# Time-independent Schrödinger polyharmonic equation and applications 

by<br>Imed Bachar


#### Abstract

We prove that the time-independent Schrödinger polyharmonic equation $(-\Delta)^{m} u+$ $q(x) u=\psi(x)>0, x \in D$, where $D$ is an unbounded domain of $\mathbb{R}^{n}(n \geq 2)$ has a positive solution provided that the function $q$ belongs to a certain Kato class of functions $K_{m, n}^{\infty}(D)$. As applications, the existence and asymptotic behavior of positive solutions of some polyharmonic problems are established.


Key Words: Schrödinger polyharmonic equation, Green function, polyharmonic elliptic equation, positive solution.
2010 Mathematics Subject Classification: Primary 34B27, Secondary 35J40.

## 1 Introduction and statement of main results

Considerable attention has been given to the time-independent Schrödinger equation

$$
\begin{equation*}
-\Delta u+q(x) u=\psi(x), x \in \Omega \subseteq \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

where $\Omega$ is an open subset of $\mathbb{R}^{n}$ and the potential $q$ belongs to the Kato class $K_{l o c}^{n, 1}(\Omega)$. See, e.g., Aizenman and Simon [1], Chiarenza, Fabes and Garofalo [4], Fabes and Strook [9], Hinz and Kalf [14], Simader [17], Zhao [20-22] and the references therein. Following different approaches these authors have studied the existence and regularity of the solutions for the Dirichlet problem. In [12, Theorem 5.1], the authors considered the following Schrödinger polyharmonic equation:

$$
\begin{equation*}
(-\Delta)^{m} u+q(x) u=\psi(x), x \in \Omega \subseteq \mathbb{R}^{n} \tag{1.2}
\end{equation*}
$$

where $\Omega$ is the unit ball in $\mathbb{R}^{n}$ with $n \geq 1$ and $m \geq 1$. They have proved that if the coefficient $q$ in (1.2) is continuous in $\bar{\Omega}$ and sufficiently small, $\psi$ positive implies that the solution $u$ of the Dirichlet problem for (1.2) is positive. The later result has been extended by the same authors in [13], by considering domains which are close to the unit ball and operators close to $(-\Delta)^{m}$. On the other hand in [5, Proposition 2.10], the authors studied the equation (1.2) in the case $m=2, n>4$ and where $\Omega=B(0, r)$ is the open ball of center 0 and radius $r$.

They have showed that the problem (1.2) subject to either Dirichlet boundary conditions or Navier boundary conditions admits a nonnegative Green function on $B(0, r)$ provided that the function $q$ belongs to the Kato class $K_{l o c}^{n, 2}(B(0, r))$. For more related results we refer to [10]. For the convenience of the reader, we recall the definition of the functional class $K_{l o c}^{n, m}(\Omega)$.

Definition 1.1. [5] Given $n>2 m$ and $\Omega$ be an open subset of $\mathbb{R}^{n}$. The Kato class $K_{l o c}^{n, m}(\Omega)$ is the set of functions $q \in L_{\text {loc }}^{1}(\Omega)$ such that for any compact set $K \subset \Omega$ the quantity

$$
\Phi q(r, K)=\sup _{x \in \mathbb{R}^{n}} \int_{B(x, r)} \frac{|q(y)| \chi_{K}(y)}{|x-y|^{n-2 m}} d y
$$

is finite (here, $\chi_{K}$ denotes the characteristic function of $K$ ) and

$$
\lim _{r \rightarrow 0} \Phi q(r, K)=0
$$

We emphasize that the proofs presented by these authors are based in the following 3G Theorem satisfied by be the Green function $G_{m, n}^{B}$ for the $m$-polyharmonic operator $u \rightarrow$ $(-\Delta)^{m} u$ with Dirichlet boundary conditions on the unit ball $B$ in $\mathbb{R}^{n}$.

Theorem 1.2. [12, Proposition 4.1] Given $n>2 m$. There exists a constant $C_{m, n}>0$ such that for all $x, y, z \in B$,

$$
\frac{G_{m, n}^{B}(x, z) G_{m, n}^{B}(z, y)}{G_{m, n}^{B}(x, y)} \leq C_{m, n}\left[|x-z|^{2 m-n}+|z-y|^{2 m-n}\right]
$$

In the present paper, we shall prove that similar results remain valid for the equation (1.2) on the unbounded domain $D=\left\{x \in \mathbb{R}^{n}:|x|>1\right\}(n \geq 2)$, where the function $q$ is assumed to belongs to the Kato class $K_{m, n}^{\infty}(D)$ (see Definition 1.3 below). As application we will answer the questions of existence and asymptotic behavior of positive solutions of some polyharmonic problems of the form:

$$
\left\{\begin{array}{l}
(-\Delta)^{m} u+f(., u)=0, \text { in } D \quad \text { (in the sense of distributions) }  \tag{1.3}\\
u>0, \\
\lim _{x \rightarrow \zeta \in \partial D} \frac{u(x)}{\left(|x|^{2}-1\right)^{m-1}}=\varphi(\zeta) \\
u(x) \simeq \rho_{0}(x), \text { near } x=\infty
\end{array}\right.
$$

where $\varphi$ is a nonnegative continuous function on $\partial D, m$ is a positive integer and

$$
\rho_{0}(x)= \begin{cases}1, & \text { for } n>2 m  \tag{1.4}\\ \ln |x|, & \text { for } n=2 m \\ |x|^{2 m-n}, & \text { for } n<2 m\end{cases}
$$

The notation $u(x) \simeq \rho_{0}(x)$, near $x=\infty$, means that for some constant $C>0$,

$$
\frac{1}{C} \rho_{0}(x) \leq u(x) \leq C \rho_{0}(x), \text { when } x \text { near } \infty
$$

Throughout this paper, we denote by $G_{m, n}^{D}$ a Green function of $(-\Delta)^{m}$ on $D$ with Dirichlet boundary conditions $\left(\frac{\partial}{\partial \nu}\right)^{j} u=0,0 \leq j \leq m-1$.
In [3, Theorem 2.6], the authors proved the following 3-G Theorem: there exists a constant $C_{m, n}>0$ such that for each $x, y, z \in D$,

$$
\begin{equation*}
\frac{G_{m, n}^{D}(x, z) G_{m, n}^{D}(z, y)}{G_{m, n}^{D}(x, y)} \leq C_{m, n}\left[\left(\frac{\rho(z)}{\rho(x)}\right)^{m} G_{m, n}^{D}(x, z)+\left(\frac{\rho(z)}{\rho(y)}\right)^{m} G_{m, n}^{D}(y, z)\right] \tag{1.5}
\end{equation*}
$$

where

$$
\rho(z)= \begin{cases}\frac{|z|-1}{|z|} & \text { if } n \geq 2 m  \tag{1.6}\\ |z|^{1-\frac{n}{m}}(|z|-1) & \text { if } n<2 m\end{cases}
$$

This form of the 3 -G Theorem has been exploited to introduce the Kato class $K_{m, n}^{\infty}(D)$ as follows:

Definition 1.3. A Borel measurable function $q$ in $D$ belongs to the class $K_{m, n}^{\infty}(D)$ if $q$ satisfies the following conditions

$$
\begin{align*}
& \lim _{r \rightarrow 0}\left(\sup _{x \in D} \int_{D \cap B(x, r)}\left(\frac{\rho(y)}{\rho(x)}\right)^{m} G_{m, n}^{D}(x, y)|q(y)| d y\right)=0  \tag{1.7}\\
& \lim _{M \rightarrow \infty}\left(\sup _{x \in D} \int_{(|y| \geq M)}\left(\frac{\rho(y)}{\rho(x)}\right)^{m} G_{m, n}^{D}(x, y)|q(y)| d y\right)=0 \tag{1.8}
\end{align*}
$$

where $\rho$ is given by (1.6).
This class contains for example any function belonging to $L^{s}(D) \cap L^{1}(D)$ with $s>\frac{n}{2 m}>1$ (see Example 3.1).
We point out that the class $K_{m, n}^{\infty}(D)$ is well adapted to study various existence and multiplicity results for wide classes of polyharmonic boundary value problems including the case of equations with blow-up at infinity. In the later case, we develop a more careful analysis with respect to other recent papers in this field for $m=1$ (see, e.g. $[6,11,16]$ ).
Next we shall often refer in this paper to $h_{m, n}$ the $m$-harmonic function defined in $D$ by

$$
\begin{equation*}
h_{m, n}(x):=|x|^{2 m-n} G_{m, n}^{B}(j(x), 0)=k_{m, n} \int_{1}^{|x|} \frac{\left(v^{2}-1\right)^{m-1}}{v^{n-1}} d v \tag{1.9}
\end{equation*}
$$

where $j: D \cup\{\infty\} \rightarrow B j(x)=|x|^{-2} x$ is the inversion and $k_{m, n}=\frac{\Gamma\left(\frac{n}{2}\right)}{2^{2 m-1} \pi^{\frac{n}{2}}[(m-1)!]^{2}}$.
Observe that,

$$
\begin{equation*}
h_{m, n}(x) \simeq \rho_{0}(x), \text { near } x=\infty \tag{1.10}
\end{equation*}
$$

We also let $H_{D} \varphi$ be the bounded continuous solution of the Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta u=0, \quad \text { in } D  \tag{1.11}\\
u=\varphi \text { on } \partial D \\
\lim _{|x| \rightarrow \infty} \frac{u(x)}{h_{1, n}(x)}=0
\end{array}\right.
$$

where $\varphi$ is a nonnegative nontrivial continuous on $\partial D$ and $h_{1, n}$ is the harmonic function defined by (1.9).
Note that from [8, p.427], the function $H_{D} \varphi$ belongs to $C(\bar{D} \cup\{\infty\})$ and satisfies

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|x|^{n-2} H_{D} \varphi(x)=c>0 . \tag{1.12}
\end{equation*}
$$

Our plan is organized as follows. In section 2, we will first study the existence and uniqueness of positive classical solution for the linear problem

$$
\left\{\begin{array}{l}
(-\Delta)^{m} u=\digamma, \text { in } D \\
u>0, \\
\left(-\frac{\partial}{\partial)^{j}} u=0 \text { on } \partial D \text { for } j=0, \ldots, m-2,\right. \\
\left(-\frac{\partial}{\partial \nu}\right)^{m-1} u=\phi \text { on } \partial D,
\end{array}\right.
$$

subject to an asymptotic behavior at $\infty$, where the functions $\digamma$ and $\phi$ are required to satisfy some convenient hypotheses.

In section 3, we collect some properties of functions belonging to $K_{m, n}^{\infty}(D)$. In particular, we derive from the 3-G Theorem (1.5) that for each $q \in K_{m, n}^{\infty}(D)$, we have

$$
\alpha_{q}:=\sup _{x, y \in D} \int_{D} \frac{G_{m, n}^{D}(x, z) G_{m, n}^{D}(z, y)}{G_{m, n}^{D}(x, y)}|q(z)| d z<\infty
$$

Next, we exploit again the inequality (1.5) to prove that on $D$ the inverse of polyharmonic operators that are perturbed by a zero-order term, are positivity preserving. That is, if the coefficient $q \in K_{m, n}^{\infty}(D)$ with $\alpha_{q} \leq \frac{1}{2}$ and $\psi$ is positive, then the equation

$$
\begin{equation*}
(-\Delta)^{m} u+q(x) u=\psi(x), x \in D \tag{1.13}
\end{equation*}
$$

has a positive solution.
In section 4, we will establish two existence results for the problem (1.3), where the function $f$ is closed to linear.
More precisely, first we consider the nonlinearity $f(x, t)=t g(x, t)$, we let

$$
\begin{equation*}
\omega(x):=h_{m, n}(x)+\left(|x|^{2}-1\right)^{m-1} H_{D} \varphi(x), \tag{1.14}
\end{equation*}
$$

and we assume that
$\left(H_{1}\right) g$ is a nonnegative measurable function on $D \times[0, \infty)$.
$\left(H_{2}\right)$ For each $\lambda>0$, there exists a positive function $q_{\lambda}=q \in K_{m, n}^{\infty}(D)$ with $\alpha_{q} \leq \frac{1}{2}$ such that for each $x \in D$, the map $t \longrightarrow t(q(x)-g(x, t \omega(x)))$ is continuous and nondecreasing on $[0, \lambda]$.
Using the pointwise estimates for the Green function and a perturbation arguments, we prove the following.

Theorem 1.4. Under hypotheses $\left(H_{1}\right)-\left(H_{2}\right)$, the problem

$$
\left\{\begin{array}{l}
(-\Delta)^{m} u+u g(., u)=0, \text { in } D \quad \text { (in the sense of distributions) }  \tag{1.15}\\
u>0, \\
\lim _{x \rightarrow \zeta \in \partial D} \frac{u(x)}{\left(|x|^{2}-1\right)^{m-1}}=\varphi(\zeta) \\
u(x) \simeq \rho_{0}(x), \text { near } x=\infty,
\end{array}\right.
$$

has at least one positive continuous solution u satisfying

$$
\left(1-\alpha_{q}\right) \omega(x) \leq u(x) \leq \omega(x)
$$

Moreover, for $n \geq 2 m$ we obtain $\lim _{|x| \rightarrow \infty} \frac{u(x)}{h_{m, n}(x)}=1$.
This result extends Theorem 2 of [15] to the polyharmonic case.
To prove a second existence result for the problem (1.3), we fix a positive harmonic function $h_{0}$ in $D$, which is continuous and bounded in $\bar{D}$, we let

$$
\omega_{0}(x)=h_{m, n}(x)+\left(|x|^{2}-1\right)^{m-1} h_{0}(x)
$$

and we assume that:
$\left(A_{1}\right) f$ is a nonnegative Borel measurable function on $D \times(0, \infty)$, which is continuous with respect to the second variable.
$\left(A_{2}\right)$ There exists a positive function $q \in K_{m, n}^{\infty}(D)$ with $\alpha_{q} \leq \frac{1}{2}$ such that $\forall x \in D$ and $\forall t \geq s \geq \omega_{0}(x)$ we have

$$
\left\{\begin{array}{l}
f(x, t)-f(x, s) \leq q(x)(t-s) \text { and } \\
0 \leq f(x, t) \leq t q(x)
\end{array}\right.
$$

Then we prove the following theorem, which extends Theorem 1.2 of [18] to the polyharmonic case.

Theorem 1.5. Assume $\left(A_{1}\right)-\left(A_{2}\right)$, then there exists a constant $c_{1}>1$ such that if $\widetilde{c} \geq c_{1}$ and $\varphi \geq c_{1} h_{0}$ on $\partial D$, then problem (1.3) has at least one positive continuous solution $u$ satisfying for each $x \in D$

$$
\omega_{0}(x) \leq u(x) \leq \omega(x)
$$

where $\omega(x)=\widetilde{c} h_{m, n}(x)+\left(|x|^{2}-1\right)^{m-1} H_{D} \varphi(x)$.
Moreover, for $n \geq 2 m$ we have

$$
\lim _{|x| \rightarrow \infty} \frac{u(x)}{h_{m, n}(x)}=\widetilde{c}
$$

A typical example of nonlinearity satisfying $\left(A_{1}\right)-\left(A_{2}\right)$ :
$f(x, t)=p(x) t^{\gamma}$, for $\gamma \in(0,1]$ and some appropriate $p$ admissible.
As usual, we denote by $\mathcal{B}^{+}(D)$, the set of of nonnegative Borel measurable functions in $D$.

For $x, y \in \mathbb{R}^{n}$, we let

$$
\left\{\begin{array}{l}
{[x, y]^{2}=|x-y|^{2}+\left(|x|^{2}-1\right)\left(|y|^{2}-1\right)} \\
\text { and } \\
\theta(x, y)=[x, y]^{2}-|x-y|^{2}=\left(|x|^{2}-1\right)\left(|y|^{2}-1\right)
\end{array}\right.
$$

For $\psi \in \mathcal{B}^{+}(D)$, we define

$$
V \psi(x):=V_{m, n} \psi(x)=\int_{D} G_{m, n}^{D}(x, y) \psi(y) d y, \text { for } x \in D
$$

and

$$
\|\psi\|:=\sup _{x \in D} \int_{D}\left(\frac{\rho(y)}{\rho(x)}\right)^{m} G_{m, n}^{D}(x, y) \psi(y) d y .
$$

For a continuous function $\varphi$ on $\partial D$ we denote by $P \varphi$ the function defined in $D$ by

$$
P \varphi(x)=\int_{\partial D} P(x, \xi) \varphi(\xi) \sigma(d \xi),
$$

where $P(x, \xi):=\frac{|x|^{2}-1}{|x-\xi|^{n}}$ is the Poisson kernel on $D$ and $\sigma$ is the normalized measure on the unit sphere of $\mathbb{R}^{n}$.
We remark that $P \varphi$ is a harmonic function in $D$ satisfying $\lim _{x \rightarrow \xi \in \partial D} P \varphi(x)=\varphi(\xi)$.
We also denote by $\mathfrak{J}$ the set of nonnegative harmonic functions $h$ defined in $D$ by

$$
h(x)=\int_{\partial D} P(x, \xi) \nu(d \xi),
$$

where $\nu$ is a nonnegative measure on $\partial D$ and $P(x, \xi)$ is the Poisson kernel on $D$.
Let $f$ and $g$ be two nonnegative functions on a set $S$.
We call $f \preceq g$ on $S$ if and only if there exists a constant $C>0$ such that

$$
f(x) \leq C g(x) \text { for all } x \in S \text {. }
$$

We say $f \simeq g$ on $S$ if and only if there exists a constant $C>0$ such that

$$
\frac{1}{C} g(x) \leq f(x) \leq C g(x) \text { for all } x \in S
$$

The letter $C$ will denote a generic positive constant which may vary from line to line.

## 2 The linear boundary value problem

First we consider the polyharmonic prototype Dirichlet problem:

$$
\left\{\begin{array}{l}
(-\Delta)^{m} u=f^{*}, \text { in } B,  \tag{2.1}\\
u>0, \text { in } B, \\
\left(-\frac{\partial}{\partial \nu}\right)^{j} u=0 \text { on } \partial B \text { for } j=0, \ldots, m-2, \\
\left(-\frac{\partial}{\partial \nu}\right)^{m-1} u=\phi \text { on } \partial B,
\end{array}\right.
$$

where $f^{*}$ is a positive function belonging to $C^{0, \gamma}(\bar{B})$ and $\phi$ is a positive function belonging to $C^{m+1, \gamma}(\partial B)$, for $0<\gamma<1$.

We recall the following existence results which is stated in [10].
Theorem 2.1. [10] The problem (2.1) admits a unique classical solution $u$ given by

$$
\begin{equation*}
u(x)=\int_{B} G_{m, n}^{B}(x, y) f^{*}(y) d y+\int_{\partial B} L_{m, n}^{B}(x, \xi) \phi(\xi) d \omega(\xi), \quad x \in B \tag{2.2}
\end{equation*}
$$

where the Poisson kernel $L_{m, n}^{B}$ is defined by

$$
\begin{equation*}
L_{m, n}^{B}(x, \xi)=\frac{\Gamma\left(\frac{n}{2}\right)}{2^{m}(m-1)!\pi^{\frac{n}{2}}} \frac{\left(1-|x|^{2}\right)^{m}}{|x-\xi|^{n}} \text {, with } x \in B, \xi \in \partial B \tag{2.3}
\end{equation*}
$$

Proposition 2.2. The unique positive solution $u$ of the problem (2.1), satisfies

$$
\begin{equation*}
(1-|x|)^{m} \preceq u(x) \preceq(1-|x|)^{m-1}, \quad \text { on } B . \tag{2.4}
\end{equation*}
$$

Proof: Let $f^{*}$ be a positive function belonging to $C^{0, \gamma}(\bar{B})$ and $\phi$ be a positive function belonging to $C^{m+1, \gamma}(\partial B)$, for $0<\gamma<1$. It is clear that

$$
\begin{equation*}
(1-|x|)^{m} \preceq \int_{\partial B} L_{m, n}^{B}(x, \xi) \phi(\xi) d \omega(\xi) \preceq(1-|x|)^{m-1} \tag{2.5}
\end{equation*}
$$

Next, we aim at proving that

$$
\begin{equation*}
\int_{B} G_{m, n}^{B}(x, y) f^{*}(y) d y \simeq(1-|x|)^{m}, \text { on } B \tag{2.6}
\end{equation*}
$$

where, $G_{m, n}^{B}$ is the Green function for the $m$-polyharmonic operator $u \rightarrow(-\Delta)^{m} u$ with Dirichlet boundary conditions on the unit ball $B$ in $\mathbb{R}^{n}$.
To this end, we claim that on $B^{2}$ (that is $(x, y) \in B^{2}$ ), we have

$$
(1-|x|)^{m}(1-|y|)^{m} \preceq G_{m, n}^{B}(x, y) \preceq \begin{cases}(1-|x|)^{m} & \text { if } m \geq n  \tag{2.7}\\ \frac{(1-|x|)^{m}}{|x-y|^{n-m}} & \text { if } m<n .\end{cases}
$$

Indeed, from [12, Proposition 2.3], we have

$$
G_{m, n}^{B}(x, y) \simeq \begin{cases}|x-y|^{2 m-n} \min \left(1, \frac{((1-|x|)(1-|y|))^{m}}{|x-y|^{2 m}}\right) & \text { for } n>2 m \\ \log \left(1+\frac{((1-|x|)(1-|y|))^{m}}{|x-y|^{2 m}}\right) & \text { for } n=2 m \\ ((1-|x|)(1-|y|))^{m-\frac{n}{2}} \min \left(1, \frac{((1-|x|)(1-|y|))^{\frac{n}{2}}}{|x-y|^{n}}\right) & \text { for } n<2 m\end{cases}
$$

Which implies that

$$
G_{m, n}^{B}(x, y) \simeq \begin{cases}\frac{((1-|x|)(1-|y|))^{m}}{|x-y|^{n-2 m}[x, y]^{2 m}} & \text { for } n>2 m  \tag{2.8}\\ \frac{((1-|x|)(1-|y|))^{m}}{[x, y]^{2 m}} \log \left(1+\frac{[x, y]^{2}}{|x-y|^{2}}\right) & \text { for } n=2 m \\ \frac{((1-|x|)(1-|y|))^{m}}{[x, y]^{n}} & \text { for } n<2 m\end{cases}
$$

So the lower inequality in (2.7) follows from (2.8) and the fact that for each $x, y \in B$, we have $|x-y| \leq[x, y] \preceq 1$.
Now, if $m \geq n$, then using the fact that for each $x, y \in B$, we have $(1-|y|) \leq[x, y]$, we deduce form (2.8) that

$$
G_{m, n}^{B}(x, y) \simeq \frac{((1-|x|)(1-|y|))^{m}}{[x, y]^{n}} \preceq((1-|x|))^{m}
$$

By similar argument we prove the upper inequality in (2.7) for the case $m<n$.
So using (2.7), we obtain

$$
\begin{aligned}
(1-|x|)^{m} \preceq \int_{B} G_{m, n}^{B}(x, y) f^{*}(y) d y & \preceq(1-|x|)^{m} \int_{B} \frac{f^{*}(y)}{|x-y|^{\max (n-m, 0)}} d y \\
& \preceq(1-|x|)^{m} \int_{B(0,2)} \frac{1}{|z|^{\max (n-m, 0)}} d z \\
& \preceq(1-|x|)^{m}
\end{aligned}
$$

This proves (2.6) .
Finally, the required inequality (2.4) follows from $(2.2),(2.5)$ and (2.6).

The $m$-Kelvin transform of a function $u$, is defined by

$$
\begin{equation*}
v(y)=|y|^{2 m-n} u\left(\frac{y}{|y|^{2}}\right), \text { for } y \in D \tag{2.9}
\end{equation*}
$$

By direct computation, $v(y)$ satisfies

$$
\begin{equation*}
\Delta^{m} v(y)=|y|^{-2 m-n}\left(\Delta^{m} u\right)\left(\frac{y}{|y|^{2}}\right) \tag{2.10}
\end{equation*}
$$

See [19, p. 221]. This fact and Theorem 2.1 and Proposition 2.2 immediately imply the following result.
Theorem 2.3. Let $\digamma$ be a nonnegative function such that $x \rightarrow|x|^{-2 m-n} \digamma\left(\frac{x}{|x|^{2}}\right) \in C^{0, \gamma}(\bar{B})$ and $\phi$ is a positive function belonging to $C^{m+1, \gamma}(\partial B)$, for $0<\gamma<1$. Then the problem

$$
\left\{\begin{array}{l}
(-\Delta)^{m} v=\digamma, \text { in } D  \tag{2.11}\\
v>0, \text { in } D, \\
\left(-\frac{\partial}{\partial \nu}\right)^{j} v=0 \text { on } \partial D \text { for } j=0, \ldots, m-2 \\
\left(-\frac{\partial}{\partial \nu}\right)^{m-1} v=\phi \text { on } \partial D \\
v(y) \simeq|y|^{2 m-n} \text { near } \infty
\end{array}\right.
$$

admits a unique classical solution $v$ satisfying

$$
\begin{equation*}
|y|^{m-n}(|y|-1)^{m} \preceq v(y) \preceq|y|^{m-n+1}(|y|-1)^{m-1}, \quad \text { on } D \text {. } \tag{2.12}
\end{equation*}
$$

## 3 The Kato class $K_{m, n}^{\infty}(D)$ and Schrödinger polyharmonic equation

### 3.1 The Kato class $K_{m, n}^{\infty}(D)$

Example 3.1. Given $s>\frac{n}{2 m}>1$. Then $L^{s}(D) \cap L^{1}(D) \subset K_{m, n}^{\infty}(D)$.
Indeed, let $0<r<1$ and $q \in L^{s}(D) \cap L^{1}(D)$ with $s>\frac{n}{2 m}>1$.
Since for each $x, y \in D$, we have

$$
\begin{equation*}
G_{m, n}^{D}(x, y)=|x|^{2 m-n}|y|^{2 m-n} G_{m, n}^{B}(j(x), j(y)) \tag{3.1}
\end{equation*}
$$

then by using (2.8), there exists a constant $C>0$, such that for each $x, y \in D$

$$
\begin{equation*}
\left(\frac{\rho(y)}{\rho(x)}\right)^{m} G_{m, n}^{D}(x, y) \leq C \frac{1}{|x-y|^{n-2 m}} \tag{3.2}
\end{equation*}
$$

This fact and the Hölder inequality imply that

$$
\begin{aligned}
\int_{B(x, r) \cap D}\left(\frac{\rho(y)}{\rho(x)}\right)^{m} G_{m, n}^{D}(x, y)|q(y)| d y \leq & C \int_{B(x, r) \cap D} \frac{|q(y)|}{|x-y|^{n-2 m}} d y \\
\leq & C\left(\int_{D}|q(y)|^{s} d y\right)^{\frac{1}{s}} \\
& \times\left(\int_{B(x, r)}|x-y|^{(2 m-n) \frac{s}{s-1}} d y\right)^{\frac{s-1}{s}} \\
\leq & C\left(\int_{0}^{r} t^{(2 m-n) \frac{s}{s-1}+n-1} d t\right)^{\frac{s-1}{s}} \rightarrow 0
\end{aligned}
$$

as $r \rightarrow 0$, since $(2 m-n) \frac{s}{s-1}+n-1>-1$ when $s>\frac{n}{2 m}$.
This shows that $q$ satisfies (1.7).
We claim that $q$ satisfies (1.8). Indeed, let $M>0$, then for each $\varepsilon>0$, there exists $r>0$, such

$$
\begin{aligned}
& \text { that } \\
& \qquad \int_{(|y| \geq M)}\left(\frac{\rho(y)}{\rho(x)}\right)^{m} G_{m, n}^{D}(x, y)|q(y)| d y \\
& \quad \leq \frac{\varepsilon}{2}+\int_{(|x-y| \geq r) \cap(|y| \geq M)}\left(\frac{\rho(y)}{\rho(x)}\right)^{m} G_{m, n}^{D}(x, y)|q(y)| d y \\
& \leq \frac{\varepsilon}{2}+C \int_{(|x-y| \geq r) \cap(|y| \geq M)} \frac{|q(y)|}{|x-y|^{n-2 m}} d y \\
& \leq \frac{\varepsilon}{2}+C \int_{(|y| \geq M)}^{|q(y)| d y \rightarrow 0, \text { as } M \rightarrow \infty}
\end{aligned}
$$

Next we collect some properties of the Kato class $K_{m, n}^{\infty}(D)$, which are useful to establish of our main results. For the proofs we refer to [3].

Proposition 3.2. [3] Let $q$ be a nonnegative function in $K_{m, n}^{\infty}(D)$. Then we have
(i) $\|q\|<\infty$.
(ii) $x \rightarrow q(x) \in L_{l o c}^{1}(D)$.
(iii) For each bounded function $h$ in $\mathfrak{J}$, the function
$x \rightarrow \int_{D} \frac{\left(|y|^{2}-1\right)^{m-1}}{\left(|x|^{2}-1\right)^{m-1}} h(y) G_{m, n}^{D}(x, y)|q(y)| d y$, is continuous in $\bar{D}$, vanishes at the boundary $\partial D$.
(iv) The family of functions $\left\{\frac{1}{h_{m, n}(.)} \int_{D} G_{m, n}^{D}(., y) h_{m, n}(y) \zeta(y) d y:|\zeta| \leq q\right\}$ is relatively compact in $C(\bar{D} \cup\{\infty\})$.
Furthermore,

$$
\lim _{|x| \rightarrow \infty} \frac{1}{h_{m, n}(x)} \int_{D} G_{m, n}^{D}(x, y) h_{m, n}(y) q(y) d y=0, \quad \text { for } n \geq 2 m
$$

Lemma 3.3. Let $q$ be a nonnegative function in $K_{m, n}^{\infty}(D)$. Then we have (i)

$$
\begin{equation*}
\alpha_{q}:=\sup _{x, y \in D} \int_{D} \frac{G_{m, n}^{D}(x, z) G_{m, n}^{D}(z, y)}{G_{m, n}^{D}(x, y)}|q(z)| d z<\infty \tag{3.3}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
V\left(q G_{m, n}^{D}(., y)\right)(x) \leq \alpha_{q} G_{m, n}^{D}(x, y), \text { for each } x, y \in D \tag{3.4}
\end{equation*}
$$

Proof: (i) It follows from the 3-G Theorem (1.5) and proposition 3.2, that $\alpha_{q} \leq 2 C_{m, n}\|q\|<$ $\infty$.
(ii) Inequality (3.4) follows immediately from the definitions of the potential function $V$ and $\alpha_{q}$.

Proposition 3.4. Let $q \in K_{m, n}^{\infty}(D)$. Then for each $x \in D$,

$$
\begin{equation*}
\int_{D} G_{m, n}^{D}(x, y) h_{m, n}(y)|q(y)| d y \leq \alpha_{q} h_{m, n}(x) \tag{3.5}
\end{equation*}
$$

Proof: It follows from (3.1), that

$$
\begin{equation*}
h_{m, n}(x)=\lim _{|y| \rightarrow \infty}|y|^{n-2 m} G_{m, n}^{D}(x, y) \tag{3.6}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\lim _{|y| \rightarrow \infty} \frac{G_{m, n}^{D}(z, y)}{G_{m, n}^{D}(x, y)}=\frac{h_{m, n}(z)}{h_{m, n}(x)} \tag{3.7}
\end{equation*}
$$

Thus by Fatou's lemma and (3.7), we deduce that, for $x \in D$

$$
\int_{D} G_{m, n}^{D}(x, y) \frac{h_{m, n}(y)}{h_{m, n}(x)}|q(y)| d y \leq \liminf _{|z| \rightarrow \infty} \int_{D} \frac{G_{m, n}^{D}(x, y) G_{m, n}^{D}(y, z)}{G_{m, n}^{D}(x, z)}|q(y)| d y \leq \alpha_{q}
$$

Proposition 3.5. For all $q \in K_{m, n}^{\infty}(D)$ and any $h \in \mathfrak{J}$, we have for each $x \in D$,

$$
\begin{equation*}
\int_{D} G_{m, n}^{D}(x, z)\left(|z|^{2}-1\right)^{m-1} h(z)|q(z)| d z \leq \alpha_{q}\left(|x|^{2}-1\right)^{m-1} h(x) \tag{3.8}
\end{equation*}
$$

Proof: Let $h \in \mathfrak{J}$. Then there exists a nonnegative measure $\nu$ on $\partial D$ such that

$$
h(x)=\int_{\partial D} P(x, \xi) \nu(d \xi)
$$

So we need only to verify $(3.8)$ for $h(y)=P(y, \xi)$ uniformly in $\xi \in \partial D$.
From (3.1) and [12, lemma 2.1], we deduce that the Green function $G_{m, n}^{D}$ satisfies

$$
\begin{equation*}
G_{m, n}^{D}(x, y)=k_{m, n}|x-y|^{2 m-n} \int_{1}^{\frac{[x, y]}{\mid x-y}} \frac{\left(v^{2}-1\right)^{m-1}}{v^{n-1}} d v \tag{3.9}
\end{equation*}
$$

Using the transformation $v^{2}=1+\frac{\theta(x, y)}{|x-y|^{2}}(1-t)$ in (3.9), we obtain

$$
G_{m, n}^{D}(x, y)=\frac{k_{m, n}}{2} \frac{(\theta(x, y))^{m}}{[x, y]^{n}} \int_{0}^{1} \frac{(1-t)^{m-1}}{\left(1-t \frac{\theta(x, y)}{[x, y]^{2}}\right)^{\frac{n}{2}}} d t
$$

This implies that for each $x, z \in D$ and $\xi \in \partial D$,

$$
\begin{equation*}
\lim _{y \rightarrow \xi} \frac{G_{m, n}^{D}(z, y)}{G_{m, n}^{D}(x, y)}=\frac{\left(|z|^{2}-1\right)^{m-1}}{\left(|x|^{2}-1\right)^{m-1}} \frac{P(z, \xi)}{P(x, \xi)} \tag{3.10}
\end{equation*}
$$

Thus by Fatou's lemma and (3.10), we deduce that, for $x \in D$, and $\xi \in \partial D$,

$$
\begin{aligned}
& \int_{D} G_{m, n}^{D}(x, z) \frac{\left(|z|^{2}-1\right)^{m-1}}{\left(|x|^{2}-1\right)^{m-1}} \frac{P(z, \xi)}{P(x, \xi)}|q(z)| d z \\
\leq & \liminf _{y \rightarrow \xi} \int_{D} \frac{G_{m, n}^{D}(x, z) G_{m, n}^{D}(z, y)}{G_{m, n}^{D}(x, y)}|q(z)| d z \leq \alpha_{q}
\end{aligned}
$$

### 3.2 The Schrödinger polyharmonic equation

For a nonnegative function $q$ in $K_{m, n}^{\infty}(D)$ such that $\alpha_{q} \leq \frac{1}{2}$, we put

$$
\mathcal{G}_{m, n}(x, y)=\left\{\begin{array}{l}
\sum_{k \geq 0}(-1)^{k}(V(q .))^{k}\left(G_{m, n}^{D}(., y)\right)(x) \text { if } x \neq y \\
+\infty \text { if } x=y
\end{array}\right.
$$

Then we have

Lemma 3.6. Let $q$ be a nonnegative function in $K_{m, n}^{\infty}(D)$ such that $\alpha_{q} \leq \frac{1}{2}$. Then for each $x, y$ in $D$, we have

$$
\begin{equation*}
\left(1-\alpha_{q}\right) G_{m, n}^{D}(x, y) \leq \mathcal{G}_{m, n}(x, y) \leq G_{m, n}^{D}(x, y) \tag{3.11}
\end{equation*}
$$

Proof: Since $\alpha_{q} \leq \frac{1}{2}$, we deduce from (3.4), that for $x \neq y$

$$
\left|\mathcal{G}_{m, n}(x, y)\right| \leq \sum_{k \geq 0}\left(\alpha_{q}\right)^{k} G_{m, n}^{D}(x, y)=\frac{1}{1-\alpha_{q}} G_{m, n}^{D}(x, y)
$$

On the other hand, from the expression for $\mathcal{G}_{m, n}$, we deduce that for $x \neq y$

$$
\begin{equation*}
\mathcal{G}_{m, n}(x, y)=G_{m, n}^{D}(x, y)-V\left(q \mathcal{G}_{m, n}(., y)\right)(x) \tag{3.12}
\end{equation*}
$$

Using these facts and (3.4), we obtain that

$$
\mathcal{G}_{m, n}(x, y) \geq G_{m, n}^{D}(x, y)-\frac{\alpha_{q}}{1-\alpha_{q}} G_{m, n}^{D}(x, y)=\frac{1-2 \alpha_{q}}{1-\alpha_{q}} G_{m, n}^{D}(x, y) \geq 0
$$

Hence the result follows from (3.12) and (3.4).

In the sequel, for a given nonnegative function $q \in K_{m, n}^{\infty}(D)$ such that $\alpha_{q} \leq \frac{1}{2}$, we define the operator $V_{q}$ on $\mathcal{B}^{+}(D)$ by

$$
V_{q} \psi(x)=\int_{D} \mathcal{G}_{m, n}(x, y) \psi(y) d y, \quad x \in D
$$

Then, we have the following Lemma.
Lemma 3.7. Let $q$ be a nonnegative function in $K_{m, n}^{\infty}(D)$ such that $\alpha_{q} \leq \frac{1}{2}$ and $\psi \in \mathcal{B}^{+}(D)$. Then $V_{q} \psi$ satisfies the following resolvent equation:

$$
\begin{equation*}
V \psi=V_{q} \psi+V_{q}(q V \psi)=V_{q} \psi+V\left(q V_{q} \psi\right) \tag{3.13}
\end{equation*}
$$

Proof: From the expression for $\mathcal{G}_{m, n}$, we deduce for $\psi \in \mathcal{B}^{+}(D)$ such that $V \psi<\infty$,

$$
V_{q} \psi=\sum_{k \geq 0}(-1)^{k}(V(q \cdot))^{k} V \psi
$$

So we obtain that

$$
\begin{aligned}
V_{q}(q V \psi) & =\sum_{k \geq 0}(-1)^{k}(V(q .))^{k}[V(q V \psi)] \\
& =-\sum_{k \geq 1}(-1)^{k}(V(q .))^{k} V \psi \\
& =V \psi-V_{q} \psi
\end{aligned}
$$

The second equality is proved by integrating (3.12).

Proposition 3.8. Let $q$ be a nonnegative function in $K_{m, n}^{\infty}(D)$ such that $\alpha_{q} \leq \frac{1}{2}$ and let $\psi \in L_{l o c}^{1}(D)$ be such that $V \psi \in L_{l o c}^{1}(D)$. Then $V_{q} \psi$ is a solution of the time-independent Schrödinger polyharmonic equation (1.13).

Proof: Using the resolvent equation (3.13), we have

$$
V_{q} \psi=V \psi-V\left(q V_{q} \psi\right)
$$

Applying the operator $(-\Delta)^{m}$ on both sides of the above equality, we obtain that

$$
(-\Delta)^{m}\left(V_{q} \psi\right)=\psi-q V_{q} \psi \text { (in the sense of distributions). }
$$

This completes the proof.

## 4 Proofs of Theorems 1.4 and 1.5

## Proof of Theorem 1.4.

Let $\varphi$ be a nonnegative continuous function on $\partial D$ and $H_{D} \varphi$ the bounded continuous solution of the Dirichlet problem (1.11).We recall that

$$
\omega(x)=h_{m, n}(x)+\left(|x|^{2}-1\right)^{m-1} H_{D} \varphi
$$

Since $g$ satisfies $\left(H_{2}\right)$, there exists a nonnegative function $q \in K_{m, n}^{\infty}(D)$ such that $\alpha_{q} \leq \frac{1}{2}$ and for each $x \in D$, the map $t \rightarrow t(q(x)-g(x, t \omega(x)))$ is continuous and nondecreasing on $[0,1]$. We consider the closed convex set $\Lambda$ given by

$$
\Lambda:=\left\{v \in \mathcal{B}^{+}(D):\left(1-\alpha_{q}\right) \leq v \leq 1\right\}
$$

We define the operator $T$ on $\Lambda$ by

$$
\begin{equation*}
T v(x):=\frac{1}{\omega(x)}\left[\omega(x)-V_{q}(q \omega)(x)\right]+\frac{1}{\omega(x)} V_{q}[(q-g(., \omega v)) \omega v](x), \text { for } x \in D \tag{4.1}
\end{equation*}
$$

By $\left(H_{2}\right)$, we deduce that

$$
0 \leq g(x, t \omega(x)) \leq q(x), \text { for each } x \in D \text { and } t \in[0,1]
$$

Hence,

$$
\begin{equation*}
0 \leq g(., \omega v) \leq q, \quad \text { for all } v \in \Lambda \tag{4.2}
\end{equation*}
$$

So the operator $T$ is well defined on $\Lambda$.
On the other hand, using (3.5), (3.8) and (3.3) we have

$$
\begin{equation*}
\frac{1}{\omega} V_{q}(q \omega) \leq \alpha_{q}<\infty \tag{4.3}
\end{equation*}
$$

We claim that $\Lambda$ is invariant under $T$. Indeed, using (4.1) and (4.3) we have for $v \in \Lambda$,

$$
T v \leq \frac{1}{\omega}\left[\omega-V_{q}(q \omega)\right]+\frac{1}{\omega} V_{q}(q \omega v) \leq 1
$$

Furthermore, from (4.1), (4.2) and (4.3), we obtain

$$
T v \geq \frac{1}{\omega}\left[\omega-V_{q}(q \omega)\right] \geq\left(1-\alpha_{q}\right)
$$

Next, we will prove that the operator $T$ is nondecreasing on $\Lambda$. Indeed, let $u, v \in \Lambda$ be such that $u \leq v$. Since the map $t \rightarrow t(q(x)-g(x, t \omega(x)))$ is nondecreasing on $[0,1]$, for $x \in D$, we obtain

$$
T v-T u=\frac{1}{\omega} V_{q}[\omega[v(q-g(., \omega v))-u(q-g(., \omega u))]] \geq 0
$$

Now, we consider the sequence $\left(v_{k}\right)$ defined by $v_{0}=\left(1-\alpha_{q}\right) \in \Lambda$ and $v_{k+1}=T v_{k}$ for $k \in \mathbb{N}$. Since $\Lambda$ is invariant under $T$, then $v_{1}=T v_{0} \geq v_{0}$, and so from the monotonicity of $T$, we deduce that

$$
\left(1-\alpha_{q}\right)=v_{0} \leq v_{1} \leq \ldots \leq v_{k} \leq v_{k+1} \leq 1
$$

Furthermore, by $\left(H_{2}\right)$ it is clear for each $x \in D$ that the map $t \rightarrow t g(., t \omega(x))$ is continuous on $[0, \infty)$. Which together with the dominated convergence theorem imply that the sequence $\left(v_{k}\right)$ converges to a function $v \in \Lambda$ which is a fixed point of $T$. We let $u(x)=\omega(x) v(x)$, for each $x \in D$.
Then $u$ satisfies $\left(1-\alpha_{q}\right) \omega \leq u \leq \omega$ and

$$
u=\left(I-V_{q}(q .)\right) \omega+V_{q}[(q-g(., u)) u]
$$

That is

$$
\left(I-V_{q}(q .)\right) u=\left(I-V_{q}(q .)\right) \omega-V_{q}(u g(., u)) .
$$

Applying the operator $(I+V(q)$.$) on both sides of the above equality and using (3.13) we$ deduce that $u$ satisfies

$$
\begin{equation*}
u=\omega-V(u g(., u)) \tag{4.4}
\end{equation*}
$$

Finally, we need to verify that $u$ is a positive continuous solution for the problem (1.3). Indeed, from (4.2) we obtain

$$
\begin{equation*}
u g(., u) \leq \omega q \tag{4.5}
\end{equation*}
$$

We deduce by Proposition $3.2(i i)$, that $u g(., u) \in L_{l o c}^{1}(D)$ and by $(3.5)$ and $(3.8)$ that $V(u g(., u)) \leq$ $V(\omega q) \leq \alpha_{q} \omega \in L_{l o c}^{1}(D)$.
Hence we conclude by [7], that $u$ satisfies (in the sense of distributions) the elliptic differential equation

$$
(-\Delta)^{m} u+u g(., u)=0 \text { in } D
$$

Finally, since by Proposition 3.2, (3.5) and (3.8) the function $x \mapsto \frac{V(\omega q)(x)}{\omega(x)}$, is continuous and bounded, then by writing

$$
\frac{1}{\omega} V(\omega q)=\frac{1}{\omega}[V(u g(., u))+V(\omega q-u g(., u))]
$$

we deduce that $u \in C(D)$. Using (4.4), (4.5), (1.12) and again Proposition 3.2, we obtain that $\lim _{x \rightarrow \zeta \in \partial D} \frac{u(x)}{\left(|x|^{2}-1\right)^{m-1}}=\varphi(\zeta)$ and for $n \geq 2 m, \lim _{|x| \rightarrow \infty} \frac{u(x)}{h_{m, n}(x)}=1$. This ends the proof.

Example 4.1. Let $\gamma, \sigma \in \mathbb{R}_{+}$and $\lambda<2 m \leq 2 m+\max (0,2 m-n)<\mu$.
Let $\varphi$ be a nonnegative continuous bounded function on $\partial D$. Put $\omega(x)=h_{m, n}(x)+\left(|x|^{2}-1\right)^{m-1} H_{D} \varphi$. Assume that $p$ is a nonnegative Borel measurable function on $D$ satisfying

$$
p(x) \leq \frac{\nu}{|x|^{\mu-\lambda}(|x|-1)^{\lambda} \omega^{\gamma}(x)\left(1+\omega^{\sigma}(x)\right)}
$$

where $\nu$ is a sufficiently small positive constant. Then the problem

$$
\left\{\begin{array}{l}
(-\Delta)^{m} u+p(x) u^{\gamma} \log \left(1+u^{\sigma}\right)=0, \quad \text { in } D(\text { in the sense of distributions }) \\
\quad \lim _{x \rightarrow \zeta \in D} \frac{u(x)}{\left(|x|^{2}-1\right)^{m-1}}=\varphi(\zeta), \\
u(x) \simeq \rho_{0}(x), \text { near } x=\infty
\end{array}\right.
$$

has a continuous positive solution u satisfying

$$
u(x) \simeq h_{m, n}(x)+\left(|x|^{2}-1\right)^{m-1} H_{D} \varphi
$$

Moreover, for $n \geq 2 m$ we have

$$
\lim _{|x| \rightarrow \infty} \frac{u(x)}{h_{m, n}(x)}=1
$$

## Proof of Theorem 1.5.

We recall that $h_{0}$ is a fixed positive harmonic function in $D$, which is continuous and bounded in $\bar{D}$. Let $\varphi$ be a nonnegative nontrivial continuous bounded function on $\partial D$ and let $H_{D} \varphi$ be the bounded continuous solution of the Dirichlet problem (1.11).
Let $q \in K_{m, n}^{\infty}(D)$ be given by $\left(A_{2}\right)$ and put $c_{1}=\frac{1}{\left(1-\alpha_{q}\right)}>1$. Let $\widetilde{c} \geq c_{1}$ and assume that
$\left(\mathbf{A}_{3}\right) \varphi(x) \geq c_{1} h_{0}(x), \quad \forall x \in \partial D$.
Put $\omega_{0}(x)=h_{m, n}(x)+\left(|x|^{2}-1\right)^{m-1} h_{0}(x)$ and $\omega(x)=\widetilde{c} h_{m, n}(x)+\left(|x|^{2}-1\right)^{m-1} H_{D} \varphi(x)$.
We consider the closed convex set $S$ given by

$$
S:=\left\{u \in \mathcal{B}^{+}(D): \omega_{0}(x) \leq u(x) \leq \omega(x), \text { for all } x \in D\right\} .
$$

Since $H_{D} \varphi=\varphi$ on $\partial D$ and $h_{0}$ is continuous and bounded in $\bar{D}$, we obtain by $\left(A_{3}\right)$ that $H_{D} \varphi \geq c_{1} h_{0}$ on $D$. So $S$ is a well defined nonempty set in $\mathcal{B}^{+}(D)$.
By $\left(A_{2}\right)$, we deduce that

$$
\begin{equation*}
0 \leq f(., u) \leq q u, \text { for any } u \in S \tag{4.6}
\end{equation*}
$$

So we define the operator $L$ on $S$ by

$$
\begin{equation*}
L u:=\omega-V_{q}(q \omega)+V_{q}[q u-f(., u)] . \tag{4.7}
\end{equation*}
$$

It is easy to verify that $S$ is invariant under $L$ and that the operator $L$ is nondecreasing on $S$. Now, we consider the sequence $\left(u_{k}\right)$ defined by $u_{0}=\omega_{0} \in S$ and $u_{k+1}=L u_{k}$ for $k \in \mathbb{N}$. Then we have

$$
\omega_{0} \leq u_{1} \leq \ldots \leq u_{k} \leq u_{k+1} \leq \omega
$$

Using $\left(A_{2}\right)$ and similar argument as in the proof of Theorem 1.4, we prove that the sequence $\left(u_{k}\right)$ converges to a function $u \in S$, which satisfies

$$
\begin{equation*}
u=\omega-V f(., u) \tag{4.8}
\end{equation*}
$$

Finally, we verify that $u$ is the required solution.
Example 4.2. Let $\gamma \in(0,1] n>2 m$ and $\lambda<2 m<\mu$. Let $\varphi$ be a nonnegative continuous bounded function on $D$ and $h_{0}$ be a positive harmonic function in $D$, which is bounded and continuous in $\bar{D}$. Then from [2, p.258], there exists a constant $C>0$, such that for each $x \in D$,

$$
C \frac{(|x|-1)}{(|x|+1)^{n-1}} \leq h_{0}(x)
$$

Suppose that $p$ is a nonnegative Borel measurable function on $D$ satisfying

$$
p(x) \leq \frac{\nu}{|x|^{\mu-\lambda-(\gamma-1)(n-m)}(|x|-1)^{\lambda+(\gamma-1) m}}
$$

where $\nu$ is a sufficiently small positive constant. Then there exists a constant $c_{1}>1$ such that if $\widetilde{c} \geq c_{1}$ and $\varphi \geq c_{1} h_{0}$ on $\partial D$, the problem

$$
\left\{\begin{array}{l}
(-\Delta)^{m} u+p(x) u^{\gamma}(x)=0, \quad \text { in } D(\text { in the sense of distributions }) \\
\lim _{x \rightarrow \zeta \in \partial D} \frac{u(x)}{\left(|x|^{2}-1\right)^{m-1}}=\varphi(\zeta), \\
\lim _{|x| \rightarrow \infty} \frac{u(x)}{h_{m, n}(x)}=\widetilde{c}
\end{array}\right.
$$

has a continuous positive solution $u$ satisfying for each $x \in D$

$$
\omega_{0}(x) \leq u(x) \leq \omega(x)
$$

Acknowledgement 1. The author thanks the referee for a careful reading of the paper and useful suggestions. This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

## References

[1] M. Aizenman, B. Simon, Brownian motion and harnack inequality for Schrödinger operators. Commun. Pure Appl. Math., 35:209-273, 1982.
[2] D.-H. Armitage, S.J. Gardiner, Classical potential theory. Springer-Verlag, 2001.
[3] I. Bachar, H. Mâagli, N. Zeddini, Estimates on the Green function and existence of positive solutions for some nonlinear polyharmonic problems outside the unit ball. Analysis and Applications., 6(2):121-150, 2008.
[4] F. Chiarenza, E. Fabes, N. Garofalo, Harnack's inequality for Schrödinger operators and the continuity of solutions. Proc. Amer. Math. Soc., 98:415-425, 1986.
[5] G. Caristi, E. Mitidieri, Harnack inequality and applications to solutions of biharmonic equations, Operator Theory, Advances and Applications., 168:1-26, DOI: 10.1007/3-7643-7601-5_1 Birkhäuser Verlag Basel/Switzerland, 2006.
[6] F. Cîrstea, V. Rădulescu, Blow-up boundary solutions of semilinear elliptic problems. Nonlinear Anal., 48:521-534, 2002.
[7] K.L. Chung, Z. Zhao, From Brownian motion to Schrödinger's equation. Springer-Verlag, 1995.
[8] R. Dautray, J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, L'operateur de Laplace. Masson, 1987.
[9] E.-B. Fabes, D.W. Stroock, The $L^{p}$-integrability of Green's function and fundamental solutions for elliptic and parabolic equations. Duke Math. J., 51:997-1016, 1984.
[10] F. Gazzola, H.C. Grunau, G. Sweers, Polyharmonic boundary value problems positivity preserving and nonlinear higher order elliptic equations in bounded domains. Lecture Notes in Mathematics., 1991, DOI: 10.1007/978-3-642-12245-3, 2010.
[11] A. Ghanmi, H. Mâagli, V. Rădulescu, N. Zeddini, Large and bounded solutions for a class of nonlinear Schrödinger stationary systems. Analysis and Applications., 7:391-404, 2009.
[12] H.C. Grunau, G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions. Math.Ann., 307:589-626, 1997.
[13] H.C. Grunau, G. Sweers, Positivity properties of elliptic boundary value problems of higher order. Nonlinear Analysis., 30(8):5251-5258, 1997.
[14] A.M. Hinz, H. Kalf, Subsolution estimates and harnack inequality for Schrödinger operators. J. Reine Angew. Math., 404:118-134, 1990.
[15] H. Mâagli, S. Masmoudi, Positive solutions of some nonlinear elliptic problems in unbounded domain. Ann Acad Scien Fenn Math., 29:151-166, 2004.
[16] V. RĂdulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, in handbook of differential equations: Stationary partial differential equations, ed..M. Chipot. Vol. 4:483-591. Elsevier, 2007.
[17] Ch.G. Simader, An elementary proof of harnack's inequality for Schrödinger operators and related topics. Math. Z., 203:129-152, 1990.
[18] F. Toum, N. Zeddini, Existence of positive solutions for nonlinear boundary-value problems in unbounded domains of $R^{n}$. Electron. J. Differential Equations., 143:14 pp., 2005.
[19] J. Weiand, X. Xu, Classification of solutions of higher order conformally invariant equations. Math. Ann., 313:207-228, 1999.
[20] Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge. J. Math. Anal. Appl., 116:309-334, 1986.
[21] Z. Zhao, Uniform boundedness of conditional gauge and Schrödinger equations. Commun.Math. Phys., 93:19-31, 1984.
[22] Z. Zhao, Conditional gauge with unbounded potential. Z. Wahrsch. Verw. Gebiete., 65:13-18, 1983.

Received: 24.06.2012
Accepted: 10.08.2012
King Saud University College of Sciences Mathematics Department P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia

E-mail: abachar@ksu.edu.sa

