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Rational toral rank of a map
by
TOSHIHIRO YAMAGUCHI

Abstract

Let X and Y be simply connected CW complexes with finite rational cohomologies.
The rational toral rank ro(X) of a space X is the largest integer r such that the torus
T" can act continuously on a CW-complex in the rational homotopy type of X with all
its isotropy subgroups finite [8]. As a rational homotopical condition to be a toral map
preserving almost free toral actions for a map f : X — Y, we define the rational toral rank
ro(f) of f, which is a natural invariant with ro(idx) = 79(X) for the identity map idx
of X. We will see some properties of it by Sullivan models, which is a free commutative
differential graded algebra over Q [4].
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1 Introduction

We assume that spaces X and Y are simply connected CW complexes with finite rational
cohomologies. Let T be an r-torus S x - - x S!(r-factors) and let 7(X) be the rational toral
rank, which is the largest integer r such that a 7" can act continuously on a CW-complex in
the rational homotopy type of X with all its isotropy subgroups finite [8]. Such an action is
called almost free. Our motivation is in the following problem for an equivariant property of a
map f: X =Y.

Problem 1.1. For an almost free T"-action p on X, when can one put an almost free T"-
action on'Y so that f becomes T" -equivariant ? Conversely, given an almost free T" -action T
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on'Y, when does X admit an almost free T" -action making f an T"-equivariant map ?

x—1 vy x—Jt .y
ET™ xk, X Fois? 7 BT <7, Y
BT" ——— BT"  BT" ——— BT"

Here X — ET" x4, X — BT" means the Borel fibration of a T"-action y on X. The
integer r of Problem 1.1 is bounded from above by the following numerical invariant, obtained
from a diagram which is a rational homotopy version of a T"-equivariant map for almost free
T"-actions. In this paper, we propose

Definition 1.2. For a map f : X — Y, we say that the rational toral rank of f, denoted as

ro(f), is r when it is the largest integer such that there is a map F' between fibrations over
BTY:
Q

Xq L Yo (*)
Ey r > Fy
BT@ — BT(S

with dim H*(E;; Q) < oo for i =1,2.

Here X and fg are the rationalizations [10] of a simply connected CW complex X of finite
type and a map f, respectively. Let the Sullivan minimal model of X be M(X) = (AV,d).
It is a free Q-commutative differential graded algebra (DGA) with a Q-graded vector space
V =@,>, V* where dim V¢ < co and a decomposable differential; i.e., d(V*) C (ATV-ATV)iT!
and dod = 0. Here ATV is the ideal of AV generated by elements of positive degree. Denote
the degree of a homogeneous element z of a graded algebra as |z|. Then zy = (—1)‘$”y‘yx and
d(zy) = d(z)y + (=1)1*lzd(y). Note that M(X) determines the rational homotopy type of X.
In particular, H*(AV,d) & H*(X;Q) and V' = Hom(m;(X),Q). Refer to [4] for details. If an
r-torus 1" acts on a simply connected space X by p: 7" x X — X, there is the Borel fibration

X — ET" x#. X — BT",

where ET" x#.. X is the orbit space of the action g(e,z) = (e-g~', g-z) on the product ET" x X
for any e € ET", x € X and g € T". Note that ET" x/.. X is rational homotopy equivalent to
the T"-orbit space of X when p is an almost free toral action [5]. The above Borel fibration is
rationally given by the relative model (Koszul-Sullivan (KS) model)

(@1, £1,0) = (@t 1] @ AV, D) = (AV,d) (%)
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where with |t;| = 2 for i = 1,...,r, Dt; = 0 and Dv = dv modulo the ideal (¢1,...,%,.) for
v € V. The following criterion of Halperin is used in this paper.

Proposition 1.3. [8, Proposition 4.2] Suppose that X is a simply connected CW-complex with
dim H*(X;Q) < oco. Put M(X) = (AV,d). Then ro(X) > r if and only if there is a relative
model (xx) satisfying dim H*(Qlty,...,t,] ® AV, D) < oco. Moreover, if ro(X) > r, then T"
acts freely on a finite complex X' in the rational homotopy type of X and M(ET" xpr X') =
(Q[t1y...,t] ® AV, D).

The diagram (x) in Definition 1.2 is equivalent to a DGA homotopy commutative diagram:

(s * )

M(f)

(AW, dy) , (AW ® AU, D) = (AV,dx)

S

(Q[t1, s ty] ® AW, D3) o (Qlty, .., tr] © AW @ AU, D) <—— (Q[t1, ... £,] @ AV, Dy)

~

T ! T

(Q[t17~-atr]70) (Q[tlanvtr]ao) (Q[th--,tr]vo)

with dim H*(Q[t1, .., t,] ® AW, D3) < oo and dim H*(Q[ty, .., t.] ® AV, D;) < oc.

For example, for the fibre inclusion of the Hopf fibration f : S — S7, ro(S3) = ro(S7) =
ro(f) = 1 since it induces the natural inclusion E; = CP! — CP3 = E, satisfying () (without
rationalization). On the other hand, for a rationally non-trivial fibration S° — X Ly =
S$3x S3, ro(X) =1, ro(Y) = 2 and 7o(f) = 0 from (* * *). If ro(f) = 0, the map f can not
(rationally) be an S'-equivariant map preserving almost free actions.

From the definition,

ro(f) < min{re(X),ro(Y)}

for any map f: X — Y. In particular,

ro(ix) =ro(X) and ro(py) =ro(Y)

for the inclusion ix : X — X x Y, for the projection py : X xY — Y.

Recall the LS category cat(f) := min{U; C X | X = U,;U; is an open covering with f|y, ~
x} — 1 for a map f : X — Y, where cat(idx) = cat(X), the LS category of a space X.
Here £ denotes the cardinality of a set. It satisfies cat(f) < min{cat(X),cat(Y")} for any map
f: X—>Y.

Theorem 1.4. Formaps [ : X =Y andg:Y — Z, ro(gof) can be arbitrarily large compared
with ro(f) and ro(g).

This theorem follows from the second example in
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Example 1.5. (1) For any m,n and s < min{m,n}, there are maps f: X - Y andg:Y — Z
with ro(f) =m, ro(g) = n and ro(g o f) = s. For example, put

Fe83 %o x 83 583 x 8% xS x--- xS and

. g3 3 5 5 3 3., C5 5
g Sy X o X S, xS X x 8 =+ 57 X x 5 xS x e x S)

where f|gs = idgs for all 4, g|gs = idgs fori =1,..,s, g|gs = idgs fori =1,..,n—sand g
for other i. Then we have an éxamplé of it. ' '

(2) Consider the maps f : X - Y and g:Y — Z = 53 x --- x §3 (2n-factors) with the
following models. For n > 1, put

S;L:*

M(g) : M(Z) = (A(wy, .., wan),0) = (A(wy, .., wan, w), dy) = M(Y)
with |w;| = 3 for all 4, |w| = 6n — 1, dy (w) = w; - - - way, and
M(f): M(Y) = (Awr, .., wan, w), dy) = (A(wy, .., wan, w,y),dx) = M(X)
with |y| =5, dx (w) = wy - - - wa, and dx(y) = wyws. Then we have
ro(f) =1, ro(g) =0 and ro(go f) = 2n — 2.
In particular we can verify the third since
M(X) = (A(wy, .., wan, w,y),dx) =2 (A(ws, .., wap, w),0) @ A
with A := (A(wy,wa,y),dx) induces the Q[t1, .., ta,—2]-map
F:(Q[t1, .. tan—2] ® Alwr, .., wan), D) = (Q[t1, .., ton—2] ® A(ws, .., wa,, w), D) ® A
with Dw; = t2_, for i = 3,..,2n and F(w;) = w; for all i.

On the other hand, cat(g o f) < min{cat(f),cat(g)} [3, Exercise 1.16]. Futhermore, we
know cat(c) = 0 for the constant map ¢: X — Y for any space Y. But we can often rationally
construct a suitable model M (Y") such that ro(X) = r¢(c) = ro(Y). For example, for M (X) =
(A(z,y,2),d) with x| = 3, |y| =5, |2| = 7, de = dy = 0 and dz = zy, put M(Y) =
(A(2',y, 2"),d) with |2'| = 5, |y'| = 7, |2/| = 11, do’ = dy’ = 0 and dz’ = 2’y/. Then we can
construct commutative diagram

M(Y) = (A(2,y,2"),d) > (A(z,y,2

),d
- -

)=
M(E,) = (Q[t] ® A(a’,y/, 2'), Ds) —— (Q[t] ® A(z,y,2), D1) = M(E)

M(X)

where F(t) =t, F(z') = at, F(y') = yt, F(2') = 2t?, D1z = 2y +t* and D2’ = 2’y +t°. Since
dim H*(E;; Q) < 00, we see ro(X) = ro(c) = ro(Y) = 1. Thus the two numerical invariants of
a map, ro(f) and cat(f), have very different properties.
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2 Examples

Suppose that G and K are compact connected Lie groups and K is a compact connected
subgroup of G. Recall the result of Allday-Halperin [1, Remark(1)]:

Theorem 2.1. (]2, Corollary 4.3.8],[5, Corollaries 7.14 and 7.15])
ro(G) =rankG and ro(G/K) = rankG — rankK.

Theorem 2.1 says that there is a pure (two stage) Borel fibration G/K — ET" xor G/K —
BT" ([9]) with dim H*(ET" xpr G/K;Q) < oo for r = rankG — rankK; i.e., the differential
D in the relative model of (x * %) in §1 satisfies Dyv € Q[ty,..,t,] @ AV for v € V¥ and
Dyv =0 for v € V" when M(G/K) = (AV,d).

Theorem 2.2. Let G and K be simply connected Lie groups and K a compact connected

subgroup of G. For a principal K-bundle K % G EN G/K, ro(g) = rankK and ro(f) =
rankG — rank K .

Proof: Put the relative model of ¢ : G ER G/K % BK as
M(BK) = (Q[z1, .., 2,],0) = (Qla1, .., z,] ® AV, d) 5 (AV,0) = M(G)

with dv; € Q[zy1,..,2,] for v; € V [4, Proposition 15.16]. Put r = rankG — rankK. From
Theorem 2.1 and Proposition 1.3, there is a DGA A := (Q[ty, .., t] @ Q[z1, .., 2] ® AV, D)
where Dv; = dv; + ¢; with g; € (t1,..,t.), Dx; = 0 and dim H*(A) < co. The DGA-projection
p is extended to the Q[ty, .., t,]-projection

F: A= Q. t;] @ Qlx1,..,x,) ® AV, D) — (Q[ty,..,t,] ® AV, D) =: B,
which induces dim H*(B) < co. Thus r(f) > rankG — rank K. O

Example 2.3. Let SU(n) be the n-th special unitary group. Then M (SU(6)) is given as
(A(v1,v2,v3,v4,05),0) with |vi| = 3, |ve| =5, |vs| =7, |va| =9 and |vs| = 11.

(1) For the principal bundle SU(3) % SU(6) ERN SU(6)/SU(3), the relative model is ex-
tended to

M
A(U3,’U4,'1)5),0%A(Ul,’l@,vg,’l};l,’l)g,),o @) A(’Ulav2)70

T ] |

M(SU(6)/SU(3)) Q[t1,t2] @ A(v1,v2,v3,v4,v5), Do L Q[t1,t2] ® A(v1,v2), D1

with D1U1 = D2'U1 = t%, Dva = D2'U2 = t%, D2U3 = D2'U4 = D2U5 = 0. Thus To(g) =
rankSU(3) = 2.
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(2) For the principal bundle SU(3) x SU(3) 2 SU(6) ER SU(6)/SU(3) x SU(3), the relative

model is extended to

Q["E17x27x37x/2} ®Aud%AV®CaD A(U17U27’U,I1,’LL/2),O
M(SU(6)/SU(3) x SU(3)) Q[t1, .., ta] ® AV ® C, Dy — > Qlt1, .., ta] ® Au, ua, u}, ub), Dy
where |z1| = |2]| =4, |z2| = |24 = 6, V = Q(v1, v2,v3,v4,05), dz; = dx} = 0, dvy = x1 + 27,

dvy = my 4 @y, dvs = 22 + 2%, dvy = 2139 + @\ 2h, dvs = 2% + 24° [6, p.486] and
C = Q[l‘l,l‘g,m/l,,ﬂ?é] ® A(Ul,Ug, ullau/2)

with |u;| = |u}| = 2i + 1, Du; = z; and Du, = x/; i.e., H*(C) = Q. Here Dyuy = x1 + t3,
Dyug = x9 +t3, Dyuy = 2 + 13, Dyuby = oy + t3. Thus ro(g) = rankSU(3) x SU(3) = 4.

Also 7o(f) = rankSU(6) — rankSU(3) x SU(3) = 1. Indeed, for the minimal model
M(SU(6)/SU(3) x SU(3)) = (Q[x1, 2] @ A(vs,va,vs),d) with dvy = dzg = 0, dvs = 27,
dvy = x179 and dvs = 23, we have a commutative diagram

a:i:O
(Q[x17 ‘/EQ] ® A(v?)v Vg4, /05)7 d) —_— (A(vla V2, V3, U4, US); 0)

o] Je=o

(Qlt, z1, 2] ® A(vs,v4,v5), D) —— (Q[t] @ A(v1,v2,vs,v4,v5), D)

where Dvg = 22, Dvy = x179 +t° and Dvs = 3.

Theorem 2.4. If G/K S xhyisa fibration associated with a principal G-bundle, then
ro(g) = rankG — rank K.

Proof: Put the model of the fibration f: X - Y asi: M(Y) = (AW,dy) — (AW ® AV, D).
Then M (G/K) = (AV,d) with d = D. Note that Dv € AW ® AV¢*" for v € V°4 and Dv = 0
for v € Vevem [9, (3.4)] from the assumption. Put r = rankG — rankK. Fix a differential d; on
Q[t1, .., t,] @ AV with d; = d and dim H*(Ql[t4, .., t,] ® AV, d;) < 0o, which exists from Theorem
2.1. Note dy¢|yeven = 0 and di (Vo) C Q[t4, .., t,] @ AV*". Then we have the relative model

(AW, dy) = (Q[t1,...,t,] @ AW @ AV, D) — (Q[tq, .., t,| ® AV, dy)

with Dy(v) := Dv+(d; —d)(v) and Dy(w) := dyw. It is embedded into a commutative diagram

(AW,dy) ——— (AW ®@ AV, D) (AV,d) = M(G/K)

e -

(Q[t1, .. t,] ® AW @ AV, Dy) - (Q[t1, .., t,] @ AV, dy).

Since dim H*(Q[t1, .., t,] ® AV, d¢) < 0o, we have dim H*(Q[t1, .., .| @ AW @ AV, D;) < oo from
the Serre spectral sequence. Thus we have r9(g) > r. From Theorem 2.1, we have ro(g) = r.
O
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Remark 2.5. If a fibration C % X 1y v s not (associated with) a principal bundle, it does
not hold that ro(g) = ro(C). For example, for the rational fibration SU(3) — X — S® given by

(Aw, 0) - (A(wa Uy, u2)v D) - (A(ula u2)a 0)

where |w| = |u1| = 3 and |uz| =5 and Dug = wuq, we have 1o(g) = 1 < 2 = ro(SU(3)). Also
for a fibration over S of the relative model

(Aw,0) = (A(w,va,v3,v4,v5,v7), D) = (A(v2,v3,v4,v5,0v7), D) = M(C)

where |w| = 3, |v;| = i, Dvy = 0, Dvz = v3, Dvy = wvy, Dvs = vovy — wvs and Dv; =
v} + 2wvs, we can check ro(g) = ro(X) = 0 from [12]. On the other hand, ro(C) = 1 since
dim H*(Q[t]® A(ve, v3,va,v5,v7), Di) < 00 by Dy(v3) = v3, Dy(vs) = vava+t2 and Dy(v7) = v3.
Note their fibres are pure but the above two fibrations are not pure [9]. Compare with Theorem

2./

Theorem 2.6. For an odd-spherical fibration & : "1 — X EN Y, suppose w2, (Y)®Q = 0.
Then, for any free T"-action u on X' with Xb ~ Xgq such that ro(ET" x4.. X') =0, there is
no map F between fibrations

XQ —_— (ETT X%r X/)Q —_— BT(S

“ X

Yo — (ET" x}. Y')g —> BT},
such that T is a free T"-actionon Y' with Yy ~ Yg. In particular, ro(f) < ro(X).

Proof: Put M(S?"71) = (Ay,0) and M(Y) = (AV,dy). Supppose that there is a map
(Q[t1, ... t;] ® AV, D) — (Q[t1,..,t;] ® AV ® Ay, Dy) with dim H*(D;) < oco. Then, from
degree reasons, there is a KS-extension of (Q[t1,..,t;] ® AV ® Ay, D;) by t;41, the DGA
A= (Q[tl, ..,tj+1] X AV X Ay, D/) with

D'(y) = Di(y) +t}, and D'(v) = Di(v) forveV

satisies dim H*(A) < oo. O

Question 2.7. For a fibration € : C 5 X Ly with fibre C simply connected of finite rational
cohomology, does it hold that ro(g) + ro(f) < ro(X) 2

Remark 2.8. The above question is true for many cases. For example, it is true for the
fibrations of Theorem 2.6 or when ro(C) = 0. Of course, it is true when £ is rationally trivial.
But it may not be equal. Recall Halperin’s inequality ro(X) = ro(X) + ro(S?") < 19(X x S27)
for a formal space X and an integer n > 1 [11]. For any even integer m, there is a space X,
such that ro(X,) = 0 and 7o(X,, x S"*tY) > n. In the following, we give an example of the
model. Put

M(X,) = (AV,d) = (A(ur, ug, .., Un, V1, V2, ...y Vo, U, W), d)
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with
dv; =du; =dw =0 for alli and

dv = urugusz - - Un (V1V2 + V3V4 + V5V + -+ + Van—102n) + W
and |v;| = |u;| = 3 for all i, |w| = (Bn+6)/2, |v] = 3n+5. Then we can check that ro(X,) =0

by Proposition 1.8 since dim H*(Q[¢{] @ AV, D) = oo for any differential D by direct calculations.
Put M(S®" 1) = (Ay,0) with |y| = 6n+ 1 and

M(ET™ x7n (X, x ST = (Q[t1, .., tn] ® AV @ Ay, D)

by

Dv=dv + Zuzytl, D’Ugi = t?, D’Uzifl =0 (’L = ]., ..,’ﬂ)
i=1
and Dy = Z(—l)iﬂvﬁqul ceetly e Ut
i=1
Then Do D =0 and dim H*(Qt1,..,tn] ® AV @ Ay) < 0o. Thus 1o(X x Y) can be arbitrarily
large compared to ro(X) +1o(Y).

Remark 2.9. Is there a good cohomological upper bound for ro(f) ? Recall that S.Halperin
proposes the toral rank conjecture (TRC) that the inequality

dim H*(X; Q) > 270(X)

holds [8] ([4, 39/, [5, Conjecture 7.20]). For example, a homogeneous space satisfies it [5,
(7.23)]. It is natural to ask whether the inequality dim Im(H*(f;Q)) > 27°) holds. But
that is not the case in general. For example, put M(X) = (A(vy,ve,v3),0) with |v;| = 3 and
MY) = (A(z,y,v1,v2,v3),d) with dv; = 22, dvy = zy, dvs = y?, dv = dy = 0, |z| =
lyl = 2, and M(f)(v;) = v; and M(f)(x) = M(f)(y) = 0. Then H*(f;Q) is trivial; i.e.,
dim Im(H*(f;Q)) = 1. On the other hand, ro(f) = 1. Indeed, (Q[t] ® Az, y,v1,v2,v3), D2)
is given by Dovy = 2, Dovg = ay + t2, Dovs = y? and (Q[t] ® A(vi,v2,v3),D1) is given
by Div; = Dyvg = 0, Dyvg = t2. Then dim H*(D;) < oo, dim H*(D3) < oo and M(f) is
extended to a Q[t]-morphism F : (Q[t] ® A(z,y, v1,v2,v3), D2) — (Q[t] ® A(vy,ve,vs), D1) with
F(z)=F(y) =0.
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