Some examples of two-dimensional regular rings

 $\label{eq:by} \mbox{1Tiberiu Dumitrescu and 2Cristodor Ionescu}$

Abstract

Let B be a ring and $A = B[X,Y]/(aX^2 + bXY + cY^2 - 1)$ where $a,b,c \in B$. We study the smoothness of A over B and the regularity of A, when B is a ring of algebraic integers.

Key Words: Smooth algebra, regular ring, ring of algebraic integers. **2010 Mathematics Subject Classification**: Primary 13H05, Secondary 13F05, 11R04.

1 Introduction

In [5], Roberts investigated the \mathbb{Z} -smoothness and the regularity of the ring $\mathbb{Z}[X,Y]/(aX^2+bXY+cY^2-1)$, $a,b,c\in\mathbb{Z}$. He showed that smoothness depends on $a,b,c\bmod 2$ (cf. [5, Theorem 1]), while regularity depends on $a,b,c\bmod 4$ (cf. [5, Theorem 2]).

In this note, we use ideas from [5] to study the regularity of the ring $A := B[X,Y]/(aX^2 + bXY + cY^2 - 1)$, $a,b,c \in B$, where B is a ring of algebraic integers. As expected this regularity depends on $a,b,c \mod (\sqrt{2B})^2$ (see Corollary 4). Our main result (Theorem 2) gives a description of the singular locus of B. On the way, we show that the smoothness of A over B can be easily described: if B is an arbitrary ring, then A is smooth over B iff $a,c \in \sqrt{(2,b)B}$ (Theorem 1). Finally, Example 2 suggests that our arguments can be also used in certain higher degree cases. Throughout this paper all rings are commutative and unitary. For any undefined terminology our standard reference is [4].

2 Smoothness

Let B be an arbitrary ring. The smoothness of $B[X,Y]/(aX^2 + bXY + cY^2 - 1)$ over B can be described easily.

Theorem 1. Let B be a ring and $a, b, c \in B$. Then $A = B[X, Y]/(aX^2 + bXY + cY^2 - 1)$ is smooth over B iff $a, c \in \sqrt{(2, b)B}$.

Proof: Let J' be the jacobian ideal of A and set $f = aX^2 + bXY + cY^2$. By Euler's formula for homogeneous functions, we have $2f = X(\partial f/\partial X) + Y(\partial f/\partial Y)$, hence $2 \in J'$, because the image of f in A is 1. Moding out by 2B, we may assume that B has characteristic 2. We have to show that A is smooth over B iff a, c are nilpotent modulo b. Set C = B[X, Y]. Note that J' = JA where

$$J = (bX, bY, f - 1)C = (bX, bY, aX^{2} + cY^{2} - 1)C = (b, aX^{2} + cY^{2} - 1)C$$

because $b = aX(bX) + cY(bY) - b(aX^2 + cY^2 - 1)$. So A is smooth over B iff J = C, cf. [3, Proposition 5.1.9]. Now J = C iff $aX^2 + cY^2 - 1$ is invertible modulo b iff a, c are nilpotent modulo b.

Corollary 1. ([5, Theorem 1].) Let $A = \mathbb{Z}[X,Y]/(aX^2 + bXY + cY^2 - 1)$. Then A is smooth over \mathbb{Z} iff b is odd or a, b, c are all even.

Proof: By Theorem 1, A is smooth over \mathbb{Z} iff $a, c \in \sqrt{(2, b)}\mathbb{Z}$ iff b is odd or a, b, c are all even.

Similar results can be stated for any ring of algebraic integers. Here are two examples.

Corollary 2. Let $A = \mathbb{Z}[(1+\sqrt{-7})/2][X,Y]/(aX^2+bXY+cY^2-1)$ and set $\theta = (1+\sqrt{-7})/2$. Then A is smooth over $\mathbb{Z}[\theta]$ iff one of the following cases occurs:

- (i) b is not divisible by θ or $\bar{\theta}$,
- (ii) b is not divisible by θ and a, b, c are all divisible by $\bar{\theta}$,
- (iii) b is not divisible by $\bar{\theta}$ and a, b, c are all divisible by θ ,
- (iv) a, b, c are all divisible by 2.

Proof: We have $2 = \theta \bar{\theta}$. By Theorem 1, A is smooth over $B = \mathbb{Z}[\theta]$ iff $a, c \in \sqrt{(2, b)B} = (\theta, b)B \cap (\bar{\theta}, b)B$. As θB and $\bar{\theta} B$ are maximal ideals, the assertion is clear.

Corollary 3. Let $A = \mathbb{Z}[\theta][X,Y]/(aX^2 + bXY + cY^2 - 1)$, $\theta = (\sqrt{2} + \sqrt{6})/2$. Then A is smooth over $\mathbb{Z}[\theta]$ iff b is not divisible by $1 + \theta$ or a, b, c are all divisible by $1 + \theta$.

Proof: It can be checked by PARI-GP (see [2]) that $B = \mathbb{Z}[\theta]$ is a PID and $2B = (1 + \theta)^4 B$. So $\sqrt{(2,b)B} = (1 + \theta,b)B$. Apply Theorem 1.

3 Regularity

Throughout this section we fix the following notations. Let B be a ring of algebraic integers, that is, the integral closure of \mathbb{Z} in a finite field extension of \mathbb{Q} . It is well-known (e.g. [1, Chapter 6]) that B is a Dedekind domain, hence $II^{-1} = B$ for every nonzero ideal I of B. Fix $a, b, c \in B$. We study the regularity of the ring

$$A = B[X, Y]/(aX^{2} + bXY + cY^{2} - 1).$$

Set $q = aX^2 + bXY + cY^2 - 1$ and C = B[X, Y].

Lemma 1. If $Q \in Spec(A)$ and $Q \cap B \not\supseteq (2,b)B$, then A_Q is a regular ring.

Proof: Since $P := Q \cap B \not\supseteq (2, b)B$, Theorem 1 shows that the composed morphism

$$B_P \to B_P \otimes_B A = B_P[X,Y]/(g) \to A_Q$$

is smooth. Hence A_Q is regular, because B is regular.

Let Γ be the (finite) set of prime ideals P of B such that $P \supseteq (2,b)B$ and $P \not\supseteq (a,c)B$. By Theorem 1, A is smooth over B iff $\Gamma = \emptyset$.

Lemma 2. If $Q \in Spec(A)$, then $Q \cap B \in \Gamma$ iff $Q \cap B \supseteq (2,b)B$.

Proof: Assume that $P := Q \cap B \supseteq (2,b)B$. As (a,b,c)A = A, it follows that $Q \not\supseteq (a,c)B$, so $P \not\supseteq (a,c)B$, that is, $P \in \Gamma$. The converse is obvious.

Let $P \in \Gamma$. Since B is a ring of algebraic integers and $2 \in P$, it follows that B/P is a finite (thus perfect) field of characteristic 2. If $z \in B$, let \bar{z} denote its image in B/P. Let $d, e \in B$ be such that

$$\bar{d}^2 = \bar{a} \text{ and } \bar{e}^2 = \bar{c}. \tag{3.1}$$

Note that $d, e \in B$ are uniquely determined modulo P. If $a \notin P$ (hence $d \notin P$), consider the polynomial $F_P \in C$ given by

$$F_P := d^2 g(\frac{-eY - 1}{d}, Y) = a(eY + 1)^2 + bd(-eY - 1)Y + d^2 cY^2 - d^2 =$$
(3.2)

$$= (ae^{2} - bde + cd^{2})Y^{2} + (2ae - bd)Y + (a - d^{2}).$$

If $a \in P$ (hence $c, e \notin P$, because $P \in \Gamma$), define $F_P \in C$ by

$$F_P := e^2 g(X, \frac{-1}{e}) = ae^2 X^2 - beX + (c - e^2).$$
(3.3)

Lemma 3. Let $M \in Spec(A)$ and $P = M \cap B$. Then the ring A_M is not regular iff $P \supseteq (2, b)B$ and $F_P P^{-1} A \subseteq M$.

Proof: By Lemma 1, A_M is regular if $P \not\supseteq (2,b)B$. Assume that $P \supseteq (2,b)B$. By Lemma 2, $P \in \Gamma$, so F_P is defined as in (3.2) or (3.3). Set K = B/P. We use the notations after Lemma 2. The image of g in K[X,Y] is

$$\bar{a}X^2 + \bar{c}Y^2 + \bar{1} = (\bar{d}X + \bar{e}Y + \bar{1})^2$$
 (3.4)

because $\bar{b} = 0$, $\bar{d}^2 = \bar{a}$ and $\bar{e}^2 = \bar{c}$. Let Q be the inverse image of M in C = B[X, Y] and set

$$Z_P := dX + eY + 1. \tag{3.5}$$

As $P \subseteq Q$ and $g \in Q$, we get $g - Z_P^2 \in Q$, so $Z_P \in Q$. Assume that $a \notin P$ (the case $a \in P$, $c \notin P$ is similar: we use (3.3) instead of (3.2)). Then $d \notin P$. We have $dX = Z_P - eY - 1$, so

$$d^{2}g = a(dX)^{2} + bd(dX)Y + d^{2}(cY^{2} - 1) =$$

$$= a(Z_{P} - eY - 1)^{2} + bd(Z_{P} - eY - 1)Y + d^{2}(cY^{2} - 1) =$$

$$= aZ_{P}^{2} - 2aZ_{P}(eY + 1) + bdZ_{P} + d^{2}g(\frac{-eY - 1}{d}, Y) =$$

$$= aZ_{P}^{2} - 2aZ_{P}(eY + 1) + bdZ_{P} + F_{P}$$
(3.6)

cf. (3.2). By [6, Theorem 26, page 303], A_M is not regular iff $g \in Q^2C_Q$ iff $d^2g \in Q^2C_Q$, because $d \notin Q$. Since aZ_P^2 , $2aZ_P(eY+1)$ and bdZ_P belong to Q^2 , (3.6) shows that $d^2g \in Q^2C_Q$ iff $F_P \in Q^2C_Q$. Thus

$$A_M$$
 is not regular iff $F_P \in Q^2 C_Q$. (3.7)

By (3.6), $F_P = (d^2g - aZ_P^2) + 2aZ_P(eY + 1) - bdZ_P$ where $d^2g - aZ_P^2 \in PC$ (cf. 3.4 and 3.5) and $2, b \in P$; so the coefficients of F_P are in P. Also, $P \not\subseteq Q^2C_Q$ because C/PC = K[X,Y] is a regular ring. So, by (3.7), A_M is not regular iff $F_PC = P(F_PP^{-1})C \subseteq Q^2C_Q$ iff $F_PP^{-1}C \subseteq QC_Q$ iff $F_PP^{-1}A \subseteq M$.

Theorem 2. The singular locus of A is V(H) where

$$H = \prod_{P \in \Gamma} (P, F_P P^{-1}) A$$

and $\Gamma = \{ P \in Spec(B) \mid P \supseteq (2, b)B \text{ and } P \not\supseteq (a, c)B \}.$

Proof: Apply Lemmas 2 and 3.

Let $P \in \Gamma$. According to (3.1), d, e are elements of B (uniquely determined modulo P) such $d^2 \equiv a, e^2 \equiv c$ modulo P. Note that since $2 \in P$, the elements $2de, d^2, e^2$ are uniquely determined modulo P^2 .

Corollary 4. The ring A is regular iff for every $P \in \Gamma$ we have:

- (i) if $a \notin P$, then $b \equiv 2de$, $cd^2 \equiv ae^2$, $a \not\equiv d^2$ modulo P^2 ,
- (ii) if $a \in P$, then $a \equiv b \equiv 0$, $c \not\equiv e^2$ modulo P^2 .

Proof: (i). By Theorem 2 (or Lemma 3), A is regular iff $(P, F_P P^{-1})A = A$ for every $P \in \Gamma$. Fix $P \in \Gamma$, set K = B/P and assume that $a \notin P$. Note that F_P is defined in (3.2); denote F_P briefly by $\alpha Y^2 + \beta Y + \gamma$. We have the following chain of equivalences:

$$(P, F_P P^{-1})A = A \Leftrightarrow C = (P, g, F_P P^{-1})C = (P, Z_P^2, F_P P^{-1})C \text{ (cf. 3.5)} \Leftrightarrow$$

$$\Leftrightarrow C = (P, Z_P, F_P P^{-1})C.$$

Hence $(P, F_P P^{-1})A = A$ iff the following ring is the zero ring

$$C/(P, Z_P, F_P P^{-1})C \simeq B_P[X, Y]/(P, Z_P, \frac{F_P}{n})B_P[X, Y] \simeq$$

$$\simeq K[X,Y]/(Z_P,\frac{F_P}{p})K[X,Y] \simeq K[Y]/(\frac{F_P}{p})K[Y]$$

where $p \in P$ is such that $pB_P = PB_P$; for the last isomorphism we used the fact that $d \notin P$. Thus $(P, F_P P^{-1})A = A$ iff $\alpha/p \in pB_P$, $\beta/p \in pB_P$ and $\gamma/p \notin pB_P$ iff $\alpha \in P^2$, $\beta \in P^2$ and $\gamma \notin P^2$ iff $ae^2 + cd^2 \equiv bde$, $bd \equiv 2ae$ and $a \not\equiv d^2$ where the congruences are modulo P^2 . From $ae^2 + cd^2 \equiv (bd)e$ and $bd \equiv 2ae$, we get $ae^2 + cd^2 \equiv bde \equiv (2ae)e$ and $bd \equiv 2d^2e$ (because $2a \equiv 2d^2$), so $cd^2 \equiv ae^2$ and $b \equiv 2de$ because $d \notin P$. The argument is reversible. Case (ii) can be done similarly.

Remark 1. Note that condition $a - d^2 \notin P^2$ in Corollary 4 means that a is not a quadratic residue modulo P^2 .

Corollary 5. ([5, Theorem 2].) Let $A = \mathbb{Z}[X,Y]/(aX^2 + bXY + cY^2 - 1)$. Then A is regular but not smooth over \mathbb{Z} iff one of the following cases occurs (all congruences below are modulo 4):

- (1) $a \equiv 3$, $b \equiv 2$, $c \equiv 3$,
- (2) $a \equiv 0, b \equiv 0, c \equiv 3,$
- (3) $a \equiv 3, b \equiv 0, c \equiv 0.$

Proof: Assume that A is not smooth over \mathbb{Z} . With the notations of Corollary 4, we have $\Gamma = \{2\mathbb{Z}\}$. We can take d = a and e = c. By Corollary 4, A is regular iff

- (i) if a is odd, then $b-2ac \in 4\mathbb{Z}$, $ac(a-c) \in 4\mathbb{Z}$, $a-a^2 \notin 4\mathbb{Z}$,
- (ii) if a is even, then $a \in 4\mathbb{Z}$, $b \in 4\mathbb{Z}$, $c c^2 \notin 4\mathbb{Z}$.

The conclusion follows.

Example 1. Consider the ring

$$D = \mathbb{Z}[\theta][X, Y]/((1 - \theta)X^{2} + \theta XY + (1 - \theta)Y^{2} - 1)$$

where $\theta = (1 + \sqrt{-7})/2$. Using the notations above, we have: $\Gamma = \{P\}$, where $P = \theta \mathbb{Z}[\theta]$, $a = c = 1 - \theta$, $b = \theta$, d = e = 1. We check the conditions in part (i) of Corollary 4: $b - 2de = \theta - 2 = \theta^2 \in P^2$, $cd^2 - ae^2 = 0 \in P^2$, $a - d^2 = -\theta \notin P^2$. So D is a regular ring. By Corollary 2, D is not smooth over $\mathbb{Z}[\theta]$.

Corollary 6. Let $A = \mathbb{Z}[\sqrt{-5}][X,Y]/(aX^2 + bXY + cY^2 - 1)$ and $P = (2, 1 + \sqrt{-5})\mathbb{Z}[\sqrt{-5}]$.

- (i) A is smooth over $\mathbb{Z}[\sqrt{-5}]$ iff $b \notin P$ or $a, b, c \in P$.
- (ii) A is regular but not smooth over $\mathbb{Z}[\sqrt{-5}]$ iff one of the following cases occurs:
 - (1) $a \sqrt{-5}$, b, $c \sqrt{-5}$ are divisible by 2,
 - (2) $a, b, c \sqrt{-5}$ are divisible by 2,
 - (3) $a \sqrt{-5}$, b, c are divisible by 2.

Proof: By Theorem 1, A is smooth over $B = \mathbb{Z}[\sqrt{-5}]$ iff $a, c \in \sqrt{(2, b)B} = P + bB$. Hence (i) follows. Assume that A is not smooth over B; hence $b \in P$ and $(a, c) \not\subseteq P$. We have $\Gamma = \{P\}$ (see the notations above) and $P^2 = 2B$. We translate the regularity conditions in Corollary 4; note that we can take d = a and e = c. Part (i) of Corollary 4 says that if $a \notin P$, we must have the congruences modulo (2): $b \equiv 0$, $ca^2 \equiv ac^2$, $a \not\equiv a^2$; we get $a \equiv \sqrt{-5}$, $b \equiv c \equiv 0$ or $a \equiv c \equiv \sqrt{-5}$, $b \equiv 0$. Part (ii) of Corollary 4 says that if $a \in P$ (hence $c \notin P$), we must have the congruences modulo $a \equiv b \equiv 0$, $c \not\equiv c^2$; we get $a \equiv b \equiv 0$, $c \equiv \sqrt{-5}$.

The arguments in the proof of Theorem 2 can be also used in certain higher degree cases. We close our note with an example in this direction.

Example 2. We show that for every prime p, the following ring is regular but not smooth over \mathbb{Z}

$$D = \mathbb{Z}[X, Y]/((p+1)X^p + p^2Y^p - 1).$$

Using Euler's formula as in the proof of Theorem 1, we can prove easily that the jacobian ideal of D is $J = pD \neq D$, so D is not smooth over \mathbb{Z} . Set $g = (p+1)X^p + p^2Y^p - 1$. Assume there exists a maximal ideal Q of $E := \mathbb{Z}[X,Y]$ containing g such that D_{QD} is not regular; then $g \in Q^2D_{QD}$, so $g \in Q^2$. As J = pD, $p \in Q$. Set Z := X - 1. Since g and Z^p are congruent modulo pE, we get $Z^p \in (g,pE) \subseteq Q$, hence $Z \in Q$. As X = Z + 1, we get

$$g = (p+1)(Z+1)^p + p^2Y^p - 1 = (p+1)[Z^p + \sum_{k=1}^{p-1} \binom{p}{k} Z^{p-k}] + p^2Y^p + p.$$

Note that the bracket above belongs to Q^2 because $p, Z \in Q$. So $g \in Q^2$ implies $p(pY^p + 1) = p^2Y^p + p \in Q^2$, hence $p \in Q^2$ because $pY^p + 1 \notin Q$ (as $p \in Q$). We reached a contradiction, because $E/pE = \mathbb{Z}_p[X,Y]$ is a regular ring, so $p \notin Q^2$.

References

- [1] S. Alaca, K. Williams, Algebraic Number Theory, Cambridge University Press, 2004.
- [2] H. COHEN, Pari-GP, now maintained by K. Belabas, http://www.parigp-home.de.
- [3] J. Majadas, A. Rodicio, Smoothness, Regularity and Complete intersection, Cambridge University Press, 2010.
- [4] H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
- [5] L. ROBERTS, Some examples of smooth and regular rings. Canad. Math. Bull. 23(1980), pp. 255–259.

[6] O. Zariski and P. Samuel, *Commutative Algebra*, Vol. II, Van Nostrand, Princeton 1960.

Received: 24.06.2013 Revised: 17.12.2013 Accepted: 28.01.2014

> ¹Department of Mathematics, University of Bucharest E-mail: tiberiu@fmi.unibuc.ro, tiberiu_dumitrescu2003@yahoo.com

 $^2 \mathrm{Simion}$ Stoilow Institute of Mathematics, Romanian Academy

E-mail: cristodor.ionescu@imar.ro