Some examples of two-dimensional regular rings

by
${ }^{1}$ Tiberiu Dumitrescu and ${ }^{2}$ Cristodor Ionescu

Abstract

Let B be a ring and $A=B[X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right)$ where $a, b, c \in B$. We study the smoothness of A over B and the regularity of A, when B is a ring of algebraic integers.

Key Words: Smooth algebra, regular ring, ring of algebraic integers.
2010 Mathematics Subject Classification: Primary 13H05, Secondary 13F05, 11R04.

1 Introduction

In [5], Roberts investigated the \mathbb{Z}-smoothness and the regularity of the ring $\mathbb{Z}[X, Y] /\left(a X^{2}+\right.$ $\left.b X Y+c Y^{2}-1\right), a, b, c \in \mathbb{Z}$. He showed that smoothness depends on $a, b, c \bmod 2$ (cf. [5, Theorem

In this note, we use ideas from [5] to study the regularity of the ring $A:=B[X, Y] /\left(a X^{2}+\right.$ $\left.b X Y+c Y^{2}-1\right), a, b, c \in B$, where B is a ring of algebraic integers. As expected this regularity depends on $a, b, c \bmod (\sqrt{2 B})^{2}$ (see Corollary 4). Our main result (Theorem 2) gives a description of the singular locus of B. On the way, we show that the smoothness of A over B can be easily described: if B is an arbitrary ring, then A is smooth over B iff $a, c \in \sqrt{(2, b) B}$ (Theorem 1). Finally, Example 2 suggests that our arguments can be also used in certain higher degree cases. Throughout this paper all rings are commutative and unitary. For any undefined terminology our standard reference is [4].

2 Smoothness

Let B be an arbitrary ring. The smoothness of $B[X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right)$ over B can be described easily.

Theorem 1. Let B be a ring and $a, b, c \in B$. Then $A=B[X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right)$ is smooth over B iff $a, c \in \sqrt{(2, b) B}$.

Proof: Let J^{\prime} be the jacobian ideal of A and set $f=a X^{2}+b X Y+c Y^{2}$. By Euler's formula for homogeneous functions, we have $2 f=X(\partial f / \partial X)+Y(\partial f / \partial Y)$, hence $2 \in J^{\prime}$, because the image of f in A is 1 . Moding out by $2 B$, we may assume that B has characteristic 2 . We have to show that A is smooth over B iff a, c are nilpotent modulo b. Set $C=B[X, Y]$. Note that $J^{\prime}=J A$ where

$$
J=(b X, b Y, f-1) C=\left(b X, b Y, a X^{2}+c Y^{2}-1\right) C=\left(b, a X^{2}+c Y^{2}-1\right) C
$$

because $b=a X(b X)+c Y(b Y)-b\left(a X^{2}+c Y^{2}-1\right)$. So A is smooth over B iff $J=C$, cf. [3, Proposition 5.1.9]. Now $J=C$ iff $a X^{2}+c Y^{2}-1$ is invertible modulo b iff a, c are nilpotent modulo b.

Corollary 1. ([5, Theorem 1].) Let $A=\mathbb{Z}[X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right)$. Then A is smooth over \mathbb{Z} iff b is odd or a, b, c are all even.

Proof: By Theorem 1, A is smooth over \mathbb{Z} iff $a, c \in \sqrt{(2, b) \mathbb{Z}}$ iff b is odd or a, b, c are all even.

Similar results can be stated for any ring of algebraic integers. Here are two examples.
Corollary 2. Let $A=\mathbb{Z}[(1+\sqrt{-7}) / 2][X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right)$ and $\operatorname{set} \theta=(1+\sqrt{-7}) / 2$. Then A is smooth over $\mathbb{Z}[\theta]$ iff one of the following cases occurs:
(i) b is not divisible by θ or $\bar{\theta}$,
(ii) b is not divisible by θ and a, b, c are all divisible by $\bar{\theta}$,
(iii) b is not divisible by $\bar{\theta}$ and a, b, c are all divisible by θ,
(iv) a, b, c are all divisible by 2.

Proof: We have $2=\theta \bar{\theta}$. By Theorem $1, A$ is smooth over $B=\mathbb{Z}[\theta]$ iff $a, c \in \sqrt{(2, b) B}=$ $(\theta, b) B \cap(\bar{\theta}, b) B$. As θB and $\bar{\theta} B$ are maximal ideals, the assertion is clear.

Corollary 3. Let $A=\mathbb{Z}[\theta][X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right), \theta=(\sqrt{2}+\sqrt{6}) / 2$. Then A is smooth over $\mathbb{Z}[\theta]$ iff b is not divisible by $1+\theta$ or a, b, c are all divisible by $1+\theta$.

Proof: It can be checked by PARI-GP (see [2]) that $B=\mathbb{Z}[\theta]$ is a PID and $2 B=(1+\theta)^{4} B$. So $\sqrt{(2, b) B}=(1+\theta, b) B$. Apply Theorem 1 .

3 Regularity

Throughout this section we fix the following notations. Let B be a ring of algebraic integers, that is, the integral closure of \mathbb{Z} in a finite field extension of \mathbb{Q}. It is well-known (e.g. [1, Chapter 6]) that B is a Dedekind domain, hence $I I^{-1}=B$ for every nonzero ideal I of B. Fix $a, b, c \in B$. We study the regularity of the ring

$$
A=B[X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right)
$$

Set $g=a X^{2}+b X Y+c Y^{2}-1$ and $C=B[X, Y]$.

Lemma 1. If $Q \in \operatorname{Spec}(A)$ and $Q \cap B \nsupseteq(2, b) B$, then A_{Q} is a regular ring.
Proof: Since $P:=Q \cap B \nsupseteq(2, b) B$, Theorem 1 shows that the composed morphism

$$
B_{P} \rightarrow B_{P} \otimes_{B} A=B_{P}[X, Y] /(g) \rightarrow A_{Q}
$$

is smooth. Hence A_{Q} is regular, because B is regular.

Let Γ be the (finite) set of prime ideals P of B such that $P \supseteq(2, b) B$ and $P \nsupseteq(a, c) B$. By Theorem $1, A$ is smooth over B iff $\Gamma=\emptyset$.

Lemma 2. If $Q \in \operatorname{Spec}(A)$, then $Q \cap B \in \Gamma$ iff $Q \cap B \supseteq(2, b) B$.
Proof: Assume that $P:=Q \cap B \supseteq(2, b) B$. As $(a, b, c) A=A$, it follows that $Q \nsupseteq(a, c) B$, so $P \nsupseteq(a, c) B$, that is, $P \in \Gamma$. The converse is obvious.

Let $P \in \Gamma$. Since B is a ring of algebraic integers and $2 \in P$, it follows that B / P is a finite (thus perfect) field of characteristic 2. If $z \in B$, let \bar{z} denote its image in B / P. Let $d, e \in B$ be such that

$$
\begin{equation*}
\bar{d}^{2}=\bar{a} \text { and } \bar{e}^{2}=\bar{c} \tag{3.1}
\end{equation*}
$$

Note that $d, e \in B$ are uniquely determined modulo P. If $a \notin P$ (hence $d \notin P$), consider the polynomial $F_{P} \in C$ given by

$$
\begin{gather*}
F_{P}:=d^{2} g\left(\frac{-e Y-1}{d}, Y\right)=a(e Y+1)^{2}+b d(-e Y-1) Y+d^{2} c Y^{2}-d^{2}= \tag{3.2}\\
=\left(a e^{2}-b d e+c d^{2}\right) Y^{2}+(2 a e-b d) Y+\left(a-d^{2}\right)
\end{gather*}
$$

If $a \in P$ (hence $c, e \notin P$, because $P \in \Gamma$), define $F_{P} \in C$ by

$$
\begin{equation*}
F_{P}:=e^{2} g\left(X, \frac{-1}{e}\right)=a e^{2} X^{2}-b e X+\left(c-e^{2}\right) \tag{3.3}
\end{equation*}
$$

Lemma 3. Let $M \in \operatorname{Spec}(A)$ and $P=M \cap B$. Then the ring A_{M} is not regular iff $P \supseteq(2, b) B$ and $F_{P} P^{-1} A \subseteq M$.

Proof: By Lemma 1, A_{M} is regular if $P \nsupseteq(2, b) B$. Assume that $P \supseteq(2, b) B$. By Lemma 2, $P \in \Gamma$, so F_{P} is defined as in (3.2) or (3.3). Set $K=B / P$. We use the notations after Lemma 2. The image of g in $K[X, Y]$ is

$$
\begin{equation*}
\bar{a} X^{2}+\bar{c} Y^{2}+\overline{1}=(\bar{d} X+\bar{e} Y+\overline{1})^{2} \tag{3.4}
\end{equation*}
$$

because $\bar{b}=0, \bar{d}^{2}=\bar{a}$ and $\bar{e}^{2}=\bar{c}$. Let Q be the inverse image of M in $C=B[X, Y]$ and set

$$
\begin{equation*}
Z_{P}:=d X+e Y+1 \tag{3.5}
\end{equation*}
$$

As $P \subseteq Q$ and $g \in Q$, we get $g-Z_{P}^{2} \in Q$, so $Z_{P} \in Q$. Assume that $a \notin P$ (the case $a \in P$, $c \notin P$ is similar: we use (3.3) instead of (3.2)). Then $d \notin P$. We have $d X=Z_{P}-e Y-1$, so

$$
\begin{gather*}
d^{2} g=a(d X)^{2}+b d(d X) Y+d^{2}\left(c Y^{2}-1\right)= \\
=a\left(Z_{P}-e Y-1\right)^{2}+b d\left(Z_{P}-e Y-1\right) Y+d^{2}\left(c Y^{2}-1\right)= \\
=a Z_{P}^{2}-2 a Z_{P}(e Y+1)+b d Z_{P}+d^{2} g\left(\frac{-e Y-1}{d}, Y\right)= \\
=a Z_{P}^{2}-2 a Z_{P}(e Y+1)+b d Z_{P}+F_{P} \tag{3.6}
\end{gather*}
$$

cf. (3.2). By [6, Theorem 26, page 303], A_{M} is not regular iff $g \in Q^{2} C_{Q}$ iff $d^{2} g \in Q^{2} C_{Q}$, because $d \notin Q$. Since $a Z_{P}^{2}, 2 a Z_{P}(e Y+1)$ and $b d Z_{P}$ belong to $Q^{2},(3.6)$ shows that $d^{2} g \in Q^{2} C_{Q}$ iff $F_{P} \in Q^{2} C_{Q}$. Thus

$$
\begin{equation*}
A_{M} \text { is not regular iff } F_{P} \in Q^{2} C_{Q} \tag{3.7}
\end{equation*}
$$

By (3.6), $F_{P}=\left(d^{2} g-a Z_{P}^{2}\right)+2 a Z_{P}(e Y+1)-b d Z_{P}$ where $d^{2} g-a Z_{P}^{2} \in P C$ (cf. 3.4 and 3.5) and $2, b \in P$; so the coefficients of F_{P} are in P. Also, $P \nsubseteq Q^{2} C_{Q}$ because $C / P C=K[X, Y]$ is a regular ring. So, by (3.7), A_{M} is not regular iff $F_{P} C=P\left(F_{P} P^{-1}\right) C \subseteq Q^{2} C_{Q}$ iff $F_{P} P^{-1} C \subseteq$ $Q C_{Q}$ iff $F_{P} P^{-1} C \subseteq Q$ iff $F_{P} P^{-1} A \subseteq M$.

Theorem 2. The singular locus of A is $V(H)$ where

$$
H=\prod_{P \in \Gamma}\left(P, F_{P} P^{-1}\right) A
$$

and $\Gamma=\{P \in \operatorname{Spec}(B) \mid P \supseteq(2, b) B$ and $P \nsupseteq(a, c) B\}$.
Proof: Apply Lemmas 2 and 3.

Let $P \in \Gamma$. According to (3.1), d, e are elements of B (uniquely determined modulo P) such $d^{2} \equiv a, e^{2} \equiv c$ modulo P. Note that since $2 \in P$, the elements $2 d e, d^{2}, e^{2}$ are uniquely determined modulo P^{2}.

Corollary 4. The ring A is regular iff for every $P \in \Gamma$ we have:
(i) if $a \notin P$, then $b \equiv 2 d e, c d^{2} \equiv a e^{2}, a \not \equiv d^{2}$ modulo P^{2},
(ii) if $a \in P$, then $a \equiv b \equiv 0, c \not \equiv e^{2}$ modulo P^{2}.

Proof: (i). By Theorem 2 (or Lemma 3), A is regular iff $\left(P, F_{P} P^{-1}\right) A=A$ for every $P \in \Gamma$. Fix $P \in \Gamma$, set $K=B / P$ and assume that $a \notin P$. Note that F_{P} is defined in (3.2); denote F_{P} briefly by $\alpha Y^{2}+\beta Y+\gamma$. We have the following chain of equivalences:

$$
\begin{aligned}
\left(P, F_{P} P^{-1}\right) A=A \Leftrightarrow C & =\left(P, g, F_{P} P^{-1}\right) C=\left(P, Z_{P}^{2}, F_{P} P^{-1}\right) C(c f .3 .5) \Leftrightarrow \\
& \Leftrightarrow C=\left(P, Z_{P}, F_{P} P^{-1}\right) C
\end{aligned}
$$

Hence $\left(P, F_{P} P^{-1}\right) A=A$ iff the following ring is the zero ring

$$
\begin{gathered}
C /\left(P, Z_{P}, F_{P} P^{-1}\right) C \simeq B_{P}[X, Y] /\left(P, Z_{P}, \frac{F_{P}}{p}\right) B_{P}[X, Y] \simeq \\
\simeq K[X, Y] /\left(Z_{P}, \frac{F_{P}}{p}\right) K[X, Y] \simeq K[Y] /\left(\frac{F_{P}}{p}\right) K[Y]
\end{gathered}
$$

where $p \in P$ is such that $p B_{P}=P B_{P}$; for the last isomorphism we used the fact that $d \notin P$. Thus $\left(P, F_{P} P^{-1}\right) A=A$ iff $\alpha / p \in p B_{P}, \beta / p \in p B_{P}$ and $\gamma / p \notin p B_{P}$ iff $\alpha \in P^{2}, \beta \in P^{2}$ and $\gamma \notin P^{2}$ iff $a e^{2}+c d^{2} \equiv b d e, b d \equiv 2 a e$ and $a \not \equiv d^{2}$ where the congruences are modulo P^{2}. From $a e^{2}+c d^{2} \equiv(b d) e$ and $b d \equiv 2 a e$, we get $a e^{2}+c d^{2} \equiv b d e \equiv(2 a e) e$ and $b d \equiv 2 d^{2} e$ (because $2 a \equiv 2 d^{2}$), so $c d^{2} \equiv a e^{2}$ and $b \equiv 2 d e$ because $d \notin P$. The argument is reversible. Case (ii) can be done similarly.

Remark 1. Note that condition $a-d^{2} \notin P^{2}$ in Corollary 4 means that a is not a quadratic residue modulo P^{2}.

Corollary 5. ([5, Theorem 2].) Let $A=\mathbb{Z}[X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right)$. Then A is regular but not smooth over \mathbb{Z} iff one of the following cases occurs (all congruences below are modulo 4):
(1) $a \equiv 3, b \equiv 2, c \equiv 3$,
(2) $a \equiv 0, b \equiv 0, c \equiv 3$,
(3) $a \equiv 3, b \equiv 0, c \equiv 0$.

Proof: Assume that A is not smooth over \mathbb{Z}. With the notations of Corollary 4, we have $\Gamma=\{2 \mathbb{Z}\}$. We can take $d=a$ and $e=c$. By Corollary $4, A$ is regular iff
(i) if a is odd, then $b-2 a c \in 4 \mathbb{Z}, a c(a-c) \in 4 \mathbb{Z}, a-a^{2} \notin 4 \mathbb{Z}$,
(ii) if a is even, then $a \in 4 \mathbb{Z}, b \in 4 \mathbb{Z}, c-c^{2} \notin 4 \mathbb{Z}$.

The conclusion follows.

Example 1. Consider the ring

$$
D=\mathbb{Z}[\theta][X, Y] /\left((1-\theta) X^{2}+\theta X Y+(1-\theta) Y^{2}-1\right)
$$

where $\theta=(1+\sqrt{-7}) / 2$. Using the notations above, we have: $\Gamma=\{P\}$, where $P=\theta \mathbb{Z}[\theta]$, $a=c=1-\theta, b=\theta, d=e=1$. We check the conditions in part (i) of Corollary 4: $b-2 d e=\theta-2=\theta^{2} \in P^{2}, c d^{2}-a e^{2}=0 \in P^{2}, a-d^{2}=-\theta \notin P^{2}$. So D is a regular ring. By Corollary 2, D is not smooth over $\mathbb{Z}[\theta]$.

Corollary 6. Let $A=\mathbb{Z}[\sqrt{-5}][X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right)$ and $P=(2,1+\sqrt{-5}) \mathbb{Z}[\sqrt{-5}]$.
(i) A is smooth over $\mathbb{Z}[\sqrt{-5}]$ iff $b \notin P$ or $a, b, c \in P$.
(ii) A is regular but not smooth over $\mathbb{Z}[\sqrt{-5}]$ iff one of the following cases occurs:
(1) $a-\sqrt{-5}, b, c-\sqrt{-5}$ are divisible by 2 ,
(2) $a, b, c-\sqrt{-5}$ are divisible by 2 ,
(3) $a-\sqrt{-5}, b, c$ are divisible by 2 .

Proof: By Theorem 1, A is smooth over $B=\mathbb{Z}[\sqrt{-5}]$ iff $a, c \in \sqrt{(2, b) B}=P+b B$. Hence (i) follows. Assume that A is not smooth over B; hence $b \in P$ and $(a, c) \nsubseteq P$. We have $\Gamma=\{P\}$ (see the notations above) and $P^{2}=2 B$. We translate the regularity conditions in Corollary 4; note that we can take $d=a$ and $e=c$. Part (i) of Corollary 4 says that if $a \notin P$, we must have the congruences modulo (2): $b \equiv 0, c a^{2} \equiv a c^{2}, a \not \equiv a^{2}$; we get $a \equiv \sqrt{-5}, b \equiv c \equiv 0$ or $a \equiv c \equiv \sqrt{-5}, b \equiv 0$. Part (ii) of Corollary 4 says that if $a \in P$ (hence $c \notin P$), we must have the congruences modulo $a \equiv b \equiv 0, c \not \equiv c^{2}$; we get $a \equiv b \equiv 0, c \equiv \sqrt{-5}$.

The arguments in the proof of Theorem 2 can be also used in certain higher degree cases. We close our note with an example in this direction.

Example 2. We show that for every prime p, the following ring is regular but not smooth over \mathbb{Z}

$$
D=\mathbb{Z}[X, Y] /\left((p+1) X^{p}+p^{2} Y^{p}-1\right)
$$

Using Euler's formula as in the proof of Theorem 1, we can prove easily that the jacobian ideal of D is $J=p D \neq D$, so D is not smooth over \mathbb{Z}. Set $g=(p+1) X^{p}+p^{2} Y^{p}-1$. Assume there exists a maximal ideal Q of $E:=\mathbb{Z}[X, Y]$ containing g such that $D_{Q D}$ is not regular; then $g \in Q^{2} D_{Q D}$, so $g \in Q^{2}$. As $J=p D, p \in Q$. Set $Z:=X-1$. Since g and Z^{p} are congruent modulo $p E$, we get $Z^{p} \in(g, p E) \subseteq Q$, hence $Z \in Q$. As $X=Z+1$, we get

$$
g=(p+1)(Z+1)^{p}+p^{2} Y^{p}-1=(p+1)\left[Z^{p}+\sum_{k=1}^{p-1}\binom{p}{k} Z^{p-k}\right]+p^{2} Y^{p}+p
$$

Note that the bracket above belongs to Q^{2} because $p, Z \in Q$. So $g \in Q^{2}$ implies $p\left(p Y^{p}+1\right)=$ $p^{2} Y^{p}+p \in Q^{2}$, hence $p \in Q^{2}$ because $p Y^{p}+1 \notin Q$ (as $p \in Q$). We reached a contradiction, because $E / p E=\mathbb{Z}_{p}[X, Y]$ is a regular ring, so $p \notin Q^{2}$.

References

[1] S. Alaca, K. Williams, Algebraic Number Theory, Cambridge University Press, 2004.
[2] H. Cohen, Pari-GP, now maintained by K. Belabas, http://www.parigp-home.de.
[3] J. Majadas, A. Rodicio, Smoothness, Regularity and Complete intersection, Cambridge University Press, 2010.
[4] H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
[5] L. Roberts, Some examples of smooth and regular rings. Canad. Math. Bull. 23(1980), pp. 255-259.
[6] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Van Nostrand, Princeton 1960.

Received: 24.06.2013
Revised: 17.12.2013
Accepted: 28.01.2014
${ }^{1}$ Department of Mathematics,
University of Bucharest
E-mail: tiberiu@fmi.unibuc.ro, tiberiu_dumitrescu2003@yahoo.com
${ }^{2}$ Simion Stoilow Institute of Mathematics,
Romanian Academy
E-mail: cristodor.ionescu@imar.ro

