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Abstract

This paper presents some Perron-type results for the nonuniform ordinary dichotomy of
evolution families on the real line with nonuniform exponential growth. It it also mentioned
the notion of the admissibility of the pair (L1(X),L∞(X)) to an evolution family. This
notion is used to obtain a result for the nonuniform ordinary dichotomy for an evolution
family on the real line.
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1 Introduction

One of the most important asymptotic properties of a differential system is the exponential
dichotomy, notion introduced by O. Perron in 1930 in [11].

J.L. Daleckij and M.G. Krein in [4], J.L. Massera and J.J. Schäffer, in [8, Chapter 8], have
obtained some dichotomy results on R for differential equations, for the infinite dimensional
case.

In 1974 M.G. Krein and J.L. Daleckij, in [4, Theorem 4.1, p. 81], shows that if A ∈ B(X)
then σ(A) ∩ iR = ∅ if and only if the differential equation ẋ(t) = Ax(t) + f(t) has an unique
solution x ∈ C, for all f ∈ C, where C represents the Banach space of the continuous and
bounded functions on R and σ(A) represent the spectrum of the operator A.

Another important results in the study of the evolution equations were obtained by B.M.
Levitan and V.V. Zhikov in [7] and A. Pazy in [10]. Some of the results were extended for the
evolution families with nonuniform exponential growth by L. Barreira and C. Valls in [2] and
[3].

In 1998 Y. Latushkin, T. Randolph and R. Schnaubelt, in [6], study the dichotomy on
R for the evolution families with uniform exponential growth through the assigned evolution
semigroup. The dichotomy on R+ was studied by A. Ben-Artzi and I. Gohberg in [1], N. van
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Minh, F. Räbiger and R. Schnaubelt in [9] and N.T. Huy in [5]. Similar results for the dichotomy
on the real line were obtained by A.L. Sasu and B. Sasu in [14] and A.L. Sasu in [15],[16].

In 2010, in [2], L. Barreira and C. Valls, using appropriate adapted norms (which can be
seen as Lyapunov norms) mention the connection between a nonuniform exponentially stable
evolution family and the admissibility of their associated Lp spaces, denoted by Lp(X), where
p > 1. The authors, mentioned above, extend the previous results for the nonuniform exponen-
tial dichotomy in 2011, in [3]. They prove that if any Lp(X) space, with p > 1, is admissible
to an evolution process with nonuniform exponential growth, then that evolution process is
nonuniform exponentially dichotomic.

The results were extended in 2012, in [12], by C. Preda, P. Preda and A. Crăciunescu,
which have obtained some R. Datko and Lyapunov-type characterizations for the nonuniform
exponential stability and dichotomy of an evolution process with a nonuniform exponential
growth. In the same year, in [13], C. Preda, P. Preda and C. Praţa presents some Perron-type
results for the nonuniform exponential dichotomy of an evolution operator.

All the above results are obtained for all t0 ∈ R+. In [14], [15] and [16] are considered
systems described by evolution families with exponential growth on the real line. It is known
that the exponential dichotomy is a generalization of the exponential stability, so it is expected
that the above results in more stringent conditions should imply the exponential stability on
R.

The main purpose of this paper is to give a sufficient condition for the nonuniform di-
chotomy of an evolution family with nonuniform exponential growth on the real line, using the
admissibility of the pair (L1(X),L∞(X)).

Section 2 is devoted to our preliminaries while Section 3 is dedicated to the main results.
First we will specify the following terms: evolution family on R that has nonuniform exponential
growth, family of projectors compatible with an evolution family on the real line, nonuniform
ordinary dichotomic evolution family. In Definition 3.1 we describe the admissibility of the pair
(L1(X),L∞(X)) to an evolution family. It is worth mentioning that in this case the complement
of the space X1(t0) is unique, for all t0 ∈ R, unlike the case when t0 ∈ R+ and the associated
family of projectors has a similar behaviour to the case where the evolution family is generated
by a differential system (see [4] and [8]).

We will use Theorem 3.1 in the demonstration of the most important result of this paper,
namely Theorem 3.2. We have expanded the work done by L. Barreira and C. Valls in [2] and [3]
for the nonuniform exponential dichotomy using the admissibility of the pair (L1(X),L∞(X)).
Using the same adapted norms and with personal methods, we will prove in Theorem 3.2 that
if any pair (L1(X),L∞(X)) is admissible to an evolution family with nonuniform exponential
growth then that evolution family is nonuniform ordinary dichotomic.

2 Preliminaries

Let X be a Banach space and B(X) the Banach algebra of all linear and bounded operators
acting on X. We will denote by ‖ · ‖ the norm on X and B(X) and ∆ = {(t, t0) ∈ R2 : t ≥ t0}.

Definition 2.1. An application Φ : ∆→ B(X),Φ = {Φ(t, t0)}t≥t0 , is called an evolution family
on R if it satisfies the following properties:
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(i) Φ(t, t) = I, for all t ∈ R, where I is the identity operator on X;

(ii) Φ(t, τ)Φ(τ, t0) = Φ(t, t0), for all t ≥ τ ≥ t0;

(iii) t0 7→ Φ(·, t0)x : [t0,∞)→ X is continuous for all x ∈ X and
t 7→ Φ(t, ·)x : (−∞, t]→ X is continuous for all x ∈ X.

Definition 2.2. We say that the evolution family Φ is with nonuniform exponential growth if
there exists M : R→ R∗+ and ω ∈ R such that

‖Φ(t, t0)‖ ≤M(t0)eω(t−t0), for all t ≥ t0.

Following [2] and [3] we introduce the norm:

‖x‖t0 = sup
τ≥t0

e−ω(τ−t0)‖Φ(τ, t0)x‖

and we obtain that

‖x‖ ≤ ‖x‖t0 ≤M(t0)‖x‖, for all t0 ∈ R and x ∈ X

and
‖Φ(t, t0)x‖t ≤ eω(t−t0)‖x‖t0 , for all t ≥ t0 and x ∈ X.

Further we mention the following notations:

L1 = {f : R→ R : f is measurable and ‖f‖1 =

∞∫
−∞

|f(t)|dt <∞},

L∞ = {f : R→ R : f is measurable and ‖f‖∞ = ess sup
t∈R
|f(t)| <∞},

L1(X) = {f : R→ X : f is Bochner measurable and t
g−→ ‖f(t)‖t ∈ L1}

and
L∞(X) = {f : R→ X : f is Bochner measurable and t

g−→ ‖f(t)‖t ∈ L∞}.

Remark 2.1. By [2] and [3] we obtain that L1(X) and L∞(X) are Banach spaces with the
norms ‖f‖′1 = ‖g‖1, respectively ‖f‖′∞ = ‖g‖∞, where g : R→ R, g(t) = ‖f(t)‖t.

We set now X1(t0) = {x ∈ X : δx ∈ L∞(X)}, where δx(t) =

{
Φ(t, t0)x, t ≥ t0
0, t < t0

and

X2(t0) = {x ∈ X : there exists ϕx ∈ L∞(X) such that ϕx(t) = Φ(t, s)ϕx(s), for all t0 ≥ t ≥ s;
ϕx(t0) = x}.

If X1(t0) is a closed and complemented subspace and X2(t0) is a complement for X1(t0), for
all t0 ∈ R then the family of projectors associated to the decomposition X = X1(t0) ⊕X2(t0)
are denoted by {Pi(t0)}t0∈R, for all t0 ∈ R and i = 1, 2.

If X = X1 ⊕X2, we denote by

γ[X1, X2] = inf
xi∈Xi−{0}

∥∥∥∥ x1
‖x1‖

− x2
‖x2‖

∥∥∥∥ , i = 1, 2.
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Remark 2.2. By [8] we have that

1

‖Pi‖
≤ γ[X1, X2] ≤ 2

‖Pi‖
, i = 1, 2,

where Pi, i = 1, 2 are the projectors associated to the decomposition X = X1 ⊕X2.

Remark 2.3. It can be seen that Φ(t, t0)Xi(t0) ⊂ Xi(t), for all t ≥ t0 and i = 1, 2.

Definition 2.3. We say that a family of projectors {P (t)}t∈R is compatible with the evolution
family {Φ(t, t0)}t≥t0 if the following properties are satisfied:

(i) P (t)Φ(t, t0) = Φ(t, t0)P (t0), for all t ≥ t0;

(ii) The application t 7→ P (t)x : R→ X is bounded, for all x ∈ X;

(iii) Φ(t, t0) : KerP (t0)→ KerP (t) is an isomorphism, for all t ≥ t0.

If we denote by X1(t0) = P (t0)X, respectively X2(t0) = (I −P (t0))X we can formulate the
following definition:

Definition 2.4. We say that the evolution family {Φ(t, t0)}t≥t0 is nonuniform ordinary di-
chotomic if there exist a family of projectors {P (t)}t∈R compatible with {Φ(t, t0)}t≥t0 and there
exists N1, N2 > 0 such that:

• ‖Φ(t, t0)x‖t ≤ N1‖x‖t0 , for all x ∈ X1(t0) and t ≥ t0.

• ‖Φ(t, t0)x‖t ≥ N2‖x‖t0 , for all x ∈ X2(t0) and t ≥ t0.

Remark 2.4. If the evolution family {Φ(t, t0)}t≥t0 is nonuniform ordinary dichotomic then
there exist a family of projectors {P (t)}t∈R compatible with {Φ(t, t0)}t≥t0 and there exists
N1, N2 > 0 such that:

• ‖Φ(t, t0)x‖ ≤ N1M(t0)‖x‖, for all x ∈ X1(t0) and t ≥ t0.

• M(t)‖Φ(t, t0)x‖ ≥ N2‖x‖, for all x ∈ X2(t0) and t ≥ t0.

3 Main Results

Let {Φ(t, t0)}t≥t0 be an evolution family on R with nonuniform exponential growth.

Definition 3.1. We say that the pair (L1(X),L∞(X)) is admissible to {Φ(t, t0)}t≥t0 if for all
f ∈ L1(X) it results that there is an unique xf ∈ L∞(X) such that

xf (t) = Φ(t, s)xf (s) +

t∫
s

Φ(t, τ)f(τ)dτ, for all t ≥ s.

Remark 3.1. If x ∈ X2(t0), x 6= 0 then Φ(t, t0)x 6= 0, for all t ≥ t0.
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Theorem 3.1. If the pair (L1(X),L∞(X)) is admissible to {Φ(t, t0)}t≥t0 then there is K > 0
such that

‖xf‖
′

∞ ≤ K‖f‖
′

1, for all f ∈ L1(X).

Démonstration: Let U : L1(X)→ L∞(X), defined by Uf = xf .
It is easy to notice that U is a closed operator and by the Closed Graph Theorem we obtain

that there is K > 0 such that

||Uf ||
′

∞ = ||xf ||
′

∞ ≤ K||f ||
′

1, for all f ∈ L1(X).

Our main result is the following:

Theorem 3.2. If the pair (L1(X),L∞(X)) is admissible to {Φ(t, t0)}t≥t0 then :

(i) The subspaces Xi(t0) are closed, for all t0 ∈ R and i = 1, 2;

(ii) X = X1(t0)⊕X2(t0), for all t0 ∈ R;

(iii) The evolution family {Φ(t, t0)}t≥t0 is nonuniform ordinary dichotomic;

(iv) Φ(t1, t0)X2(t0) = X2(t1), for all t1 > t0;

(v) The application Φ(t1, t0) : X2(t0)→ X2(t1) is invertible, for all t1 > t0;

(vi) The family of projectors {Pi(t0)}t0∈R, i = 1, 2 associated to the decomposition
X = X1(t0)⊕X2(t0), for all t0 ∈ R, has the following property

t 7→ ‖Pi(t0)‖t0 : R→ R+ is bounded, i = 1, 2.

Démonstration: (iii) Let t0 ∈ R, δ > 0, x ∈ X1(t0) with Φ(t, t0)x 6= 0, for all t ≥ t0 and

f : R→ X, f(t) = ϕ[t0,t0+δ](t)
Φ(t, t0)x

‖Φ(t, t0)x‖t
,

where ϕ[t0,t0+δ] denotes the characteristic function of the interval [t0, t0 + δ].

We notice that f ∈ L1(X) and ‖f‖′1 = δ. Now we consider

y : R→ X, y(t) =


t∫
−∞

ϕ[t0,t0+δ](τ)
dτ

‖Φ(τ, t0)x‖τ
Φ(t, t0)x, t ≥ t0

0, t < t0.

As y ∈ L∞(X) and y(t) = Φ(t, s)y(s) +
t∫
s

Φ(t, τ)f(τ)dτ, for all t ≥ s it results that

y(t) = xf (t), for all t ∈ R. By Theorem 3.1 it follows that there is K > 0 such that

‖y(t)‖t ≤ Kδ a.e.



420 C. Morariu and P. Preda

If t ≥ t0 + δ then

y(t) =

t0+δ∫
t0

dτ

‖Φ(τ, t0)x‖τ
Φ(t, t0)x,

thus

1

δ

t0+δ∫
t0

dτ

‖Φ(τ, t0)x‖τ
‖Φ(t, t0)x‖t ≤ K a.e. t ≥ t0 + δ.

From the above relation for δ → 0 it results that

‖Φ(t, t0)x‖t ≤ K‖x‖t0 , for all t ≥ t0 and x ∈ X1(t0) with Φ(t, t0)x 6= 0. (3.1)

Let x ∈ X with the property that there is t1 > t0 such that Φ(t1, t0)x = 0. Then

Φ(t, t0)x = Φ(t, t1)Φ(t1, t0)x = 0, for all t ≥ t1.

We denote by σ = inf{t ∈ R : t ≥ t0,Φ(t, t0)x = 0}. It follows that Φ(σ, t0)x = = 0, hence
Φ(t, t0)x 6= 0, for all t ∈ [t0, σ). On account of (3.1) we obtain that

‖Φ(t, t0)x‖t ≤ K‖x‖t0 , for all t ∈ [t0, σ).

Thus
‖Φ(t, t0)x‖t ≤ K‖x‖t0 , for all t ≥ t0 and x ∈ X1(t0). (3.2)

We consider x ∈ X2(t0), x 6= 0, t0 ∈ R, δ > 0 and

g : R→ X, g(t) = ϕ[t0,t0+δ](t)
Φ(t, t0)x

‖Φ(t, t0)x‖t
.

We can easily notice that g ∈ L1(X) and ‖g‖′1 = δ. Let

z : R→ X, z(t) =


−
∞∫
t

ϕ[t0,t0+δ](τ)
dτ

‖Φ(τ, t0)x‖τ
Φ(t, t0)x, t ≥ t0

−
t0+δ∫
t0

dτ

‖Φ(τ, t0)x‖τ
ϕx(t), t < t0.

As z ∈ L∞(X) and z(t) = Φ(t, s)z(s) +
t∫
s

Φ(t, τ)g(τ)dτ, for all t ≥ s it follows that z(t) =

xg(t), for all t ∈ R. By Theorem 3.1 it follows that there is K > 0 such that

‖z(t)‖t ≤ Kδ a.e.

If t ≤ t0 then

1

δ

t0+δ∫
t0

dτ

‖Φ(τ, t0)x‖τ
‖ϕx(t)‖t ≤ K a.e. t ≤ t0.
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For δ → 0, from the above relation we obtain that

‖ϕx(t)‖t ≤ K‖x‖t0 a.e. t ≤ t0.

But ϕx(t) = Φ(t, s)ϕx(s), for all t0 ≥ t ≥ s. For t = t0 it follows that

ϕx(t0) = x = Φ(t0, t)ϕx(t), for all t0 ≥ t.

We have that
‖ϕx(t)‖t ≤ K‖Φ(t0, t)ϕx(t)‖t0 a.e. t ≤ t0.

We obtain that
‖ϕx(t0)‖t0 ≤ K‖Φ(t, t0)ϕx(t0)‖t a.e. t ≥ t0,

thus
‖x‖t0 ≤ K‖Φ(t, t0)x‖t a.e. t ≥ t0.

So

‖Φ(t, t0)x‖t ≥
1

K
‖x‖t0 , for all t ≥ t0 and x ∈ X2(t0).

(i) On account to (3.2) we get that X1(t0) is a closed subspace, for all t0 ∈ R.
Further we will prove that X2(t0) is a closed subspace, for all t0 ∈ R.
Let x ∈ X2(t0), which means that there is xn ∈ X2(t0) such that xn → x.
We consider fn : R → X, fn(t) = −ϕ[t0,t0+1](t)Φ(t, t0)xn, for all n ∈ N. It results that

fn ∈ L1(X) and ‖fn‖
′

1 ≤ eω‖xn‖t0 . We set now

yn : R→ X, yn(t) =


∞∫
t

ϕ[t0,t0+1](τ)dτΦ(t, t0)xn, t ≥ t0

ϕxn
(t), t < t0,

for all n ∈ N.

As yn ∈ L∞(X) and yn(t) = Φ(t, s)yn(s) +
t∫
s

Φ(t, τ)fn(τ)dτ, for all t ≥ s it results that

yn(t) = xfn(t), for all t ∈ R and n ∈ N. If we apply Theorem 3.1 we get that

‖yn‖
′

∞ ≤ K‖fn‖1′ ≤ Keω‖xn‖t0 ,

which implies that
‖yn − ym‖

′

∞ ≤ Keω‖xn − xm‖t0 ,

thus
‖yn(t)− ym(t)‖t ≤ K‖xn − xm‖t0 −−−−−→

n,m→∞
0 a.e.

We obtain that lim
n→∞

yn(t) = y(t) a.e. But yn(t0) = ϕxn(t0) = xn −−−−→
n→∞

y(t0), so y(t0) = x.

We have that
yn(t) = Φ(t, s)yn(s), for all s ≤ t ≤ t0

and
y(t) = Φ(t, s)y(s), for all s ≤ t ≤ t0.
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It follows that x ∈ X2(t0), thus X2(t0) is a closed subspace, for all t0 ∈ R.
(ii) To prove that X = X1(t0)⊕X2(t0), for all t0 ∈ R, we consider x ∈ X, t0 ∈ R and

f : R→ X, f(t) = −ϕ[t0,t0+1](t)Φ(t, t0)x.

It results that f ∈ L1(X). From the hypothesis we obtain that there is an unique function
u ∈ L∞(X) such that

u(t) = Φ(t, s)u(s) +

t∫
s

Φ(t, τ)f(τ)dτ, for all t ≥ s.

If t ≥ t0 + 1 then u(t) = Φ(t, t0)(u(t0)− x). It results that u(t0)− x ∈ X1(t0).
We notice that u(t) = Φ(t, s)u(s), for all s ≤ t ≤ t0. Because u ∈ L∞(X) it follows that

u(t0) ∈ X2(t0). Therefore

X = X1(t0) +X2(t0), for all t0 ∈ R.

Let now z ∈ X1(t0) ∩X2(t0) and v : R→ X, v(t) =

{
Φ(t, t0)z, t ≥ t0
ϕz(t), t < t0.

Since v ∈ L∞(X) and v(t) = Φ(t, s)v(s), for all t ≥ s it results that v = 0 in L∞(X) and
being continuous on the right in t0 it follows that v(t0) = 0, thus z = 0. Hence

X = X1(t0)⊕X2(t0), for all t0 ∈ R.

(iv) Further we will show that Φ(t1, t0)X2(t0) = X2(t1), for all t1 > t0.
Set now x ∈ X2(t0), t1 > t0 and

u : R→ X, u(t) =


Φ(t, t0)x, t0 ≤ t ≤ t1
ϕx(t), t < t0

0, t > t1.

It results that u ∈ L∞(X) and we can easily prove that u(t) = Φ(t, s)u(s), for all t ≥ s.
If we make the substitutions t = t1 and s = t0 in the above relation we get that

u(t1) = Φ(t1, t0)u(t0) = Φ(t1, t0)x ∈ X2(t1),

hence

Φ(t1, t0)X2(t0) ⊂ X2(t1), for all t1 > t0. (3.3)

Let y ∈ X2(t1). Then there is ϕy ∈ L∞(X) such that ϕy(t) = Φ(t, s)ϕy(s), for all t1 ≥ t ≥ s
and ϕy(t1) = y. Since y = ϕy(t1) = Φ(t1, t0)ϕy(t0) it results that

X2(t1) ⊂ Φ(t1, t0)X2(t0), for all t1 > t0. (3.4)



Nonuniform ordinary dichotomy 423

By the relations (3.3) and (3.4) we obtain that

Φ(t1, t0)X2(t0) = X2(t1), for all t1 > t0. (3.5)

(v) To prove that Φ(t1, t0) : X2(t0) → X2(t1) is invertible, for all t1 > t0, we consider
z ∈ X2(t0) such that Φ(t1, t0)z = 0. It results that

‖Φ(t1, t0)z‖t1 = 0 ≥ N2‖z‖t0 ,

so ‖z‖t0 = 0, thus z = 0. As z = 0 and by the relation (3.5) we get that

Φ(t1, t0) : X2(t0)→ X2(t1) is invertible, for all t1 > t0.

(vi) We must show now that

t0 → ‖Pi(t0)‖t0 : R→ R+ is bounded, i = 1, 2,

where {Pi(t0)}t0∈R is the family of projectors associated to the decomposition
X = X1(t0)⊕X2(t0), for all t0 ∈ R.

Let t0 ∈ R, δ > 0, x1 ∈ X1(t0) with ‖x1‖t0 = 1, x2 ∈ X2(t0) with ‖x2‖t0 = 1 and the
functions

f1 : R→ X, f1(t) =

{
Φ(t, t0)x1, t ≥ t0
0, t < t0,

f2 : R→ X, f2(t) =

{
Φ(t, t0)x2, t ≥ t0
ϕx2

(t), t < t0.

We notice that f1(t) ∈ X1(t) and f2(t) ∈ X2(t), for all t ≥ t0.
We consider g : R→ X, g(t) = f1(t) + f2(t).

Let h : R→ X, h(t) = ϕ[t0,t0+δ](t)
g(t)

‖g(t)‖t
. We notice that h ∈ L1(X) and ‖h‖′1 = δ.

Now we consider y : R→ X,

y(t) =

t∫
−∞

ϕ[t0,t0+δ](τ)
dτ

‖g(τ)‖τ
f1(t)−

∞∫
t

ϕ[t0,t0+δ](τ)
dτ

‖g(τ)‖τ
f2(t)

=


t∫
−∞

ϕ[t0,t0+δ](τ)
dτ

‖g(τ)‖τ
Φ(t, t0)x1 −

∞∫
t

ϕ[t0,t0+δ](τ)
dτ

‖g(τ)‖τ
Φ(t, t0)x2, t ≥ t0

−
∞∫
t

ϕ[t0,t0+δ](τ)
dτ

‖g(τ)‖τ
ϕx2

(t), t < t0.

We notice that y ∈ L∞(X) and y(t) = Φ(t, s)y(s) +
t∫
s

Φ(t, τ)h(τ)dτ, for all t ≥ s we have

that y(t) = xh(t), for all t ∈ R. By Theorem 3.1 it results that

‖y(t)‖t ≤ Kδ.
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Hence

1

δ

t0+δ∫
t0

dτ

‖g(τ)‖τ
≤ K.

If δ → 0, from the above relation we get that ‖g(t0)‖t0 ≥
1

K
, for all t0 ∈ R, which means

that

‖Pi(t0)‖t0 ≤ 2K, for all t0 ∈ R, i = 1, 2.
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