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Abstract

We define module nuclearity and module injectivity for C*-algebras which are C*-
module over another C™*-algebra with compatible actions and extend Connes-Haagerup
result to this context by showing that module nuclearity is equivalent to module amenabi-
lity. We also solve the module version of an open problem of Alan L.T. Paterson, by showing
that the C*-algebra of an inverse semigroup S is module nuclear over the C*-algebra of its
idempotents if and only if S is amenable.
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1 Introduction

One of the main objectives of the monograph [9] by Alan L.T. Paterson is to study the operator
algebras on an inverse semigroup S by relating them to the corresponding algebras on its
universal groupoid. Using this technique it is shown that the semigroup von Neumann algebra
VN(S) is injective if and only if all the maximal subgroups of S (indexed by the set E of
idempotents of S) are amenable [9, Theorem 4.5.2]. It is asked if this is also equivalent to
the nuclearity of the reduced and full C*-algebras C_,(S) and C*(S) [9, page 210]. It is not
hard to see that the answer of this question is negative, as the free inverse semigroup on two
generators has trivial maximal subgroups, but its (reduced) C*-algebra is not nuclear (c.f. [4]).
An affirmative solution is proposed in [4] by showing that C7,,(S) is nuclear if and only if a
family of groups indexed by the unit space of the universal groupoid of S are amenable and S
is hyperfinite [4, Corollary 3.14]. In the case of free inverse semigroup on two generators, this
unit space is a one-point compactification of E and the group standing on the point at infinity
is the free group Fs. The Cuntz-Renault semigroup is an example of a hyperfinite semigroup
and the bicyclic semigroup is not hyperfinite [4].

In this paper, we propose an alternative solution to the Paterson’s problem by considering

Cr.,(S) as a module over Cf,,(F) and show that there is a natural notion of nuclearity for
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C*-modules and when F acts on S trivially from left and by multiplication from right, then

*.q(S) is module nuclear if and only if S is amenable. We show that module nuclearity is
related to the notion of module amenability (of Banach modules) introduced by the first author
in [1]. We extend Connes-Haagerup result to this context by showing that when we have a
trivial left action, module nuclearity of a C*-module A is equivalent to its module amenability
and also to module Connes amenability (c.f.[2]) and module injectivity of A**.

The paper is organized as follows: In section 2 we introduce the notion of module nuclearity
for a C*-algebra A which is C*-module over another C*-algebra 2 with compatible actions, and
show that in the case of a trivial left action, module nuclearity of A is equivalent to nuclearity of
an appropriate quotient A/.J of A. We show that in this case, module nuclearity is equivalent to
module amenability [1]. As the main example, we show that for an inverse semigroup S with set
of idempotents E with trivial left action, the reduced C*-algebra C¥,;(S) is C_,(E)-module
nuclear if and only if S is amenable. In section three, we introduce the notion of module
injectivity for von Neumann algebra modules and relate it to the notion of module Connes
amenability [2]. Also we relate the latter module notions to their classical counterparts in the

case of trivial left action.

2 Module nuclearity

Let 2, A be Banach algebras such that A is a Banach 2f-module with compatible actions,
a.(ab) = (a.a)b, (ab).a =a(b.a) (a,be A,a eN). (2.1)

We know that A®gqA = A®A/I which A®A is the projective tensor product of A and A and
I is the closed ideal generated by elements of the form a.a ® b — a ® a.b for « € A, a,b € A
[11]. Let J = (w([)) be the closed ideal of A generated by w(I). We define w : A®A — A by
wla®b) =ab,and @ : ARy A = ARA/I — A/J by

Oa@@b+I)=ab+J (a,be A), (2.2)

both extended by linearity and continuity. Then @, o** are A-2-module homomorphisms [1].
Let V be a Banach A-module and a Banach 2-module with compatible actions,

a.(a.z) = (a.a).z, (a.a)x=a(ax)

(ax).a=a.(z.a) (a€AaeAxeV), (2.3)

and the same for the right or two-sided actions. Then we say that V' is a Banach A--module.

If moreover
ar=za (aeAzecV), (2.4)

then V is called a commutative A-2-module.
Given a Banach A-21-module V', a bounded map D : A — V is called a module derivation
if
D(a+b) = D(a) £ D), D(ab)=D(a).b+a.D() (a,beA) (2.5)

and
D(w.a) = a.D(a), D(a.c)=D(a)a (a€UacA). (2.6)
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A module derivation D is called inner if there exists v € V such that
D(a) =awv—v.a (a€A). (2.7)

Definition 2.1. Let A be a Banach 2-module, A is called module amenable if for every com-
mutative A-A-module V' with compatible actions, each module derivation D : A — V* is
mner.

A left trivial action of A on A is defined as e.a = f(e)a for e € A,a € A,where f is a
continuous character on 2.

Let A be a Banach 2A-module with trivial left action, A is called module nuclear if for every
C*-algebra B which is a Banach 2A-module with trivial left and right actions, AQyB has a
unique C* norm.

From now on, we suppose that A, 2 are C*-algebras. If J is the closed ideal of A described
above, since C*-algebra A/J has bounded approximate identity, it follows from [5, Lemma
2.7, Theorem 2.8] that if 2 acts trivially from left on A then for each o € 2, a € A, we have
a.c — f(a)a € J and A/J is amenable if and only if A is module amenable.

We know that if J is a closed ideal in C*-algebra A and if J and A/J are nuclear, then A
will be nuclear [14, Theorem 6.5.3]. The following theorem states that for the ideal J described
above, nuclearity of A/.J suffices for A to be module nuclear.

Theorem 2.2. If A acts trivially from left on A, A is module nuclear if and only if A/J is
nuclear.

Proof: Let A/J be nuclear, and B be a C*-algebra. We know that A®yB = A® B/Ip that I
is the ideal generated by the elements of the form a.a®b—a® a.b in whicha € A,b € B, € 2.
We have

aa®@b—a@ab=aa®b— fla)a®b=(a.a— f(a)a) ®be JR B (2.8)
Hence if 71,72 are C*- norms on A ® B/J ® B, and if

A A® B
¢:— QB — 2

J J®B (29)

is the canonical map between algebraic tensor products, then for each z € % ® B the equalities

el = ll@)ll5s Nzl = l¢(@)l, (2.10)

define C*- norms on 4 ® B and since A/J is nuclear |.|[; = ||.|[> and so v = 7.
Now suppose that A is module nuclear, we know that

A A Omax B
= Omax B= ——.
J® B J Qmax B

1%

(2.11)

We should show that 4 4 B
- ®mln B ~ ®mm

7 = Tomn B’ (212)
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For this, we need to show that the sequence

A
0— J®minB — A®minB — j Qmin B—0 (213)

is exact. Asin the proof of [14, Theorem 6.5.2], there exists a unique surjective x-homomorphism

A Qmin B A
e —— 7 Ymin B. 2.14
T T ommB T ° (2:14)
It suffices to find a left inverse for 7. Again let ¢ be the natural map described above and define
the norm ||.|| as

A A®B
o)l = ll2llmin, (v € 7 ® B, ¢() € =

This is a C*- norm on A ® B/J ® B and by module nuclearity of A, this norm is equal to the
norm on A ®uin B/J ®min B. Hence ¢ extends to a continuous *-homomorphism

). (2.15)

- A A Qmin B

: — Qmin B _— 2.16
¢ J ® — J ®min B ( )
with ¢7 = id. Thus we have
A omin B2 2 @0 B (2.17)
J min - J max N
and so A/J is nuclear. O

Corollary 2.3. If2 acts trivially from left on A, A is module nuclear if and only if A is module
amenable.

Proposition 2.4. If 2 is considered as a A-module with trivial left and right action by multi-
plication, then A is module nuclear.

Proof: We show that 2/J is amenable. We know that a.ac = ac, v.a =
Since a.ac — av.a € J, aa — f(a)a € J for a,a € A. Now let @ = a + J,b =
21/J, then ab — f(b)a € J and so ab = f(b)a.

Let @, be a bounded approximate identity for 2/.J. We have aob = f(b)as. But anb — b,
thus f(b)a, — b. When f(b) # 0, @, — b/f(b). Since @, is a norm-convergent bounded
approximate identity, its limit has to be the identity and we have b = f(b)1. This clearly also

holds when f(b) = 0. Therefore 2(/.J is one dimensional and we have

fla)a, for a,a € 2.
b+ J be elements of

ab = f(a)1f(b)1 = f(a)f(b)1 = f(b)f(a)l = ba.
Therefore 2(/J is a commutative unital C*-algebra and so is amenable. O
In the next result, A ® 2 is considered as an 2A-module with the following actions:
a-(a®pf)=a®p, (a®@pP)-a=a®Pa (a€ A a fec).

Proposition 2.5. If A is a nuclear C*-algebra then A @ A is A-module nuclear.
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Proof: We should show that (A ® 2A)/.J is nuclear. But J is generated by elements of the form
(a®e)a—a.(a®e)in which a € A,e,a € 2A. We have

(a®e)a—a(a®e)=a®ea— f(a)Ja®e=a® (eax — f(a)e) =a® (e.a — a.e)

But if 20 is considered as a 2 module and Jy is its associated ideal, then Jy is generated by
elements of the form e.ae — a.e and since A is nuclear we have
A  AA A

— ~ Ao
7 T Aod %7

Now nuclearity of (A ® 2)/J is followed from nuclearity of A and 2/ Jy. O

As an example, if M, is the C*-algebra of n by n matrices with entries in C, then M,,(2()
is ”-module nuclear.

A discrete semigroup S is called an inverse semigroup if for each x € S, there is a unique
element z* € S such that za*x = z and x*zx* = x. An element e € S is called an idempotent
if e = e* = 2. The set of idempotents of S is denoted by E [8].

We know that E is a commutative subsemigroup of S. As in [1], we let {}(E) act on I*(S)
by multiplication from right and trivially from left, that is

505 = 05, 05.00 = 0y * 00 = Ose. (2.18)

Let us observe that these actions continuously extend to actions of C*(E) on C*(S). For the

right action,
”(Z as6s) - (Z ﬂefse)”C*(S) l Za8ﬁ6556|

seS ecE s,e
sup || Z s Bem(dse) |
s
s,e

C*(5)

sup || Z s Bem(ds)m(de) ||

IN

sup || Y aum(ds)llsup || ) Be(8e)|
<D asdsllcw(s) D Bedel

where 7 ranges over all non-degenerate representations of ¢1(.9), and 7 is the restriction of 7
to the subalgebra ¢1(E). Note that 7 is not necessarily non-degenerate (unless to be taken on
a smaller Hilbert space), yet the last inequality is clearly satisfied. For the left action, defined
via the augmentation character 1) on (}(FE)

7/)(2 ﬂeae) = Z Be

C*(E)»

by

(Z ﬁe‘se) : (Z O‘s(ss) = Zasﬁe(ss = w(z Beée) Zas(;sa

ecE seS
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since the augmentation character could be considered as a one dimensional representation of
(Y (E), we have [¢(3°, Bebe)| < || D2, Bedellc+ (k) hence

1Y Bede) - O csd) sy < ||Zasé |C*(s>||2ﬂeé |

eckE ses
Therefore, since ¢!(E) is dense in C*(E) and ¢1(S) is dense in C*(S), the actions of ¢}(E) on
¢(S) extend continuously to actions of C*(E) on C*(S), where the left action is trivial and
given by the unique extension of ¥ on C*(E).

We don’t know if the augmentation character is continuous in the reduced C*-norm, thus
it is not clear how to extend the left action to an action of C¥,,(E) on C} ,(S) (the right
action extends with an argument similar to the one above). However, since the left regular
representation extends to a surjective s-homomorphism A : C*(S) — C7 ,(S) and ker()\)
is clearly invariant under both left and right actions of ¢}(E) on C*(S), these actions lift
continuously to actions of C*(E) on Cf_,(S), where the left action remains trivial. Finally,
since VN(S) ~ C¥,,(S)**, where the Arens product of the right hand side corresponds to the
operator product of the left hand side, VN(S) is a C*(E) module with compatible actions,
where the left action is trivial (given by the extension of the augmentation character).

We consider an equivalence relation on S as follows:

C*(E)-

sRte o, —0 e (s,te€l).

Let e, f € E. Since FE is a semilattice, ef < f,e. Now, a slight modification of the discussion
before Theorem 2.4 in [3] shows that the quotient S/~ is a discrete group (indeed it is not hard
to see that it is the maximal group homomorphic image of S). As in [10, Theorem 3.3|, we may
observe that ¢*(S)/J = (*(S/ ~).

Tt is well known that for a discrete group G, nuclearity of the reduced (or full) group C*-
algebra Cy.4(G) (or C*(@G)) and injectivity of the group von Neumann algebra VN (G) are both
equivalent to amenability of G (see for instance [7]). This is far from being true for (inverse)
semigroups (see the introduction). However we prove that a module version of this result holds
for any inverse semigroup.

Theorem 2.6. Let S be an inverse semigroup with set of idempotents E which acts on S triv-
ially from left, and by multiplication from right. Then the following statements are equivalent.
(i) S is amenable.
(#4) S/ =~ is amenable.
(131) Cr,4(S) is C*(E)-module nuclear.
(iv) C*(S) is C*(E)-module nuclear.

Proof: Since S/ = is the maximal group homomorphic image of S, (i) is equivalent to (iz) [9].
We show that (i) and (iv) are equivalent. Let ¢ : I*(S) — C*(S/ =); 8 — 0y. This is a
continuous *-homomorphism with range [*(S/ a). Since [!}(S/ ~) is dense in C*(S/ =), this
map lifts to a surjective *-homomorphism @ : C*(S) — C*(S/ ~). We show that Ker(p) = J,
where the right hand side is the closure of J in the C*-norm of C*(.S). We have

@(55-66 - 66'68) = <)0(68€ - 55) = (p((sse> - 90(53) = 6[56] - 6[5] =0
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Hence J C Ker(). On the other hand, let p(}";2, a;ds,) = 0. First suppose that for i,j € N,
s; = sj, then clearly Zj; a; = 0. Now there is e € F such that s;e = sqe. Therefore

a1531 + a2552 = (al(ssl - alésle) + alasle + (12(552
=71+ algsge + (12532 =71+ a‘1582€ + (a2532 - a’25$26) + a2682€
= J1+ Jo + (a1 + a2)0s,e = J + (a1 + a2)ds,e

in which j, 71,72 € J. Similarly we can show that for every n € N, there exist e € E,j € J,

such that . N
Z aiési = ] + (Z ai>6sne
1=1

i=1

Therefore since >, a; =0, > .o, a;ds; € J. Now in general if

QD(Z ai(ssl) =0,
=1

by classification of s;’s into classes of mutually equivalent elements, the desired result follows
by a similar argument. Hence we have

C*(8)/J = C*(S/ =). (2.19)

Therefore, by Theorem 2.6, C*(S) is C*(FE)-module nuclear if and only if C*(S/ =) is nuclear.
Since S/ = is a discrete group, the latter statement is equivalent to (i¢) which in turn is
equivalent to (7).

Since the left regular representation of an inverse semigroup S on ¢2(S) is faithful [13], there
is a dense copy of £1(S) in C*_;(S), and a similar argument as above shows that C*_,(S)/Jyeq =

red

* 4(S/ =), where J,.q is the closure of J in the reduced C*-norm of C*,,(S). Therefore (iii)

red
and (i) are equivalent. O

3 Module Injectivity

A C*-algebras M is an injective C*-algebra if, whenever A is a C*-algebra, B a C*-subalgebra
of A, and ¢ : B — M a completely positive contraction, then ¢ extends to a completely positive
contraction ¢ : A — M [6]. Tt is well known that M is injective if and only if for every faithful
representation m of M on a Hilbert space H, there is a conditional expectation (a norm one
projection) form B(H) onto 7(M) [6, IV.2.1.4].

From now on let M be a C*-algebra and a Banach 2-module with compatible actions.

Definition 3.1. M is module injective if, whenever A is a C*-algebra and a Banach A-modules
with compatible actions,, B is a C*-subalgebra of A and ¢ : B — M is a completely positive
contraction preserving module actions, then ¢ extends to a completely positive contraction v :
A — M which preserves the module action.

Theorem 3.2. M™** is module injective if and only if (M/J)** is injective.
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Proof: Let M** be module injective and A, B be C*-algebras as described in the above def-
inition. We show that (M/J)** is injective. Let ¢ : B — (M/J)** be a completely positive
contraction. Suppose that A, B be Banach 2[-modules with trivial actions. We know that

M*™* ~(M/J)"* e J (3.1)
So we have an inclusion i : (M/.J)** — M**. Then ¢ = i o ¢ preserves the module actions

¢(a.0) = §(f(a)a) = f(a)é(a)
f(@)d(a) — é(a).a + da).a
(f(@)(a) = p(a).a) + d(a).a = d(a).c

and lifts to a completely positive contraction ¢ : A — M**. Let 7 : M** — (M/J)** be the
quotient map and put w = mw o). Then 1/) is the desired completely positive contraction from
A into (M/J)**.

Conversely let (M/J)** be injective and A, B be C*-algebras as described in the above
definition. Let ¢ : B — M™* be a completely positive contraction which preserves module
actions and 7 : M** — (M/J)** be the quotient map. Then ¢ = 7 o ¢ is a completely
positive contraction and lifts to a completely positive contraction ¢ : A — (M/J)**. Let
i:(M/J)™ — M** be the inclusion map. Then ¥ =i o1 is a completely positive contraction
from A into M™* which preserves the module actions since

Y(a.a) =iop(a.a) =iom(p(a.q)) = da.c) = ¢(a).a (3.2)
for each a € A, € 2. O

I
~.

Corollary 3.3. M is module amenable if and only if M™* is module injective.

Corollary 3.4. Let S be an inverse semigroup with set of idempotents E which acts on S
trivially from left, and by multiplication from right. Then VN(S) is C*(E)-module injective if
and only if S is amenable.

The concept of Module Connes amenability is introduced in [2]. A Banach algebra is called a
dual Banach algebra if it is the dual of a Banach space, and its multiplication map is separately
w*-continuous. When A is a dual Banach algebra and a Banach 2[-module with compatible
actions, X is called a dual Banach A-2(-module if there is a closed A-2(-submodule X, of X* such
that X = X, or equivalently, X is the dual of a Banach space and the action maps: X — X;
T+ a.x, T+ x.a, and T — a.r, r — .« are w*-continuous, for each a € A, € A. X is called
normal if the action maps: A — X; a — a.x, a — z.a are w*-continuous, for each z € X.

Let A and 2 be as above and A is a dual 2-module, A is called module Connes amenable
(as an A-module) if for every commutative, normal, dual Banach A-2A-module X, each w*-
continuous module derivation D : A — X is inner.

Let J be the w*-closed ideal generated by elements of the form (a.a)b — a(a.b) for a,b €
A, o € 2. The following is proved similar to [5, Theorem 2.8].

Theorem 3.5. If 2 acts trivially from left on A and A/J is Connes amenable then A is
module Connes amenable. Furthermore if 2 acts trivially from left on A and A is module
Connes amenable and A/J has bounded approximate identity, then A/J is Connes amenable.
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Now if A is a Banach 2-module, then A* will have a natural 2-module structure via

(f.a)(a) = flaa), (a.f)(a)= fla.c) (a€Aac feA").

This in turn gives a module structure on A** whose action is an extension of the module action
on A and for each a € 2, the maps : A — A**; x — a.r, ¢ — x.a are w*-continuous.
Therefore A** is a dual Banach 2-module.

Corollary 3.6. If A is a C*-algebra and a Banach A-module with trivial left action, then A is
module amenable if and only if A** is module Connes amenable.

Proof: An argument similar to the proof of [5, Theorem 2.8] shows that module amenability of
A is equivalent to amenability of A/J. Also by the above theorem, module Connes amenability
of A** is equivalent to Connes amenability of A**/J++ = (A/J)**. Hence the result follows
from the fact that for a C*-algebra B, amenability of B is equivalent to Connes amenability of
B** [12]. O

Theorem 3.7. If A is a C*-algebra and a Banach A-module with trivial left action, the following
are equivalent:

(i) A is module nuclear.
(ii) A is module amenable.
(iii) A** is module Connes amenable.

(iv) A** is module injective.
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