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On the existence of solutions for a Fredholm-type integral inclusion
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Aurelian Cernea

Abstract

We consider an integral inclusion of Fredholm type and we obtain several existence
results by using suitable fixed point theorems.
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1 Introduction

This paper is concerned with the following integral inclusion

x(t) = λ(t) +

∫ T

0

G(t, s)u(s)ds, (1.1)

u(t) ∈ F (t, x(t)), a.e. (I), (1.2)

where I = [0, T ], λ(.) : I → X, F (., .) : I ×X → P(X), G(., .) : I × I → R, are given mappings
and X is a separable Banach space.

In the last years we observe a remarkable amount of interest in the study of existence of
solutions of several boundary value problems associated to differential inclusions of the form

Dx ∈ F (t, x), (1.3)

where D is a differential operator and F (., .) : I × X → P(X) is a set-valued map ([1-5,8,13]
etc.). Most of these existence results are obtained using fixed point techniques and are based on
an integral form of the right inverse to the operator D. This means that for every f the unique
solution y of the equation Dy = f can be written in the form y = Rf , where the operator
R posses nonnegative Green’s function. Therefore, the existence of solutions to problem (1.3)
together with boundary conditions reduces to the existence of solutions to problem (1.1)-(1.2).

The aim of this paper is to provide two existence results for problem (1.1)-(1.2), when the
set-valued map F (., .) has convex or nonconvex values. Our results are essentially based on



254 Aurelian Cernea

a nonlinear alternative of Leray-Schauder type and on Bressan-Colombo selection theorem for
lower semicontinuous set-valued maps with decomposable values. In this way we extend and
unify some of the results mentioned above. More exactly, the main results in all papers cited
above become consequences of our Theorems 3.2 and 3.4 below.

We note that another existence result for problem (1.1)-(1.2) in the case when F (t, .) is
Lipschitz with nonconvex values, is obtain in our previous paper [7] by the application of the
set-valued contraction principle due to Covitz and Nadler.

The paper is organized as follows: in Section 2 we recall some preliminary facts that we
need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space with the corresponding norm |.| and let I = [0, T ]. Denote by

L(I) the σ-algebra of all Lebesgue measurable subsets of I, by P(X) the family of all nonempty
subsets of X and by B(X) the family of all Borel subsets of X. If A ⊂ I then χA(.) : I → {0, 1}
denotes the characteristic function of A. For any subset A ⊂ X we denote by A the closure of
A.

Recall that the Pompeiu-Hausdorff distance of the closed subsets A,B ⊂ X is defined
by dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}, where d(x,B) =
infy∈B d(x, y).

As usual, we denote by C(I,X) the Banach space of all continuous functions x(.) : I → X
endowed with the norm |x(.)|C = supt∈I |x(t)| and by L1(I,X) the Banach space of all (Bochner)
integrable functions x(.) : I → X endowed with the norm |x(.)|1 =

∫
I
|x(t)|dt.

A subset D ⊂ L1(I,X) is said to be decomposable if for any u(·), v(·) ∈ D and any subset
A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A.

Consider T : X → P(X) a set-valued map. A point x ∈ X is called a fixed point for T (.) if
x ∈ T (x). T (.) is said to be bounded on bounded sets if T (B) := ∪x∈BT (x) is a bounded subset
of X for all bounded sets B in X. T (.) is said to be compact if T (B) is relatively compact for
any bounded sets B in X. T (.) is said to be totally compact if T (X) is a compact subset of X.
T (.) is said to be upper semicontinuous if for any open set D ⊂ X, the set {x ∈ X;T (x) ⊂ D}
is open in X. T (.) is called completely continuous if it is upper semicontinuous and totally
bounded on X.

It is well known that a compact set-valued map T (.) with nonempty compact values is upper
semicontinuous if and only if T (.) has a closed graph.

In Theorem 9 in [11], O’ Regan proved a nonlinear alternative of Leray-Schauder type.
Namely, if D and D are open and closed subsets in a normed linear space X such that 0 ∈ D
and if T : D → P(X) is a completely continuous set-valued map with compact convex values,
then either the inclusion x ∈ T (x) has a solution, or there exists x ∈ ∂D (the boundary of D)
such that λx ∈ T (x) for some λ > 1.

Obviously, the next two statements are consequences of this result.

Corollary 2.1 Let Br(0) and Br(0) be the open and closed balls in a normed linear space X
centered at the origin and of radius r and let T : Br(0) → P(X) be a completely continuous
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set-valued map with compact convex values. Then either
i) the inclusion x ∈ T (x) has a solution, or
ii) there exists x ∈ X with |x| = r and λx ∈ T (x) for some λ > 1.

Corollary 2.2 Let Br(0) and Br(0) be the open and closed balls in a normed linear space X
centered at the origin and of radius r and let T : Br(0)→ X be a completely continuous single
valued map with compact convex values. Then either

i) the equation x = T (x) has a solution, or
ii) there exists x ∈ X with |x| = r and x = λT (x) for some λ < 1.

We recall that a multifunction T (.) : X → P(X) is said to be lower semicontinuous if for
any closed subset C ⊂ X, the subset {s ∈ X;G(s) ⊂ C} is closed. If F (., .) : I ×X → P(X) is
a set-valued map with compact values and x(.) ∈ C(I,X) we define

SF (x) := {f ∈ L1(I,X); f(t) ∈ F (t, x(t)) a.e. (I)}.

We say that F (., .) is of lower semicontinuous type if SF (.) is lower semicontinuous with closed
and decomposable values. A set-valued map G : I → P(X) with nonempty compact convex
values is said to be measurable if for any x ∈ X the function t → d(x,G(t)) is measurable. A
set-valued map F (., .) : I×X → P(X) is said to be Carathéodory if t→ F (t, x) is measurable for
any x ∈ X and x→ F (t, x) is upper semicontinuous for almost all t ∈ I. F (., .) is said to be L1-
Carathéodory if for any l > 0 there exists hl(.) ∈ L1(I,R) such that sup{|v|; v ∈ F (t, x)} ≤ hl(t)
a.e. (I), ∀x ∈ Bl(0).

Finally, by a solution of problem (1.1)-(1.2) we mean a function x(.) ∈ C(I,X) for which
there exists u(.) ∈ L1(I,X) such that (1.1)-(1.2) are satisfied.

3 The main results

We consider first the case when F (., .) is convex valued.

Hypothesis 3.1 i) F (., .) : I × X → P(X) has nonempty compact convex values and is
Carathéodory.

ii) There exist ϕ(.) ∈ L1(I,R) with ϕ(t) > 0 a.e. (I) and there exists a nondecreasing
function ψ : [0,∞)→ (0,∞) such that

sup{|v|; v ∈ F (t, x)} ≤ ϕ(t)ψ(|x|) a.e. (I), ∀x ∈ X.

iii) The mappings λ(.) : I → X and G(., .) : I × I → R are continuous.
Denote G0 := supt,s∈I |G(t, s)|.

Theorem 3.2 Assume that Hypothesis 3.1 is satisfied and there exists r > 0 such that

r > G0|ϕ|1ψ(r). (3.1)

Then problem (1.1)-(1.2) has at least one solution x(.) such that |x(.)|C < r.
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Proof: Let r > 0 be as in (3.1) and consider the set-valued map T : Br(0) → P(C(I,X))
defined by

T (x) := {v(.) ∈ C(I,X); v(t) := λ(t) +

∫ T

0

G(t, s)f(s)ds, f ∈ SF (x)}. (3.2)

We show that T (.) satisfies the hypotheses of Corollary 2.1.
First, we show that T (x) ⊂ C(I,X) is convex for any x ∈ C(I,X).
If v1, v2 ∈ T (x) then there exist f1, f2 ∈ SF (x) such that for any t ∈ I one has

vi(t) = λ(t) +

∫ T

0

G(t, s)fi(s)ds, i = 1, 2.

Let 0 ≤ α ≤ 1. Then for any t ∈ I we have

(αv1 + (1− α)v2)(t) = λ(t) +

∫ T

0

G(t, s)[αf1(s) + (1− α)f2(s)]ds.

The values of F (., .) are convex, thus SF (x) is a convex set and hence αh1+(1−α)h2 ∈ T (x).
Secondly, we show that T (.) is bounded on bounded sets of C(I,X).
Let B ⊂ C(I,X) be a bounded set. Then there exist m > 0 such that |x|C ≤ m ∀x ∈ B.

If v ∈ T (x) there exists f ∈ SF (x) such that v(t) = λ(t) +
∫ T

0
G(t, s)f(s)

ds. One may write for any t ∈ I

|v(t)| ≤ |λ(t)|+
∫ T

0

|G(t, s)|.|f(s)|ds ≤ |λ(t)|+
∫ T

0

|G(t, s)|ϕ(s)ψ(|x(t)|)ds

and therefore
|v|C ≤ |λ|C +G0|ϕ|1ψ(m) ∀v ∈ T (x),

i.e., T (B) is bounded.
We show next that T (.) maps bounded sets into equi-continuous sets.
Let B ⊂ C(I,X) be a bounded set as before and v ∈ T (x) for some x ∈ B. There exists

f ∈ SF (x) such that v(t) = λ(t) +
∫ T

0
G(t, s)f(s)ds. Then for any t, τ ∈ I we have

|v(t)− v(τ)| ≤ |
∫ T

0

G(t, s)f(s)ds−
∫ T

0

G(τ, s)f(s)ds| ≤

≤ sup
s∈I
|G(t, s)−G(τ, s)|.|ϕ|1ψ(m).

Let us note that
lim

t→tau
max
s∈I
|G(t, s)−G(τ, s)| = 0 (3.3)

Assume by contrary that there exists ε0 > 0, tm → τ , sm ∈ I such that ε0 < |G(tm, sm)−
G(τ, sm)|. Since I is compact we may assume that sm → s0 ∈ I as m→∞. Therefore,

ε0 < |G(tm, sm)−G(τ, sm)| ≤ |G(tm, sm)−G(τ, s0)|+ |G(τ, s0)−G(τ, sm)|.
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We take m→∞ and by the continuity of G(., .) we get a contradiction.

It follows that |v(t) − v(τ)| → 0 as t → τ . Therefore, T (B) is an equi-continuous set in
C(I,X).

We apply now Arzela-Ascoli’s theorem we deduce that T (.) is completely continuous on
C(I,X).

In the next step of the proof we prove that T (.) has a closed graph.

Let xn ∈ C(I,X) be a sequence such that xn → x∗ and vn ∈ T (xn) ∀n ∈ N such that
vn → v∗. We prove that v∗ ∈ T (x∗).

Since vn ∈ T (xn), there exists fn ∈ SF (xn) such that vn(t) = λ(t) +
∫ T

0
G(t, s)

fn(s)ds.

Define Γ : L1(I,X)→ C(I,X) by (Γ(f))(t) := λ(t)+
∫ T

0
G(t, s)f(s)ds.One has maxt∈I |vn(t)−

v∗(t)| = |vn(.)− v∗(.)|C → 0 as n→∞
It follows (e.g., [10]) that Γ ◦ SF has closed graph and from the definition of Γ we get

vn ∈ Γ ◦ SF (xn). Since xn → x∗, vn → v∗ it follows the existence of f∗ ∈ SF (x∗) such that

v∗(t) = λ(t) +
∫ T

0
G(t, s)f∗(s)ds.

Therefore, T (.) is upper semicontinuous and compact on Br(0). We apply Corollary 2.1 to
deduce that either i) the inclusion x ∈ T (x) has a solution in Br(0), or ii) there exists x ∈ X
with |x|C = r and λx ∈ T (x) for some λ > 1.

Assume that ii) is true. With the same arguments as in the second step of our proof we get
r = |x(.)|C ≤ G0|ϕ|1ψ(r) which contradicts (3.1). Hence only i) is valid and theorem is proved.

We consider now the case when F (., .) is not necessarily convex valued. Our existence result
in this case is based on the Leray-Schauder alternative for single valued maps and on Bressan
Colombo selection theorem.

Hypothesis 3.3 i) F (., .) : I×X → P(X) has compact values, F (., .) is L(I)⊗B(X) measurable
and x→ F (t, x) is lower semicontinuous for almost all t ∈ I.

ii) There exist ϕ(.) ∈ L1(I,R) with ϕ(t) > 0 a.e. (I) and there exists a nondecreasing
function ψ : [0,∞)→ (0,∞) such that

sup{|v|; v ∈ F (t, x)} ≤ ϕ(t)ψ(|x|) a.e. (I), ∀x ∈ X.

iii) The mappings λ(.) : I → X and G(., .) : I × I → R are continuous.

Theorem 3.4 Assume that Hypothesis 3.3 is satisfied and there exists r > 0 such that condition
(3.1) is satisfied.

Then problem (1.1)-(1.2) has at least one solution on I.

Proof: We note first that if Hypothesis 3.3 is satisfied then F (., .) is of lower semicontinuous
type (e.g., [9]). Therefore, with Bressan-Colombo selection theorem ([6]) we deduce that there
exists f(.) : C(I,X)→ L1(I,X) such that f(x) ∈ SF (x) ∀x ∈ C(I,X).
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We consider the corresponding problem

x(t) = λ(t) +

∫ T

0

G(t, s)f(x(s))ds, t ∈ I (3.4)

in the space C(I,X).
Let r > 0 that satisfies condition (3.1) and define the set-valued map T : Br(0) →

P(C(I,X)) by

(T (x))(t) := λ(t) +

∫ T

0

G(t, s)f(x(s))ds.

Obviously, the integral equation (3.4) is equivalent with the operator equation

x(t) = (T (x))(t), t ∈ I. (3.5)

It remains to show that T (.) satisfies the hypotheses of Corollary 2.2.
We show that T (.) is continuous on Br(0). From Hypotheses 3.3. ii) we have

|f(x(t))| ≤ ϕ(t)ψ(|x(t)|) a.e. (I)

for all x(.) ∈ C(I,X). Let xn, x ∈ Br(0) such that xn → x. Then

|f(xn(t))| ≤ ϕ(t)ψ(r) a.e. (I).

From Lebesgue’s dominated convergence theorem and the continuity of f(.) we obtain, for
all t ∈ I

lim
n→∞

(T (xn))(t) = lim
n→∞

(λ(t) +

∫ T

0

G(t, s)f(xn(s))ds) =

= λ(t) +

∫ T

0

G(t, s)f(x(s))ds = (T (x))(t),

i.e., T (.) is continuous on Br(0).
Repeating the arguments in the proof of Theorem 3.2 with corresponding modifications

it follows that T (.) is compact on Br(0). We apply Corollary 2.2 and we find that either i)
the equation x = T (x) has a solution in Br(0), or ii) there exists x ∈ X with |x|C = r and
x = λT (x) for some λ < 1.

As in the proof of Theorem 3.2 if the statement ii) holds true, then we obtain a contradiction
to (3.1). Thus only the statement i) is true and problem (1.1) has a solution x(.) ∈ C(I,X)
with |x(.)|C < r.

Remark 3.5 Similar results to the ones in Theorems 3.2 and 3.4 may be obtained if instead
of Fredholm type integral inclusions we consider Volterra type integral inclusions of the form

x(t) = λ(t) +

∫ t

0

G(t, s)u(s)ds, u(t) ∈ F (t, x(t)), a.e. (I).

Acknowledgement. Research partially supported by the CNCS grant PN-II-ID-PCE-2011-3-
0198.



On a Fredholm-type integral inclusion 259

References

[1] A. Arara, M. Benchohra, S. K. Ntouyas, A. Ouahab, Existence results for bound-
ary value problems for fourth-order differential inclusions with nonconvex valued right
hand side, Arch. Math. (Brno)l 40 (2004), 219–227.

[2] G. Bartuzel, A. Fryzkowski, Filippov lemma for certain differential inclusion of third
order, Demonstratio Math., 41 (2008), 337–352.

[3] M. Benchohra, J. R. Graef, J. Henderson, S. K. Ntouyas, Nonresonance impulsive
higher order functional nonconvex-valued differential inclusions, Electron. J. Qual. Theory
Differ. Equ., (2002), no 13, 1–13.

[4] M. Benchohra, S. Hamani, J. Henderson, Functional differential inclusions with
integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., (2007), no. 15,
1–13.

[5] A Boucerif, N. Chiboub-Fellah Merabet, Boundary value problems for first order
multivalued differential systems, Arch. Math. (Brno), 41 (2005), 187–195.

[6] A. Bressan, G. Colombo, Extensions and selections of maps with decomposable values,
Studia Math., 90 (1988), 69–86.

[7] A. Cernea, An existence result for a Fredholm-type integral inclusion, Fixed Point
Theory, 9 (2008), 441–447.

[8] B.C. Dhage, S.K. Ntouyas, D.S. Palimkar, On boundary value problems of second
order convex and nonconvex differential inclusions, Fixed Point Theory, 9 (2008), 89–104.
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