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Rational toral rank of a map

by

Toshihiro Yamaguchi

Abstract

Let X and Y be simply connected CW complexes with finite rational cohomologies.
The rational toral rank r0(X) of a space X is the largest integer r such that the torus
T r can act continuously on a CW-complex in the rational homotopy type of X with all
its isotropy subgroups finite [8]. As a rational homotopical condition to be a toral map
preserving almost free toral actions for a map f : X → Y , we define the rational toral rank
r0(f) of f , which is a natural invariant with r0(idX) = r0(X) for the identity map idX
of X. We will see some properties of it by Sullivan models, which is a free commutative
differential graded algebra over Q [4].
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1 Introduction

We assume that spaces X and Y are simply connected CW complexes with finite rational
cohomologies. Let T r be an r-torus S1× · · · ×S1(r-factors) and let r0(X) be the rational toral
rank, which is the largest integer r such that a T r can act continuously on a CW-complex in
the rational homotopy type of X with all its isotropy subgroups finite [8]. Such an action is
called almost free. Our motivation is in the following problem for an equivariant property of a
map f : X → Y .

Problem 1.1. For an almost free T r-action µ on X, when can one put an almost free T r-
action on Y so that f becomes T r-equivariant ? Conversely, given an almost free T r-action τ
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on Y , when does X admit an almost free T r-action making f an T r-equivariant map ?

X

��

f // Y

��
ET r ×µT r X

��

F // ?

��
BT r BT r

X

��

f // Y

��
?

��

F // ET r ×τT r Y

��
BT r BT r

Here X → ET r ×µT r X → BT r means the Borel fibration of a T r-action µ on X. The
integer r of Problem 1.1 is bounded from above by the following numerical invariant, obtained
from a diagram which is a rational homotopy version of a T r-equivariant map for almost free
T r-actions. In this paper, we propose

Definition 1.2. For a map f : X → Y , we say that the rational toral rank of f , denoted as
r0(f), is r when it is the largest integer such that there is a map F between fibrations over
BT rQ:

XQ

i

��

fQ // YQ

i

��
E1

p

��

F // E2

p

��
BT rQ BT rQ

(∗)

with dimH∗(Ei;Q) <∞ for i = 1, 2.

Here XQ and fQ are the rationalizations [10] of a simply connected CW complex X of finite
type and a map f , respectively. Let the Sullivan minimal model of X be M(X) = (ΛV, d).
It is a free Q-commutative differential graded algebra (DGA) with a Q-graded vector space
V =

⊕
i≥2 V

i where dimV i <∞ and a decomposable differential; i.e., d(V i) ⊂ (Λ+V ·Λ+V )i+1

and d ◦ d = 0. Here Λ+V is the ideal of ΛV generated by elements of positive degree. Denote
the degree of a homogeneous element x of a graded algebra as |x|. Then xy = (−1)|x||y|yx and
d(xy) = d(x)y + (−1)|x|xd(y). Note that M(X) determines the rational homotopy type of X.
In particular, H∗(ΛV, d) ∼= H∗(X;Q) and V i ∼= Hom(πi(X),Q). Refer to [4] for details. If an
r-torus T r acts on a simply connected space X by µ : T r ×X → X, there is the Borel fibration

X → ET r ×µT r X → BT r,

where ET r×µT rX is the orbit space of the action g(e, x) = (e ·g−1, g ·x) on the product ET r×X
for any e ∈ ET r, x ∈ X and g ∈ T r. Note that ET r ×µT r X is rational homotopy equivalent to
the T r-orbit space of X when µ is an almost free toral action [5]. The above Borel fibration is
rationally given by the relative model (Koszul-Sullivan (KS) model)

(Q[t1, . . . , tr], 0)→ (Q[t1, . . . , tr]⊗ ΛV,D)→ (ΛV, d) (∗∗)
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where with |ti| = 2 for i = 1, . . . , r, Dti = 0 and Dv ≡ dv modulo the ideal (t1, . . . , tr) for
v ∈ V . The following criterion of Halperin is used in this paper.

Proposition 1.3. [8, Proposition 4.2] Suppose that X is a simply connected CW-complex with
dimH∗(X;Q) < ∞. Put M(X) = (ΛV, d). Then r0(X) ≥ r if and only if there is a relative
model (∗∗) satisfying dimH∗(Q[t1, . . . , tr] ⊗ ΛV,D) < ∞. Moreover, if r0(X) ≥ r, then T r

acts freely on a finite complex X ′ in the rational homotopy type of X and M(ET r ×T r X ′) ∼=
(Q[t1, . . . , tr]⊗ ΛV,D).

The diagram (∗) in Definition 1.2 is equivalent to a DGA homotopy commutative diagram:
(∗ ∗ ∗)

(ΛW,dY )

M(f)

**

if
// (ΛW ⊗ ΛU,D) (ΛV, dX)'

oo

(Q[t1, .., tr]⊗ ΛW,D2)
++

//

pt

OO

(Q[t1, .., tr]⊗ ΛW ⊗ ΛU,D′1)

OO

(Q[t1, .., tr]⊗ ΛV,D1)'
oo

OO

(Q[t1, .., tr], 0)

OO

(Q[t1, .., tr], 0)

OO

(Q[t1, .., tr], 0)

OO

with dimH∗(Q[t1, .., tr]⊗ ΛW,D2) <∞ and dimH∗(Q[t1, .., tr]⊗ ΛV,D1) <∞.
For example, for the fibre inclusion of the Hopf fibration f : S3 → S7, r0(S3) = r0(S7) =

r0(f) = 1 since it induces the natural inclusion E1 = CP 1 → CP 3 = E2 satisfying (∗) (without

rationalization). On the other hand, for a rationally non-trivial fibration S5 → X
f→ Y =

S3 × S3, r0(X) = 1, r0(Y ) = 2 and r0(f) = 0 from (∗ ∗ ∗). If r0(f) = 0, the map f can not
(rationally) be an S1-equivariant map preserving almost free actions.

From the definition,
r0(f) ≤ min{r0(X), r0(Y )}

for any map f : X → Y . In particular,

r0(iX) = r0(X) and r0(pY ) = r0(Y )

for the inclusion iX : X → X × Y , for the projection pY : X × Y → Y .
Recall the LS category cat(f) := min ]{Ui ⊂ X | X = ∪iUi is an open covering with f |Ui

'
∗} − 1 for a map f : X → Y , where cat(idX) = cat(X), the LS category of a space X.
Here ] denotes the cardinality of a set. It satisfies cat(f) ≤ min{cat(X), cat(Y )} for any map
f : X → Y .

Theorem 1.4. For maps f : X → Y and g : Y → Z, r0(g◦f) can be arbitrarily large compared
with r0(f) and r0(g).

This theorem follows from the second example in
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Example 1.5. (1) For any m,n and s ≤ min{m,n}, there are maps f : X → Y and g : Y → Z
with r0(f) = m, r0(g) = n and r0(g ◦ f) = s. For example, put

f : S3
1 × · · · × S3

m → S3
1 × · · · × S3

m × S5
1 × · · · × S5

n and

g : S3
1 × · · · × S3

m × S5
1 × · · · × S5

n → S3
1 × · · · × S3

s × S5
1 × · · · × S5

n−s

where f |S3
i

= idS3
i

for all i, g|S3
i

= idS3
i

for i = 1, .., s, g|S5
i

= idS5
i

for i = 1, .., n−s and g|Sn
i

= ∗
for other i. Then we have an example of it.

(2) Consider the maps f : X → Y and g : Y → Z = S3 × · · · × S3 (2n-factors) with the
following models. For n > 1, put

M(g) : M(Z) = (Λ(w1, .., w2n), 0)→ (Λ(w1, .., w2n, w), dY ) = M(Y )

with |wi| = 3 for all i, |w| = 6n− 1, dY (w) = w1 · · ·w2n and

M(f) : M(Y ) = (Λ(w1, .., w2n, w), dY )→ (Λ(w1, .., w2n, w, y), dX) = M(X)

with |y| = 5, dX(w) = w1 · · ·w2n and dX(y) = w1w2. Then we have

r0(f) = 1, r0(g) = 0 and r0(g ◦ f) = 2n− 2.

In particular we can verify the third since

M(X) = (Λ(w1, .., w2n, w, y), dX) ∼= (Λ(w3, .., w2n, w), 0)⊗A

with A := (Λ(w1, w2, y), dX) induces the Q[t1, .., t2n−2]-map

F : (Q[t1, .., t2n−2]⊗ Λ(w1, .., w2n), D)→ (Q[t1, .., t2n−2]⊗ Λ(w3, .., w2n, w), D)⊗A

with Dwi = t2i−2 for i = 3, .., 2n and F (wi) = wi for all i.

On the other hand, cat(g ◦ f) ≤ min{cat(f), cat(g)} [3, Exercise 1.16]. Futhermore, we
know cat(c) = 0 for the constant map c : X → Y for any space Y . But we can often rationally
construct a suitable model M(Y ) such that r0(X) = r0(c) = r0(Y ). For example, for M(X) =
(Λ(x, y, z), d) with |x| = 3, |y| = 5, |z| = 7, dx = dy = 0 and dz = xy, put M(Y ) =
(Λ(x′, y′, z′), d) with |x′| = 5, |y′| = 7, |z′| = 11, dx′ = dy′ = 0 and dz′ = x′y′. Then we can
construct commutative diagram

M(Y ) = (Λ(x′, y′, z′), d)
0 // (Λ(x, y, z), d) = M(X)

M(E2) = (Q[t]⊗ Λ(x′, y′, z′), D2)
F //

t=0

OO

(Q[t]⊗ Λ(x, y, z), D1) = M(E1)

t=0

OO

where F (t) = t, F (x′) = xt, F (y′) = yt, F (z′) = zt2, D1z = xy+ t4 and D2z
′ = x′y′+ t6. Since

dimH∗(Ei;Q) < ∞, we see r0(X) = r0(c) = r0(Y ) = 1. Thus the two numerical invariants of
a map, r0(f) and cat(f), have very different properties.
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2 Examples

Suppose that G and K are compact connected Lie groups and K is a compact connected
subgroup of G. Recall the result of Allday-Halperin [1, Remark(1)]:

Theorem 2.1. ([2, Corollary 4.3.8],[5, Corollaries 7.14 and 7.15])

r0(G) = rankG and r0(G/K) = rankG− rankK.

Theorem 2.1 says that there is a pure (two stage) Borel fibration G/K → ET r ×T r G/K →
BT r ([9]) with dimH∗(ET r ×T r G/K;Q) < ∞ for r = rankG − rankK; i.e., the differential
D in the relative model of (∗ ∗ ∗) in §1 satisfies D1v ∈ Q[t1, .., tr] ⊗ ΛV even for v ∈ V odd and
D1v = 0 for v ∈ V even when M(G/K) = (ΛV, d).

Theorem 2.2. Let G and K be simply connected Lie groups and K a compact connected

subgroup of G. For a principal K-bundle K
g→ G

f→ G/K, r0(g) = rankK and r0(f) =
rankG− rankK.

Proof: Put the relative model of ξ : G
f→ G/K

k→ BK as

M(BK) = (Q[x1, .., xn], 0)→ (Q[x1, .., xn]⊗ ΛV, d)
p→ (ΛV, 0) = M(G)

with dvi ∈ Q[x1, .., xn] for vi ∈ V [4, Proposition 15.16]. Put r = rankG − rankK. From
Theorem 2.1 and Proposition 1.3, there is a DGA A := (Q[t1, .., tr] ⊗ Q[x1, .., xn] ⊗ ΛV,D)
where Dvi = dvi + gi with gi ∈ (t1, .., tr), Dxi = 0 and dimH∗(A) <∞. The DGA-projection
p is extended to the Q[t1, .., tr]-projection

F : A = (Q[t1, .., tr]⊗Q[x1, .., xn]⊗ ΛV,D)→ (Q[t1, .., tr]⊗ ΛV,D) =: B,

which induces dimH∗(B) <∞. Thus r0(f) ≥ rankG− rankK.

Example 2.3. Let SU(n) be the n-th special unitary group. Then M(SU(6)) is given as
(Λ(v1, v2, v3, v4, v5), 0) with |v1| = 3, |v2| = 5, |v3| = 7, |v4| = 9 and |v5| = 11.

(1) For the principal bundle SU(3)
g→ SU(6)

f→ SU(6)/SU(3), the relative model is ex-
tended to

Λ(v3, v4, v5), 0

**

// Λ(v1, v2, v3, v4, v5), 0
M(g) // Λ(v1, v2), 0

M(SU(6)/SU(3)) Q[t1, t2]⊗ Λ(v1, v2, v3, v4, v5), D2
F //

OO

Q[t1, t2]⊗ Λ(v1, v2), D1

OO

with D1v1 = D2v1 = t21, D1v2 = D2v2 = t32, D2v3 = D2v4 = D2v5 = 0. Thus r0(g) =
rankSU(3) = 2.
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(2) For the principal bundle SU(3)×SU(3)
g→ SU(6)

f→ SU(6)/SU(3)×SU(3), the relative
model is extended to

Q[x1, x2, x
′
1, x

′
2]⊗ ΛV, d

**

// ΛV ⊗ C,D // Λ(u1, u2, u
′
1, u

′
2), 0

M(SU(6)/SU(3)× SU(3))

'

OO

Q[t1, .., t4]⊗ ΛV ⊗ C,Dt
F //

OO

Q[t1, .., t4]⊗ Λ(u1, u2, u
′
1, u

′
2), Dt

OO

where |x1| = |x′1| = 4, |x2| = |x′2| = 6, V = Q(v1, v2, v3, v4, v5), dxi = dx′i = 0, dv1 = x1 + x′1,

dv2 = x2 + x′2, dv3 = x21 + x′1
2
, dv4 = x1x2 + x′1x

′
2, dv5 = x22 + x′2

2
[6, p.486] and

C = Q[x1, x2, x
′
1, x
′
2]⊗ Λ(u1, u2, u

′
1, u
′
2)

with |ui| = |u′i| = 2i + 1, Dui = xi and Du′i = x′i; i.e., H∗(C) = Q. Here Dtu1 = x1 + t21,
Dtu2 = x2 + t32, Dtu

′
1 = x′1 + t23, Dtu

′
2 = x′2 + t34. Thus r0(g) = rankSU(3)× SU(3) = 4.

Also r0(f) = rankSU(6) − rankSU(3) × SU(3) = 1. Indeed, for the minimal model
M(SU(6)/SU(3) × SU(3)) = (Q[x1, x2] ⊗ Λ(v3, v4, v5), d) with dx1 = dx2 = 0, dv3 = x21,
dv4 = x1x2 and dv5 = x22, we have a commutative diagram

(Q[x1, x2]⊗ Λ(v3, v4, v5), d)
xi=0 // (Λ(v1, v2, v3, v4, v5), 0)

(Q[t, x1, x2]⊗ Λ(v3, v4, v5), D)
F //

t=0

OO

(Q[t]⊗ Λ(v1, v2, v3, v4, v5), D)

t=0

OO

where Dv3 = x21, Dv4 = x1x2 + t5 and Dv5 = x22.

Theorem 2.4. If G/K
g→ X

f→ Y is a fibration associated with a principal G-bundle, then
r0(g) = rankG− rankK.

Proof: Put the model of the fibration f : X → Y as i : M(Y ) = (ΛW,dY ) → (ΛW ⊗ ΛV,D).
Then M(G/K) = (ΛV, d) with d = D. Note that Dv ∈ ΛW ⊗ΛV even for v ∈ V odd and Dv = 0
for v ∈ V even [9, (3.4)] from the assumption. Put r = rankG− rankK. Fix a differential dt on
Q[t1, .., tr]⊗ΛV with dt = d and dimH∗(Q[t1, .., tr]⊗ΛV, dt) <∞, which exists from Theorem
2.1. Note dt|V even = 0 and dt(V

odd) ⊂ Q[t1, .., tr]⊗ ΛV even. Then we have the relative model

(ΛW,dY )→ (Q[t1, .., tr]⊗ ΛW ⊗ ΛV,Dt)→ (Q[t1, .., tr]⊗ ΛV, dt)

with Dt(v) := Dv+(dt−d)(v) and Dt(w) := dY w. It is embedded into a commutative diagram

(ΛW,dY )
i //

))

(ΛW ⊗ ΛV,D) // (ΛV, d) = M(G/K)

(Q[t1, .., tr]⊗ ΛW ⊗ ΛV,Dt)

ti=0

OO

F // (Q[t1, .., tr]⊗ ΛV, dt).

ti=0

OO

Since dimH∗(Q[t1, .., tr]⊗ΛV, dt) <∞, we have dimH∗(Q[t1, .., tr]⊗ΛW ⊗ΛV,Dt) <∞ from
the Serre spectral sequence. Thus we have r0(g) ≥ r. From Theorem 2.1, we have r0(g) = r.
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Remark 2.5. If a fibration C
g→ X

f→ Y is not (associated with) a principal bundle, it does
not hold that r0(g) = r0(C). For example, for the rational fibration SU(3)→ X → S3 given by

(Λw, 0)→ (Λ(w, u1, u2), D)→ (Λ(u1, u2), 0)

where |w| = |u1| = 3 and |u2| = 5 and Du2 = wu1, we have r0(g) = 1 < 2 = r0(SU(3)). Also
for a fibration over S3 of the relative model

(Λw, 0)→ (Λ(w, v2, v3, v4, v5, v7), D)→ (Λ(v2, v3, v4, v5, v7), D) = M(C)

where |w| = 3, |vi| = i, Dv2 = 0, Dv3 = v22, Dv4 = wv2, Dv5 = v2v4 − wv3 and Dv7 =
v24 + 2wv5, we can check r0(g) = r0(X) = 0 from [12]. On the other hand, r0(C) = 1 since
dimH∗(Q[t]⊗Λ(v2, v3, v4, v5, v7), Dt) <∞ by Dt(v3) = v22, Dt(v5) = v2v4+t3 and Dt(v7) = v24.
Note their fibres are pure but the above two fibrations are not pure [9]. Compare with Theorem
2.4.

Theorem 2.6. For an odd-spherical fibration ξ : S2n−1 → X
f→ Y , suppose π>2n(Y )⊗Q = 0.

Then, for any free T r-action µ on X ′ with X ′Q ' XQ such that r0(ET r ×µT r X ′) = 0, there is
no map F between fibrations

XQ //

fQ

��

(ET r ×µT r X ′)Q //

F

��

BT rQ

YQ // (ET r ×τT r Y ′)Q // BT rQ

such that τ is a free T r-actionon Y ′ with Y ′Q ' YQ. In particular, r0(f) < r0(X).

Proof: Put M(S2n−1) = (Λy, 0) and M(Y ) = (ΛV, dY ). Supppose that there is a map
(Q[t1, .., tj ] ⊗ ΛV,D2) → (Q[t1, .., tj ] ⊗ ΛV ⊗ Λy,D1) with dimH∗(Di) < ∞. Then, from
degree reasons, there is a KS-extension of (Q[t1, .., tj ] ⊗ ΛV ⊗ Λy,D1) by tj+1, the DGA
A := (Q[t1, .., tj+1]⊗ ΛV ⊗ Λy,D′) with

D′(y) = D1(y) + tnj+1 and D′(v) = D1(v) for v ∈ V

satisies dimH∗(A) <∞.

Question 2.7. For a fibration ξ : C
g→ X

f→ Y with fibre C simply connected of finite rational
cohomology, does it hold that r0(g) + r0(f) ≤ r0(X) ?

Remark 2.8. The above question is true for many cases. For example, it is true for the
fibrations of Theorem 2.6 or when r0(C) = 0. Of course, it is true when ξ is rationally trivial.
But it may not be equal. Recall Halperin’s inequality r0(X) = r0(X) + r0(S2n) < r0(X × S2n)
for a formal space X and an integer n > 1 [11]. For any even integer n, there is a space Xn

such that r0(Xn) = 0 and r0(Xn × S6n+1) ≥ n. In the following, we give an example of the
model. Put

M(Xn) = (ΛV, d) = (Λ(u1, u2, .., un, v1, v2, ..., v2n, v, w), d)
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with
dvi = dui = dw = 0 for all i and

dv = u1u2u3 · · ·un(v1v2 + v3v4 + v5v6 + · · ·+ v2n−1v2n) + w2

and |vi| = |ui| = 3 for all i, |w| = (3n+ 6)/2, |v| = 3n+ 5. Then we can check that r0(Xn) = 0
by Proposition 1.3 since dimH∗(Q[t]⊗ΛV,D) =∞ for any differential D by direct calculations.
Put M(S6n+1) = (Λy, 0) with |y| = 6n+ 1 and

M(ETn ×Tn (Xn × S6n+1)) = (Q[t1, .., tn]⊗ ΛV ⊗ Λy,D)

by

Dv = dv +

n∑
i=1

uiyti, Dv2i = t2i , Dv2i−1 = 0 (i = 1, .., n)

and Dy =

n∑
i=1

(−1)i+1v2i−1u1 · · · ûi · · ·unti.

Then D ◦D = 0 and dimH∗(Q[t1, .., tn]⊗ ΛV ⊗ Λy) <∞. Thus r0(X × Y ) can be arbitrarily
large compared to r0(X) + r0(Y ).

Remark 2.9. Is there a good cohomological upper bound for r0(f) ? Recall that S.Halperin
proposes the toral rank conjecture (TRC) that the inequality

dimH∗(X;Q) ≥ 2r0(X)

holds [8] ([4, 39], [5, Conjecture 7.20]). For example, a homogeneous space satisfies it [5,
(7.23)]. It is natural to ask whether the inequality dim Im(H∗(f ;Q)) ≥ 2r0(f) holds. But
that is not the case in general. For example, put M(X) = (Λ(v1, v2, v3), 0) with |vi| = 3 and
M(Y ) = (Λ(x, y, v1, v2, v3), d) with dv1 = x2, dv2 = xy, dv3 = y2, dx = dy = 0, |x| =
|y| = 2, and M(f)(vi) = vi and M(f)(x) = M(f)(y) = 0. Then H∗(f ;Q) is trivial; i.e.,
dim Im(H∗(f ;Q)) = 1. On the other hand, r0(f) = 1. Indeed, (Q[t] ⊗ Λ(x, y, v1, v2, v3), D2)
is given by D2v1 = x2, D2v2 = xy + t2, D2v3 = y2 and (Q[t] ⊗ Λ(v1, v2, v3), D1) is given
by D1v1 = D1v3 = 0, D1v2 = t2. Then dimH∗(D1) < ∞, dimH∗(D2) < ∞ and M(f) is
extended to a Q[t]-morphism F : (Q[t]⊗ Λ(x, y, v1, v2, v3), D2)→ (Q[t]⊗ Λ(v1, v2, v3), D1) with
F (x) = F (y) = 0.
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