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Abstract

We prove a homological result in additive exact categories, which we call the Square-
Cross Lemma. Its applications include a property related to the Green formula from the
theory of Ringel-Hall algebras as well as the Two-Square Lemma of Fay, Hardie and Hilton.
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1 Introduction

Quillen exact categories [10] are suitable frameworks to develop homological algebra in additive
categories more general than abelian categories. Moreover, one may need relative homological
algebra, and choose an exact structure in an abelian category different than the usual one of
all kernel-cokernel pairs. Their ubiquity and versatility made exact structures natural tools in
algebra, algebraic geometry, algebraic K-theory, functional analysis etc. A recent exhaustive
account on exact categories is presented by Bühler [2].

We use the setting of Quillen exact categories in order to establish a general homological
result, and we present two applications. The first one is a bijective correspondence between
certain sets of “squares” and “crosses” consisting of short exact sequences with respect to an
exact structure, which extends a property related to the Green formula from the theory of
Ringel-Hall algebras [6, 12, 13]. The second one is a generalization of the Two-Square Lemma
of Fay, Hardie and Hilton [4], a useful result for obtaining a completely categorical construction
of the connecting morphism from the Snake Lemma. For categorical terminology the reader is
referred to [8, 9, 15].

2 Exact categories

We recall the concepts of exact category given by Quillen [10], as simplified by Keller [7], and
exact chain complexes over exact categories (e.g., see [2]).
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Definition 2.1. By an exact category we mean an additive category endowed with a distin-
guished class E of short exact sequences satisfying the axioms [E0], [E1], [E2] and [E2op] below.
The short exact sequences in E are called conflations, while the kernels and cokernels appearing
in such exact sequences are called inflations (denoted by �) and deflations (denoted by �)
respectively.

[E0] The identity morphism 10 : 0→ 0 is a deflation.
[E1] The composition of two deflations is again a deflation.
[E2] The pullback of a deflation along an arbitrary morphism exists and is again a deflation.
[E2op] The pushout of an inflation along an arbitrary morphism exists and is again an

inflation.

The duals of [E0] and [E1] on inflations also hold in any exact category [7].

Definition 2.2. Let C be an exact category. A chain complex (A•, d•A) over C is called exact

(or acyclic) if each differential dn−1A : An−1 → An factors as An−1
pn−1

� ZnA
in−1

� An such that

each sequence ZnA
in−1

� An
pn

� Zn+1A is a conflation.

The following types of additive categories will be useful for applications of our results (e.g.,
see [2]).

Definition 2.3. An additive category C is called:

1. quasi-abelian if it is pre-abelian (i.e., it has kernels and cokernels), any pushout of a kernel
along an arbitrary morphism is a kernel, and any pullback of a cokernel along an arbitrary
morphism is a cokernel.

2. weakly idempotent complete if every retraction has a kernel, or equivalently, every section
has a cokernel.

Note that the present concept of pre-abelian category is different of that from [1]. There
is the following hierarchy of additive categories, from particular to general: abelian category,
quasi-abelian category, pre-abelian category and weakly idempotent complete category.

The following definition was given by Richman and Walker in a pre-abelian category [11],
and extended to an arbitrary category in [3].

Definition 2.4. Let C be a category. A kernel in C is called semi-stable if its pushout along an
arbitrary morphism exists and is again a kernel. Dually, a cokernel in C is called semi-stable if
its pullback along an arbitrary morphism exists and is again a cokernel. A kernel-cokernel pair

A
i→ B

d→ C in C is called stable if i is a semi-stable kernel and d is a semi-stable cokernel.

Remark 2.5. (1) Any additive category has a unique minimal exact structure, whose confla-
tions are the split exact sequences (e.g., see [2]).

(2) Any quasi-abelian category has a unique maximal exact structure, whose conflations are
the kernel-cokernel pairs [14].

(3) Any weakly idempotent complete category has a unique maximal exact structure, whose
conflations are the stable exact sequences [3].
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3 The Square-Cross Lemma

We are now in a position to establish the main result of the paper. In particular, our theorem
holds for the maximal exact structure given by the kernel-cokernel pairs in a quasi-abelian
category (and, in particular, abelian category), and for the maximal exact structure given by
the stable exact sequences in a weakly idempotent complete additive category (see Remark 2.5).
For a morphism f : A → B we denote by ker(f) : Ker(f) → A and coker(f) : B → Coker(f)
its kernel and its cokernel respectively.

Theorem 3.1. Consider the following commutative diagram in an additive category:

A

f

��

i //

PO

B

b

��

d //

f1

}}

C

h

��

B1

γ

��

A′

f ′

��

a

33

i1

==

C ′

h′

��

B2

d2

==

h2}}

PB

A′′
i′′

// B′′
d′′

// C ′′

where (B1, i1, f1) is the pushout of i and f , and (B2, d2, h2) is the pullback of d′′ and h′. Then:

(i) There exists a unique morphism γ : B1 → B2 such that:[
h2

d2

]
γ[ i1 f1 ] =

[
i′′f ′ b
a hd

]
.

Assume further that the category is exact.

(ii) If the first row is a conflation, a = 0 and h is a monomorphism, then i1 = ker(d2γ). If
the last row is a conflation, a = 0 and f ′ is an epimorphism, then d2 = coker(γi1).

(iii) If the first row is a conflation, a = 0, i′′f ′ = 0 and h, h′ are monomorphisms, then
i1 = ker(γ). If the last row is a conflation, a = 0, hd = 0 and f, f ′ are epimorphisms,
then d2 = coker(γ).

(iv) If the rows and the columns are conflations, a = 0 and b = 0, then the following sequence
is exact:

A //
f1i // B1

γ
// B2

d′′h2 // // C ′′.
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Proof: (i) We have i′′f ′f = bi and af = hdi, whence the pushout property of ABA′B1 implies
that there exist a unique morphism g1 : B1 → B′′ such that g1i1 = i′′f ′ and g1f1 = b, and
a unique morphism g′1 : B1 → C ′ such that a = g′1i1 and g′1f1 = hd. Then d′′g1[ i1 f1 ] =
[ d′′i′′f ′ d′′b ] = [ h′a h′hd ] = h′g′1 [ i1 f1 ] . The pushout property of ABA′B1 ensures that the
morphism [ i1 f1 ] : A′ ⊕ B → B1 is a cokernel and, in particular, an epimorphism. Then we
must have d′′g1 = h′g′1. Now by the pullback property of B2C

′B′′C ′′ there exists a unique
morphism γ : B1 → B2 such that h2γ = g1 and d2γ = g′1. Then we have:[

h2

d2

]
γ[ i1 f1 ] =

[
h2γi1 h2γf1
d2γi1 d2γ1f1

]
=
[
g1i1 g1f1
g′1i1 g

′
1f1

]
=
[
i′′f ′ b
a hd

]
.

Since [ i1 f1 ] : A′ ⊕ B → B1 is an epimorphism, and
[
h2

d2

]
: B2 → B′′ ⊕ C ′ is a monomorphism

by the pullback property of B2C
′B′′C ′′, the morphism γ : B1 → B2 with the required property

is uniquely determined.
(ii) Assume that the first row is a conflation, a = 0 and h is a monomorphism. Then the

pushout ABA′B1 implies the existence of a conflation A′
i1→ B1

d1→ C. Since h is a monomor-
phism, it follows that i1 = ker(d1) = ker(hd1) = ker(d2γ).

(iii) Assume that the first row is a conflation, a = 0, i′′f ′ = 0 and h, h′ are monomorphisms.
Since pullbacks preserve monomorphisms, h2 is a monomorphism. We have h2γi1 = i′′f ′ = 0,
whence γi1 = 0. Now let k : K → B1 be a morphism such that γk = 0. Then d2γk = 0,
and since i1 = ker(d2γ), there is a unique morphism k′ : K → A′ such that k = i1k

′. Hence
i1 = ker(γ).

(iv) First note that f1i is an inflation and d′′h2 is a deflation by the axioms of an exact cate-
gory. Also, f1, i1 are inflations, and d2, h2 are deflations, hence we may consider f2 = coker(f1),
d1 = coker(i1), i2 = ker(d2) and h1 = ker(h2). The pushout ABA′B1 and the pullback
B2C

′B′′C ′′ yield the following commutative diagrams in which the rows and the columns are
conflations:

A��

f

��

// i // B��

f1

��

d // // C

A′

f ′

����

//
i1 // B1

d1 // //

f2
����

C

A′′ A′′

C��

h1

��

C��

h
��

A′′ //
i2 // B2

d2 // //

h2
����

C ′

h′

����

A′′ //
i′′
// B′′

d′′
// // C ′′

Then the following diagram is commutative:

B

d
����

//
f1 // B1[

f2
d1

]
��

f2 // // A′′

C //
[ 01 ]
// A′′ ⊕ C

[ 0 1 ]
// //

[ i2 h1 ]

��

A′′��

i′′

��

C //
h1

// B2
h2

// // C ′′
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The Short Five Lemma [2, Corollary 3.2] implies that
[
f2
d1

]
is a deflation and [ i2 h1 ] is an

inflation. Since the upper-left and the lower-right squares are both pullback-pushout squares

[2, Proposition 2.12], it follows that ker
([

f2
d1

])
= f1i and coker ([ i2 h1 ]) = d′′h2. We also have:

[
h2

d2

]
[ i2 h1 ]

[
f2
d1

]
[ i1 f1 ] =

[
h2i2 h2h1

d2i2 d2h1

] [ f2i1 f2f1
d1i2 d1f1

]
=
[
i′′ 0
0 h

] [
f ′ 0
0 d

]
=
[
i′′f ′ 0
0 hd

]
.

Now the uniqueness of γ implies that γ = [ i2 h1 ]
[
f2
d1

]
. Finally, since [ i2 h1 ] is a monomorphism

and
[
f2
d1

]
is an epimorphism, it follows that:

ker(γ) = ker
([

f2
d1

])
= f1i, coker(γ) = coker ([ i2 h1 ]) = d′′h2.

Hence the required sequence is exact.

4 A bijective correspondence

Let C be an abelian category with the exact structure given by the kernel-cokernel pairs. For
an object B′, denote by O(B′) the set of all diagrams from Theorem 3.1 with all rows and
columns being kernel-cokernel pairs such that γ factors through B′ as γ = b2b1 for some kernel
b1 and cokernel b2, and by Q(B′) the set of all diagrams

B��

g

��

A′ //
i′ // B′

d′ // //

g′

����

C ′

B′′

where the horizontal and the vertical sequences are kernel-cokernel pairs.

Remark 4.1. Let k be a finite field, Λ a finitary (i.e., the Ext1-groups of finite Λ-modules are
finite) hereditary k-algebra and P the set of isomorphism classes of finite Λ-modules. Define a
multiplication on the Q-space with basis P by counting the number of submodules K of a given
module M with prescribed isomorphism classes both of K and M/K. Thus one constructs the
Ringel-Hall algebra H with coefficients in Q [12]. Green defined a comultiplication ρ : H →
H⊗H such that H becomes a bialgebra, where ρ is an algebra homomorphism with respect to
some twisted multiplication H⊗H → H [6]. In the proof of the compatibility for multiplication
and comultiplication on H, it appears the so-called Green formula, which is essentially based on
a bijective correspondence between sets of the form O(B′) and Q(B′) (see [6, 13] for details).
We show that such a homological result, which may be of independent interest, still holds in a
more general categorical setting.



266 S. Crivei

Theorem 4.2. With the above notation, |O(B′)| = |Q(B′)|.

Proof: First, start with a diagram in O(B′) and use the same notation as in the proof of
Theorem 3.1. Denote i′ = b1i1, d′ = d2b2, g = b1f1 and g′ = h2b2. Then

d′b1 [ i1 f1 ] = [ d2γi1 d2γf1 ] = [ g2i1 g2f1 ] = [ 0 hd ] = hd1 [ i1 f1 ] ,

[
h2

d2

]
b2i
′ =

[
h2γi1
d2γi1

]
=
[
g1i1
g2i1

]
=
[
i′′f ′

0

]
=
[
h2

d2

]
i2f
′.

Since [ i1 f1 ] is an epimorphism and
[
h2

d2

]
is a monomorphism, d′b1 = hd1 and b2i

′ = i2f
′. Then

we have the following left-hand side commutative diagram:

A��

f

��

// i // B��

f1

��

d // // C

A′ //
i1 // B1

d1 // //
��

b1
��

C��

h
��

A′

f ′

����

i′ // B′
d′ //

b2
����

C ′

A′′ //
i2 // B2

d2 // //

h2
����

C ′

h′

����

A′′ //
i′′ // B′′

d′′ // // C ′′

A��

f

��

// i // B

g

��

d // // C��

h
��

A′

f ′

����

// i′ // B′
d′ // //

g′

��

C ′

h′

����

A′′ //
i′′ // B′′

d′′ // // C ′′

where the first two and the last two rows are kernel-cokernel pairs. Since A′B′A′′B2 is a
pullback, i′ = ker(d′) by [8, Chapter I, Proposition 13.2], hence the middle row is also a kernel-
cokernel pair. Since g′g = 0, the 3×3 Lemma [2, Corollary 3.6] applied to the above right-hand
side commutative diagram yields that its middle column is a kernel-cokernel pair. Therefore,
we have the required diagram in Q(B′).

Now start with a diagram in Q(B′). Let (A, i, f) be the pullback of the morphisms i′ and
g, and let (C ′′, d′′, h′) be the pushout of the morphisms d′ and g′. Since ABA′B′ is a pullback
square and B′C ′B′′C ′′ is a pushout square, it follows that i = ker(d′g) and h′ = coker(d′g) [8,
Chapter I, Proposition 13.2]. Since the category is abelian, we have

Coker(i) = Coker(ker(d′g)) ∼= Ker(coker(d′g)) = Ker(h′),

and we denote it by C. Also, denote d = coker(i) : B → C and h = ker(h′) : C → C ′. Similarly,
let f ′ = coker(f) : A′ → A′′ and i′′ = ker(d′′) : A′′ → B′′. Considering the pushout (B1, i1, f1)
of the morphisms i and f , and the pullback (B2, d2, h2) of the morphisms d′′ and h′, we obtain
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the following commutative diagram with rows being kernel-cokernel pairs:

A��

f

��

// i // B��

f1

��

d // // C

A′ //
i1 // B1

d1 // //

b1
��

C��

h
��

A′

f ′

����

// i′ // B′
d′ // //

b2

��

C ′

A′′ //
i2 // B2

d2 // //

h2
����

C ′

h′

����

A′′ //
i′′ // B′′

d′′ // // C ′′

where g = b1f1 and g′ = h2b2. Clearly, b1 is a kernel and b2 is a cokernel. It follows that:

[
h2

d2

]
b2b1 [ i1 f1 ] =

[
h2b2
d2b2

]
[ b1i1 b1f1 ] =

[
g′

d′

]
[ i′ g ] =

[
i′′f ′ 0
0 hd

]
.

By Theorem 3.1, we must have γ = b2b1. Therefore, we obtain the required diagram in O(B′).

Finally, in order to prove that the above correspondences define a bijection, start with a
diagram in O(B′) and construct the first diagram from the proof of this theorem. Then we are
done if we check that ABA′B′ is a pullback and B′C ′B′′C ′′ is a pushout. We only show the
first part, the other one being dual. Let u : D → A′ and v : D → B be morphisms such that
i′u = gv. We have hdv = d′gv = d′i′u = 0, whence dv = 0 because h is a monomorphism. Then
there exists a unique morphism w : D → A such that iw = v. We have i′fw = giw = gv = i′u,
whence fw = u because i′ is a monomorphism. The uniqueness of w with the required properties
follows easily by similar arguments. Hence ABA′B′ is a pullback.

5 The Two-Square Lemma

In this section we use the Square-Cross Lemma in order to immediately deduce a generalized
version of the Two-Square Lemma of Fay, Hardie and Hilton [4, Lemma 3]. This result was
essential in [4] for providing an easy completely categorical construction of the connecting
morphism from the Snake Lemma. For pre-abelian categories such a result was established by
Generalov [5]. In particular, our theorem holds for the maximal exact structure given by the
stable exact sequences in a weakly idempotent complete additive category (see Remark 2.5),
extending the above results.
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Theorem 5.1 (Two-Square Lemma). Consider the following commutative diagram in an ad-
ditive category:

A

f

��

i //

PO

B

b

��

d //

f1

}}

C

h′

��

B1

γ

((
B2

d2

==

h2}}

PB

A′′

i1

==

i′′
// B′′

d′′
// C ′′

where di = 0, d′′i′′ = 0, (B1, i1, f1) is the pushout of i and f , and (B2, d2, h2) is the pullback of
d′′ and h′. Then:

(i) There exists a unique morphism γ : B1 → B2 such that:[
h2

d2

]
γ[ i1 f1 ] =

[
i′′ b
0 d

]
.

Assume further that the category is exact.

(ii) If the first row is a conflation, then i1 = ker(d2γ). If the last row is a conflation, then
d2 = coker(γi1).

(iii) If the first row is a conflation, i′′ = 0 and h′ is a monomorphism, then i1 = ker(γ). If
the last row is a conflation, d = 0 and f is an epimorphism, then d2 = coker(γ).

Proof: (i) In Theorem 3.1 take A′ = A′′, C ′ = C, f ′ = 1′′A, h = 1C and a = 0.
(ii), (iii) These are immediate from Theorem 3.1, using (i).
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4-0100.
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