), there exist positive constants C3 and C4 such that

C3(λ1 +µ1)d(x) ≤ u(x) ≤ C4

(
(λp

+

1 A2 +µp
+

1 B2)µ
) 1

p−−1
(d(x))θ, as d(x)→ 0, (18)

C3(λ1 + µ1)d(x) ≤ v(x) ≤ C4

{
(λq

+

2 A2 + µq
+

2 B2)h
(
C2

[
(λp

+

1 A2 + µp
+

1 B2)µ
] 1
q−−1

)} 1
q−−1

(d(x))θ, (19)

as d(x)→ 0,

where µ satisfies (10).

Proof: (i) Obvipusly, when 2δ ≤ d(x), we have

u(x) ≥ φ1(x) = ekσ − 1 +

∫ 2δ

σ

kekσ
( 2δ − t

2δ − σ

) 2
p−−1 ≥ (λ1A1 + µ1B1)

α

∫ 2δ

σ

M
( 2δ − t

2δ − σ

) 2
p−−1 dt

v(x) ≥ φ2(x) = ekσ − 1 +

∫ 2δ

σ

kekσ
( 2δ − t

2δ − σ

) 2
q−−1 ≥ (λ1A1 + µ1B1)

α

∫ 2δ

σ

M
( 2δ − t

2δ − σ

) 2
q−−1 dt

then there exists a positive constant C1 such that

C1(λ1 + µ1) ≤ max
x∈Ω̄

u(x) and C1(λ1 + µ1) ≤ max
x∈Ω̄

v(x)

It is easy to see

u(x) ≤ z1(x) ≤ max
x∈Ω̄

z1(x) ≤ C2

(
(λp

+

1 A2 + µp
+

1 B2)µ
) 1

p−−1

then

max
x∈Ω̄

u(x) ≤ C2

(
(λp

+

1 A2 + µp
+

1 B2)µ
) 1

p−−1

Similarly

max
x∈Ω̄

v(x) ≤ C2

{
(λq

+

2 A2 + µq
+

2 B2)h
(
C2

[
(λp

+

1 A2 + µp
+

1 B2)µ
] 1

q−−1
)} 1

q−−1

Thus (16) and (17) are valid.
(ii) Denote

v3(x) = α(d(x))θ, d(x) ≤ ρ,

where θ ∈ (0, 1) is a positive constant, ρ ∈ (0, δ) is small enough. Obviously, v3(x) ∈ C1(Ωρ).
By computation

−∆p(x)v3(x) = −(αθ)p(x)−1(θ − 1)(p(x)− 1)(d(x))(θ−1)(p(x)−1)−1(1 + Π(x)), d(x) < ρ,

where

Π(x) = d
(∇p∇d) lnαθ

(θ − 1)(p(x)− 1)
+ d

(∇p∇d) ln d

(p(x)− 1)
+ d

∆d

(θ − 1)(p(x)− 1)
.
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Let α = 1
ρC2

(
(λp

+

1 A2 + µp
+

1 B2)µ
) 1

p−−1
, where ρ > 0 is small enough, it is easy to see that

(α)p(x)−1 ≥ (λp
+

1 A2 + µp
+

1 B2)µ and |Π(x)| ≤ 1

2
.

when ρ > 0 is small enough, then we have

−∆p(x)v3(x) ≥ (λp
+

1 A2 + µp
+

1 B2)µ.

Obviously v3(x) ≥ z1(x) on ∂Ωρ. According to the comparison principle, we have v3(x) ≥ z1(x)
on Ωρ. Thus

u(x) ≤ C4((λp
+

1 A2 + µp
+

1 B2)µ)
1

p−−1 (d(x))θ, as d(x)→ 0.

Let α =
1

ρ
C2

{
(λq

+

2 A2 + µq
+

2 B2)h
(
C2

[
(λp

+

1 A2 + µp
+

1 B2)µ
] 1

q−−1
)} 1

q−−1

, when ρ > 0 is small

enough, it is easy to see that

(α)p(x)−1 ≥ (λq
+

2 A2 + µq
+

2 B2)h
(
C2

[
(λp

+

1 + µp
+

1 B2)µ
] 1

q−−1
)
.

Similarly, when ρ > 0 is small enough, we have

v(x) ≤ C4

{
(λq

+

2 A2 + µq
+

2 B2)h
(
C2

[
(λp

+

1 A2 + µp
+

1 B2)µ
] 1

q−−1
)} 1

q−−1

as d(x)→ 0

Obviously, when d(x) < σ, we have

u(x) ≥ φ1(x) = ekd(x) − 1 ≥ C3(λ1 + µ1)d(x).

v(x) ≥ φ2(x) = ekd(x) − 1 ≥ C3(λ1 + µ1)d(x).

Thus (18) and (19) are valid. This completes the proof.
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