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Abstract

Sufficient conditions are established in order to guarantee the existence of positive
periodic solutions to (

u′
√

1− u′2

)′

+ f(u)u′ =
m(t)

uµ
− n(t)

uλ
+ h(t)uδ,

where f : (0,+∞) → R, m,n : [0, T ] → R+, h : [0, T ] → R are continuous functions and
µ, λ, δ ≥ 0.
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1 Introduction

In the related literature a φ−Laplacian operator is a increasing homeomorphism φ : (−a, a)→
(−b, b) with φ(0) = 0 and 0 < a, b ≤ +∞. Essentially there exists three type of φ−Laplacian
operators:

• The singular one: This is a φ−Laplacian operator having bounded domain (that is a <
+∞). The paradigmatic model in this context is defined by

φ(x) =
x√

1− x2
, x ∈ (−1, 1).

• The regular one: It is a φ−Laplacian operator having either unbounded domain and
range. The classical model in this context is the p-Laplacian operator which is defined by

φp(x) = |x|p−1 sgnx, x ∈ R, p > 1.
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• The bounded one: In this case the φ−Laplacian operator has bounded range, and as a
model one may consider

φr(x) =
x√

1 + x2
, x ∈ R.

There are a several number of references concerning to regular φ−Laplacian operators [16,
24, 25, 26], most of them involving the case p = 2, e.g., φ2 = Id. This case is known as the
classical case. For instance, the following type of equations

u′′ = f(t, u, u′),

where f : [0, T ]×D → R being D an open set of R2, are included in this case.
Obviously we understand the reason why there are many papers concerning this case. However
the number of papers decreases when one considers singular or bounded φ−Laplacian operators.

In the present paper we will only consider the singular φ−Laplacian operators. As some
examples of interesting works in this framework we have [3, 4, 5, 6, 8, 9, 12, 17, 21, 22, 23].
One may observe that at the most of above references is only studied equations of type

(φ(u′))′ = f(t, u, u′)

where f : [0, T ]×R2 → R, e.g., the nonlinearity of the differential equation has not singularities.
On the other hand, if one considers singularities at the nonlinearity we can cite [2, 23].
From applied point of view the singular φ−Laplacian operator has relevance on the context

of Special Relativity. More exactly when dealing with particles moving at speed close to that
of light it may be important taking into account relativistic effects. In this line we cite, amount
other ones, [1, 7, 11, 15, 18, 20, 23].

The objective of this paper is to continue studying the following family of periodic problems
with singular nonlinearity

(φ(u′))′ + f(u)u′ =
m(t)

uµ
− n(t)

uλ
+ h(t)uδ, u(0)− u(T ) = 0 = u′(0)− u′(T ), (1)

where f ∈ C
(
(0,+∞);R

)
(it may have singularity at 0), m,n ∈ C

(
[0, T ];R+

)
, h ∈ C

(
[0, T ];R

)
,

µ, λ, δ are non-negative constants. More exactly we show a novel method of construction of
lower and upper solutions using Theorem 2 in [3] and some recent results proved in [2] (see
Theorem 1 and Theorem 2). In contrast with the results in [2] we can include the Liénard term
f(u)u′, which is not possible consider it using similar arguments as there.

As a consequence of our main results we study the solvability of the following problem whose
associated equation is known as Raleigh-Plesset equation (see [2, 13, 14])

(φ(u′))′ + f(u)u′ =
m

uµ
− n

uδ
+ h(t)uδ, u(0)− u(T ) = 0 = u′(0)− u′(T ), (2)

where m,n > 0, µ ≥ 1, µ > δ > 0 and h, f are defined as above, getting that if h :=

(1/T )
∫ T
0
h(s)ds < 0 then (2) has at least one positive solution (see Theorem 3). Something

similar was proven in [2], but there was necessary to assume that h(t) ≤ 0 for t ∈ [0, T ].
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The main tools employed explicitly or implicitly in this paper are lower and upper solutions
and degree theory, in order to do a profound study on this techniques we refer to the reader to
e.g., [10, 19].

The paper is organized as follows. In Section 2 we introduce some notation and auxiliary
results (almost all taken from [3]). In Section 3 we show a new method for constructing lower
and upper solutions of (1). Finally, in the last section, we offer some applications of our main
results.

2 Some notations and auxiliary results

Let C denote the Banach space of continuous functions on [0, T ] endowed with the uniform norm
|| · ||∞, C1 denote the Banach space of continuously differentiable functions on [0, T ] equipped
with the norm

||u|| = ||u||∞ + ||u′||∞ (u ∈ C1).

The following assumption upon φ is made throughout the paper:

(Hφ) φ :]− a, a[→ R is an increasing homeomorphism such that φ(0) = 0 and 0 < a <∞.

If u, v ∈ C are such that u(t) ≤ v(t) for all t ∈ [0, T ], we write u ≤ v. Also, we write u < v
if u(t) < v(t) for all t ∈ [0, T ].

Now it would be convenient to define the known concepts of lower and upper solutions to
(1).

Definition 1. A lower solution α (resp. upper solution β) of (1) is a function α ∈ C1
(
[0, T ];R+

)
such that ||α′||∞ < a, φ(α′) ∈ C1, α(0) = α(T ), α′(0) ≥ α′(T ) (resp. β ∈ C1

(
[0, T ];R+

)
,

||β′||∞ < a, φ(β′) ∈ C1, β(0) = β(T ), β′(0) ≤ β′(T )) and

(φ(α′))′ + f(α)α′ ≥ m(t)

αµ
− n(t)

αλ
+ h(t)αδ (3)(

resp. (φ(β′))′ + f(β)β′ ≤ m(t)

βµ
− n(t)

βλ
+ h(t)βδ

)
. (4)

on whole the interval [0, T ]. Such a lower or upper solution is called strict if (3) or (4) is a
strict inequality.

At the first time we recall a criterion on solvability concerning to well-ordered lower and
upper solutions proved in [3].

Lemma 1. If (1) has a lower solution α and an upper solution β such that α ≤ β, then (1)
has a solution u such that α ≤ u ≤ β. Moreover, if α and β are strict, then α < u < β.

An important fact throughout the paper is that the derivative of a solution u of (1) is
uniformly bounded by a. This remark will be exploited in order to control the oscillation of
solutions of (1). The next result is an elementary estimation of the oscillation of a periodic
function.
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Lemma 2. If u : R→ R is a continuously differentiable and T -periodic function, then

max
[0,T ]

u−min
[0,T ]

u ≤ T

2
‖u′‖∞.

Proof: Let t∗ ∈ [0, T ) be such that u(t∗) = min[0,T ] u and t∗ ∈ [t∗, t∗ + T ] be such that
u(t∗) = max[0,T ] u. One has that

u(t∗)− u(t∗) =

∫ t∗

t∗

u′(s)ds ≤ ‖u′‖∞(t∗ − t∗),

u(t∗)− u(t∗) = −
∫ t∗+T

t∗
u′(s)ds ≤ ‖u′‖∞(t∗ + T − t∗).

Then, multiplying both inequalities and using that xy ≤ (x + y)2/4 for all x, y ∈ R, it follows
that

(u(t∗)− u(t∗))
2 ≤ (‖u′‖∞T )2

4
,

and the proof is completed.

Now we will introduce a result proved as Theorem 1 in [2]. This result guarantees the
solvability of (2) whenever it admits lower and upper solutions. Our main application will be
supported on it.

Lemma 3. Let us assume that there exists α and β lower and upper solutions to (2). Then
there exists at least one solution u of (2) such that

min{α(tu), β(tu)} ≤ u(tu) ≤ max{α(tu), β(tu)}

for some tu ∈ [0, T ].

3 Methods of construction of lower and upper solutions

Now we shall prove a general method to construct lower and upper solutions of (1).
At this moment will be convenient to introduce the following notation: for each h ∈

L
(
[0, T ];R

)
we define the numbers

H =

∫ T

0

h(s)ds, H+ =

∫ T

0

h+(s)ds, H− =

∫ T

0

h−(s)ds

where for each x ∈ R its positive and negative part is denoted as x+ = max{x, 0} and x− =
max{−x, 0}.

In order to prove the main Theorems we will need to introduce a continuous operator
Π : C1

(
[0, T ];R

)
→ C1

(
[0, T ];R

)
. Let x1 > 0, we define Π by

Π(u)(t) = x1 + u(t)−min
[0,T ]

u for t ∈ [0, T ]. (5)
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Let us consider the auxiliar problem

(φ(u′))′ + f(Π(u))u′ = q(t), u(0) = 0 = u(T ). (6)

The following lemma will allow us to establish a relationship between a periodic problem
and a Dirichlet problem. The result was proved in [3] and it claims:

Lemma 4. For each operator F : C1
(
[0, T ];R

)
→ C

(
[0, T ];R

)
continuous and takes bounded

sets into bounded sets, the Dirichlet problem

(φ(u′))′ = F (u), u(0) = 0 = u(T )

has at least one solution.

Remark 1. For each q ∈ C
(
[0, T ];R

)
, defining the continuous operator F (u)(t) = q(t) −

f(Π(u))u′ and using Lemma 4, it follows the solvability of (6).

At this moment we are ready to prove our results in order to construct lower and upper
solutions for (1).

Theorem 1. Let us assume that there exist positive constants A1, A2, A3, A4 such that

max

{[
1

A1

] 1
µ

, A
1
δ
4

}
+
Ta

2
≤ min

{[
1

A2

] 1
λ

, A
1
δ
3

}
, (7)

A1M −A2N +A3H+ −A4H− ≤ 0 (8)

are fulfilled. Then there exists α ∈ C1
(
[0, T ];R+

)
a lower solution of (1) verifying

max

{
A

1
δ
4 ,

[
1

A1

] 1
µ

}
≤ α(t) < max

{
A

1
δ
4 ,

[
1

A1

] 1
µ

}
+
aT

2
for t ∈ [0, T ]. (9)

Proof: Let us define the operator Π as in (5) putting x1 = max

{
A

1
δ
4 ,
[

1
A1

] 1
µ

}
, and we consider,

by Remark 1, w ∈ C1
(
[0, T ];R

)
the solution to the Dirichlet problem (6) where

q(t) = m(t)A1 − n(t)A2 + h+(t)A3 − h−(t)A4 for t ∈ [0, T ].

Now let us define α ∈ C1
(
[0, T ];R+

)
by α(t) = Π(w)(t) for t ∈ [0, T ]. According to Lemma 2

it follows

α(t) = x1 + w(t)−min
[0,T ]

w ≤ x1 + max
[0,T ]

w −min
[0,T ]

w < x1 +
aT

2
,

obtaining in this way (9). By virtue of (7), the above inequality implies α < min

{[
1
A2

] 1
λ

, A
1
δ
3

}
.

Therefore, since α ≥ x1, x1 ≤ α < min

{[
1
A2

] 1
λ

, A
1
δ
3

}
holds.
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On the other hand, according to the last inequality, one proves

m(t)A1 − n(t)A2 + h+(t)A3 − h−(t)A4 ≥
m(t)

αµ
− n(t)

αλ
+ h+(t)αδ − h−(t)αδ.

In this way

q(t) ≥ m(t)

αµ
− n(t)

αλ
+ h(t)αδ. (10)

Since α′ = w′, it verifies (φ(α′))′ + f(α)α′ = q(t). Thus, from (10) it gets

(φ(α′))′ + f(α)α′ ≥ m(t)

αµ
− n(t)

αλ
+ h(t)αδ. (11)

Finally, since α(0) = α(T ), from (11), in order to prove that α is a lower solution to
(1) is sufficient proving that α′(0) ≥ α′(T ), or equivalently that φ(α′(0)) ≥ φ(α′(T )). Since
φ(α′) = φ(w′), it implies

φ(α′(T ))− φ(α′(0)) =

∫ T

0

(φ(w′))′dt

= −
∫ T

0

f(Π(w))w′dt+

∫ T

0

q(t)dt

= A1M −A2N +A3H+ −A4H−,

using (8) it obtains φ(α′(0)) ≥ φ(α′(T )).

Analogously one can prove a theorem in order to construct an upper solution for (1).

Theorem 2. Let us assume that there exist positive constants B1, B2, B3, B4 such that

max

{[
1

B2

] 1
λ

, B
1
δ
3

}
+
Ta

2
≤ min

{[
1

B1

] 1
µ

, B
1
δ
4

}
, (12)

B1M −B2N +B3H+ −B4H− ≥ 0 (13)

are fulfilled. Then there exists β ∈ C1
(
[0, T ];R+

)
an upper solution of (1) verifying

max

{[
1

B2

] 1
λ

, B
1
δ
3

}
≤ β(t) < max

{[
1

B2

] 1
λ

, B
1
δ
3

}
+
aT

2
for t ∈ [0, T ]. (14)

Remark 2. Following carefully the argument of Theorem 1 (resp. Theorem 2), one notes that
if n is a strict positive function (resp. m is a strict positive function) the lower solution (resp.
the upper solution) constructed above is also strict.
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4 Applications

In order to study existence of solutions of (2) we shall introduce the continuous functions
Ψ1,Ψ2 : (0,+∞)→ R defined by

Ψ1(x) =
mT

x
µ
δ

− nT(
x

1
δ + aT

2

)δ +

(
x

1
δ +

aT

2

)δ
H+ − xH−,

Ψ2(x) =
mT(

x
1
δ + aT

2

)µ − nT

x
+ xH+ −

(
x

1
δ +

aT

2

)δ
H−.

Now, we shall try to apply our Theorem 1 and 2, in order to study problem (2). For that
reason, we consider that λ = δ and m,n are positive constants.

Theorem 3. If h < 0 then there exists at least one solution of (2). In particular, under this
assumption, the periodic problem of(

u′√
1− u′2

)′
+ 4c

u′

u
4
5

=
m

uµ
− n

uδ
+ h(t)uδ

is solvable for c ∈ R.

Proof: At the first time notice that, since all functions which involve to (2) are continuous,
one may take β sufficiently small such that it is an strict upper solution for (2). On the other
hand, since limx→+∞Ψ1(x) < 0, there exists A4 > 0 sufficiently large such that Ψ1(A4) ≤ 0.
Next, let define the positive constants

A1 =

[
1

A4

]µ
δ

, A3 =

(
A

1
δ
4 +

aT

2

)δ
, A2 =

1(
A

1
δ
4 + aT

2

)δ . (15)

One may check that (7) is fulfilled as an identity, and (8) is followed from the condition Ψ1(A4) ≤
0. Applying Theorem 1 and Remark 2 it follows the existence of α a strict lower solution such
that (9) holds. Finally, by virtue of Lemma 3, the problem (2) has at least one solution.

Now we will study the case when h > 0. For that, notice that, since limx→0+ Ψ1(x) =
limx→+∞Ψ1(x) = +∞, we may define A4 > 0 such that Ψ1(A4) = min(0,+∞) Ψ1. Under this
framework we have

Theorem 4. If h > 0 and Ψ1(A4) ≤ 0, then (2) has at least two solutions. In particular, under
this assumption, the periodic problem of(

u′√
1− u′2

)′
+ 4c

u′

u
4
5

=
m

uµ
− n

uδ
+ h(t)uδ

has at least two solutions.
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Proof: Let us define the positive constant A1, A2 and A3 by (15). In the same way as the
previous theorem one may check that (7) is fulfilled and (8) is followed from Ψ1(A4) ≤ 0. Thus,
by Theorem 1 and Remark 2, there exists α a strict lower solution such that

A
1
δ
4 ≤ α < A

1
δ
4 +

aT

2
for t ∈ [0, T ].

On the other hand, since limx→+∞Ψ2(x) > 0, there exists B3 > 0 sufficiently large such that
Ψ2(B3) > 0 and

B3 ≥
(
A

1
δ
4 +

aT

2

)δ
. (16)

Let us define the positive constant

B1 =

[
1

B
1
δ
3 + aT

2

]µ
, B2 =

1

B3
, B4 =

(
B

1
δ
3 +

aT

2

)δ
.

Analogously to the previous arguments it proves that (12) is fulfilled as an identity, and (13) is
followed from Ψ2(B3) > 0. Thus, according to Theorem 2 and Remark 2, there exists a strict
upper solution such that

B
1
δ
3 ≤ β(t) < B

1
δ
3 +

aT

2
for t ∈ [0, T ].

From (16) it follows that α and β are strict well-ordered lower and upper solutions. According
to Lemma 1, the problem (2) has a solution which verifies α < u < β.

On the other hand, if one takes β1 > 0 a sufficiently small number in order to it would be a
strict upper solution, since α and β1 are reverse-ordered lower and upper solutions, according
to Lemma 3, there exists v a solution of (2) such that β1 ≤ v(tv) ≤ α(tv). Therefore, since
α < u < β, necessary, both solutions are different ones.

Remark 3. Our main results do not cover the limit case h = 0, thus it remains open.

Remark 4. One may use the same strategy in order to study the existence of T−periodic
solutions to the following types of equations

(φ(u′))′ + f(u)u′ +
n(t)

uλ
= h(t),

where f ∈ C((0,+∞);R), n, h ∈ C and λ > 0. The results are like in [2], but now we have
achieved to include the Liénard term f(u)u′ in the equation.
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