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Abstract

We present multisets in the framework of the Fraenkel-Mostowski set theory. We extend
the notion of multiset over a finite alphabet by considering the notion of algebraically
finitely supported multiset over a possibly infinite alphabet. We study the correspondence
between some properties of multisets obtained in the Fraenkel-Mostowski framework (where
only finitely supported elements are allowed) and those obtained in the classical Zermelo-
Fraenkel framework.
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1 Introduction

The theory of nominal sets was developed initially by Fraenkel and Mostowski in 1930s, and
it is also known as the Fraenkel-Mostowski (FM) set theory. At that time, nominal sets were
used to prove independence of the axiom of choice and other axioms in the classical Zermelo-
Fraenkel (ZF) set theory. In computer science nominal sets offer an elegant formalism for
describing λ-terms modulo α-conversion [8], automata on data words [5], or languages over
infinite alphabets [4]. The FM axioms are precisely the Zermelo-Fraenkel with atoms (ZFA)
axioms over an infinite set A of atoms [8], together with the special axiom of finite support
which claims that for each element x in an arbitrary set we can find a finite set of atoms
supporting x. Therefore in the FM universe only finitely supported elements are allowed. The
Fraenkel-Mostowski set theory over an infinite set of atoms represents the mathematical model
for names in syntax. Atoms have the same properties as names in computer science. Most
often the precise nature of names is unimportant; what matters is their ability to identify and
their distinctness. The finite support axiom is motivated by the fact that syntax can only ever
involve finitely many names. The Fraenkel-Mostowski set theory have been used in the last
years in algebra [1, 3], in logic [13], in topology [12], or in domain theory [14].

Multisets are used more and more in computer science for quantitative analysis and models
of resources. The concept of multiset was introduced in order to capture the idea of multiplicity
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of appearance, or resource. Multisets are defined by assuming that for a given set Σ an element
x occurs a finite number of times. Some examples of multisets are the primes in the prime
factorization of a natural number, the invariants of a finite abelian group, or the processes in an
operating system. A survey on the applications of multisets in computer science can be found
in Section 1 of [2].

The aim of this paper is to present several ZF algebraic properties of multisets, and to
translate them into the FM framework. Informally, in the FM framework we are able to replace
“multiset over a finite alphabet” by “multiset over a finitely supported, possible infinite alpha-
bet” preserving the basic mathematical properties. Since in a mathematics of the experimental
sciences, where we are interested on a quantitative approach, there exists no evidence for the
presence of infinite, we try to model the infinite using a more relaxed notion of finite, namely
the notion of finite support. Thus the multisets over infinite alphabets are analyzed in terms
of finitely supported elements. This paper was announced as a future work in [1]. Note that
any ZF set is a particular nominal set equipped with a trivial permutation action (Example
1(2)). Therefore the general properties of nominal sets lead to valid properties of ZF sets. The
converse is not always valid, that is, not every ZF result can be directly rephrased in the world
of nominal sets, in terms of finitely supported elements according to arbitrary permutation
actions. This is because, given a nominal set X, there could exist some subsets of X which fail
to be finitely supported. Thus translating the ZF properties of multisets into FM is not trivial,
and represents the original part of this paper.

2 Nominal Sets

The notions we present in this section are slightly modified versions of the general properties of
nominal sets [8]. Let A be an infinite set of atoms characterized by the axiom “y ∈ x⇒ x /∈ A”.

Definition 1. A transposition is a function (a b) : A→ A defined by (a b)(a) = b, (a b)(b) = a,
and (a b)(n) = n for n 6= a, b. A permutation of A is generated by composing finitely many
transpositions.

Let SA be the set of all permutations of A (i.e. the set of all bijections on A which leave
unchanged all but finitely many elements).

Definition 2. 1. Let X be a ZF set. An SA-action on X is a function · : SA × X → X
having the properties that Id · x = x and π · (π′ · x) = (π ◦ π′

) · x for all π, π′ ∈ SA and
x ∈ X. An SA-set is a pair (X, ·) where X is a ZF set, and · : SA × X → X is an
SA-action on X.

2. Let (X, ·) be an SA-set. We say that S ⊂ A supports x whenever for each π ∈ Fix(S) we
have π · x = x, where Fix(S) = {π |π(a) = a,∀a ∈ S}.

3. Let (X, ·) be an SA-set. We say that X is a nominal set if for each x ∈ X there exists a
finite set Sx ⊂ A which supports x.

4. Let X be an SA-set and let x ∈ X. If there exists a finite set supporting x, then there
exists a least finite set supporting x [8] which is called the support of x, and is denoted
by supp(x).
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Proposition 1. Let (X, ·) be an SA-set and let π ∈ SA. If x ∈ X is finitely supported, then
π · x is finitely supported and supp(π · x) = π(supp(x)).

Example 1.

1. The set A of atoms is an SA-set with the SA-action · : SA×A→ A defined by π ·a := π(a)
for all π ∈ SA and a ∈ A.

2. Any ordinary ZF set X (like N or Z) is an SA-set with the trivial SA-action · : SA×X → X
defined by π · x := x for all π ∈ SA and x ∈ X.

3. If (X, ·) is an SA-set, then ℘(X) = {Y |Y ⊆ X} is also an SA-set with the SA-action
? : SA × ℘(X) → ℘(X) defined by π ? Y := {π · y | y ∈ Y } for all π of A, and all subsets
Y of X. For each nominal set (X, ·) we denote by ℘fs(X) the set formed from those
subsets of X which are finitely supported according to the action ? . (℘fs(X), ?|℘fs(X)) is
a nominal set, where ?|℘fs(X) represents the action ? restricted to ℘fs(X).

4. Let (X, ·) and (Y, �) be SA-sets. The Cartesian product X × Y is also an SA-set with the
SA-action ? : SA× (X × Y )→ (X × Y ) defined by π ? (x, y) = (π · x, π � y) for all π ∈ SA
and all x ∈ X, y ∈ Y . If (X, ·) and (Y, �) are nominal sets, then (X × Y, ?) is also a
nominal set.

Definition 3. Let (X, ·) be a nominal set. A subset Z of X is called finitely supported if and
only if Z ∈ ℘fs(X) with the notations in Example 1 (3).

Since functions are particular relations we can present the following results. For more details
see Section 2 from [1]:

Definition 4. Let X and Y be nominal sets. A function f : X → Y is finitely supported if
f ∈ ℘fs(X × Y ).

Let Y X = {f ⊆ X × Y | f is a function from the underlying set of X to the underlying set
of Y }.

Proposition 2. Let (X, ·) and (Y, �) be nominal sets. Then Y X is an SA-set with the SA-
action ? : SA × Y X → Y X defined by (π ? f)(x) = π � (f(π−1 · x)) for all π ∈ SA, f ∈ Y X and
x ∈ X. A function f : X → Y is finitely supported in the sense of Definition 4 if and only if it
is finitely supported with respect the permutation action ?.

Proposition 3. Let (X, ·) and (Y, �) be nominal sets. Let f ∈ Y X and π ∈ SA be arbitrary
elements. Let ? : SA×Y X → Y X be the SA-action on Y X defined by: (π?f)(x) = π�(f(π−1 ·x))
for all π ∈ SA, f ∈ Y X and x ∈ X. Then π ? f = f if and only if for all x ∈ X we have
f(π · x) = π � f(x).

3 Algebraic Properties of Multisets

Definition 5. Given a finite alphabet Σ, any function f : Σ → N is called multiset over Σ.
The value of f(a) is said to be the multiplicity of a. The set of all multisets over Σ is denoted
by N(Σ).
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The additive structure of N induces an additive operation (sum) on multisets. On N(Σ) we
define an additive law “ + ” : N(Σ) × N(Σ) → N(Σ) by (f, g) 7→ f + g, where f + g : Σ → N
is defined pointwise by (f + g)(a) = f(a) + g(a) for all a ∈ Σ. Since N(Σ) is formed by all
functions from Σ to N, it is clear that (N(Σ),+) is an abelian monoid, the identity being the
empty multiset θ : Σ → N, θ(a) = 0 for all a ∈ Σ. Since (N(Σ),+) is an abelian monoid, it
follows that (N(Σ),+) is an N-semimodule i.e. a semimodule over the semiring N, with the
scalar multiplication “ · ” : N× N(Σ)→ N(Σ) defined by (n, f) 7→ n · f , where n · f : Σ→ N is
defined pointwise by (n · f)(a) = n · f(a), for all a ∈ Σ and n ∈ N.

Proposition 4. (N(Σ),+) is a free abelian N-semimodule.

Proof: If a ∈ Σ, let us consider the multiset ã : Σ→ N defined by ã(b) =

{
1 for b = a
0 for b ∈ Σ \ {a} .

It is easy to check that every multiset f ∈ N(Σ) can be uniquely expressed as f =
∑
a∈Σ f(a) · ã.

Since Σ is finite, the sum is finite.

Since N(Σ) is the free N-semimodule with basis Σ̃, it satisfies the universality property
described in Proposition 5. We denote by j : Σ → N(Σ) the function which maps each a ∈ Σ

into ã ∈ Σ̃.

Proposition 5. If M is any abelian monoid and f : Σ → M is an arbitrary function, then
there exists a unique homomorphism of abelian monoids g : N(Σ) → M with g ◦ j = f , i.e.
g(ã) = f(a) for all a ∈ Σ.

Definition 6. Adjoin one element to Σ and denote it by 1. A word on Σ is either the element
1 or a formal expression x1x2 . . . xn where n ∈ N, xi ∈ Σ. The juxtaposition of words w =
x1x2 . . . xn and w′ = y1y2 . . . ym is the word w#w′ := x1x2 . . . xny1y2 . . . ym. Moreover, we
define w#1 = 1#w = w for all words w. The free monoid Σ∗ is the set of words on Σ with the
internal law #.

The free monoid on Σ also satisfies the so-called universality property:

Theorem 1. For each monoid M and each function f : Σ→ M , there exists a unique homo-
morphism of monoids g : Σ∗ → M with g ◦ i = f , where i : Σ → Σ∗ is the standard inclusion
of Σ into Σ∗ which maps each element a ∈ Σ into the word a.

We can compare multisets with vectors of natural numbers. If Σ = {a1, . . . , ak}, then
N(Σ) ∼= Nk as N-semimodules and hence as abelian monoids. We can connect all these views
using the universal property of the free monoid Σ∗. If we replace in the statement of Theorem
1, M with N(Σ), and f : Σ → M with j : Σ → N(Σ) where j maps each a into ã, we get a
function g : Σ∗ → N(Σ) such that g◦i = j , where i : Σ→ Σ∗ is the standard inclusion of Σ into
Σ∗ which maps each element a ∈ Σ into the word a. If w = x1x2 · · ·xm, xi ∈ Σ, i = 1, . . . ,m,
then g(w) = j(x1) + j(x2) + · · ·+ j(xm).

If for any alphabet {a1, . . . , ak}, k ∈ N we denote by |w|ai the number of appearances of the

symbol ai in w, g(w) =
∑k
i=1 |w|ai · ãi is a surjective morphism. From the isomorphism theorem

for monoids we get Σ∗/Ker g ∼= N(Σ). Note that Ker g is a congruence on Σ∗. Two words w
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and w′ are in the same equivalence class with respect to Ker g if and only if g(w) = g(w′); this
is equivalent with |w|ai = |w′|ai for all i = 1, . . . , k.

If Σ = {a1, . . . , ak}, we define the Parikh image [11] ϕΣ : Σ∗ → Nk in the following way: if
w = x1x2 . . . xn, then ϕΣ(w) is the vector in Nk whose i-component is

∑
xj=ai
j=1,n

1 for each i = 1, k;

if there is no j such that xj = ai the the i-th component of the vector is defined to be 0.
Informally ϕΣ(w) calculates the number of “occurrences” of each element from Σ in w.

If we replace, in the statement of Proposition 5, M with Nk and f : Σ → M with the
function ϕΣ ◦ i where where i : Σ→ Σ∗ is the standard inclusion of Σ into Σ∗ which maps each
element au ∈ Σ into the word au, then there exists a unique homomorphism of abelian monoids
ψΣ : N(Σ) → Nk with ψΣ ◦ j = ϕΣ ◦ i, that is ψΣ(ãu) = ϕΣ(au) = (0, . . . , 0, 1, 0, . . . , 0) = eu
for all au ∈ Σ, where eu = (0, . . . , 0, 1, 0, . . . , 0) is the vector in Nk whose all components are 0
except the u-th component which is 1.

Now, because ψΣ maps one-to-one each element from a finite basis of N(Σ) into an element
from a finite basis of Nk, and N(Σ) and Nk have the same rank, we have that ψΣ : N(Σ)→ Nk

is an isomorphism, and ψ
Σ

(
k∑
i=1

f(ai) · ãi) = (f(a1), . . . , f(ak)), for each f ∈ N(Σ). Moreover,

the properties of commutative diagrams shows us that ψΣ ◦ g = ϕΣ where g : Σ∗ → N(Σ) is the
homomorphism built before such that g ◦ i = j.

Several orders can be defined on the set N(Σ). The most common is the order obtained
from the definition of the subset-hood in the case of multisets.

Definition 7. A multiset f : Σ→ N is a subset of a multiset g : Σ→ N (written f ⊆ g) if and
only if f(x) ≤ g(x) for all x ∈ Σ.

Clearly (N(Σ),≤) is a partially ordered set. Another multiset order is Dershowitz and
Manna order [7] which is a main tool of many orders used to prove the finite termination of
programs and also of term rewriting systems [6].

Definition 8. Let us suppose there exists a strict order ≺ on Σ. We define the Dershowitz and
Manna (DM) strict order �DM on N(Σ) by f �DM g if and only if there exists h, k ∈ N(Σ)
with the following properties:

1. θ 6= h ⊆ g;

2. f = (g − h) + k;

3. for all y ∈ Σ with k(y) > 0, there exists x ∈ Σ with h(x) > 0 and y ≺ x.

The DM definition is difficult to use in order to prove that two multisets are not related by
an inclusion. An equivalent definition is presented in [10].

Definition 9. Let us suppose there exists a strict order ≺ on Σ. We define the Huet and Oppen
strict order �HO on N(Σ) by f �HO g if and only if the following properties are satisfied:

1. f 6= g;

2. for all y ∈ Σ with f(y) > g(y), there exists x ∈ Σ with y ≺ x, f(x) < g(x).
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Theorem 2 ([10]). The orderings �DM and �HO are equivalent.

Since �DM and �HO are equivalent, we denote these order relations by �.

4 Multisets over Nominal Sets

We formalize now the concept of multisets in the FM universe. Such a work have already been
announced in [1]. According to Example 1 (2), we know that N is an SA-set with the SA-action
· : SA×N→ N defined by π ·x := x for all π ∈ SA and x ∈ N. Also, N is a nominal set because
for each x ∈ N we have that ∅ supports x. Moreover, supp(x) = ∅ for each x ∈ N.

Proposition 6. Let (Σ, ·) be a nominal set (possible infinite), and f : Σ→ N a function such

that its algebraic support Sf
def
= {x ∈ Σ | f(x) 6= 0} is finite. Then f is finitely supported and

supp(f) ⊆ supp(Sf ).

Proof: A function f : Σ→ N is finitely supported in the sense of Definition 4 if and only if it
is finitely supported with respect the permutation action ? defined in Proposition 2. However
on N we have defined the trivial action (π, x) 7→ x. Therefore the SA-action ? on NΣ is given
by (π ? f)(x) = f(π−1 · x) for all π ∈ SA, f ∈ NΣ and x ∈ Σ. Let f : Σ→ N be a algebraically
finitely supported function. Let Sf = {a1, . . . , ak}, and S = supp(a1) ∪ . . . ∪ supp(ak). We
have to prove that S supports f . Let π ∈ Fix(S). We have that π ∈ Fix(supp(ai)) for each
i ∈ {1, . . . , k}. Therefore π · ai = ai for each i ∈ {1, . . . , k} because supp(ai) supports ai for
each i ∈ {1, . . . , k}. However f = Σ

a∈Σ
f(a) · ã = Σ

a∈Sf

f(a) · ã. A simple calculus show us that

π ? f = Σ
a∈Sf

f(a) · (π̃ · a). Therefore π ? f = f for each π ∈ Fix(S).

Since N is a trivial nominal set with the same SA-action as Z, the following proposition can
be proved as in Remark 3.5 from [1], by replacing Z with N.

Proposition 7. If f : A→ N such that Sf is finite, then Sf = supp(f).

According to Proposition 7, the notion of algebraic support of a multiset represents an
extension of the notion of nominal support. In the nominal framework, the multisets over finite
alphabets can be replaced by the algebraically finitely supported multisets over possible infinite
alphabets.

Definition 10. Given a nominal set (Σ, ·) (possible infinite), any function f : Σ→ N with the
property that Sf is finite is called extended multiset over Σ. The set of all extended multisets
over Σ is denoted by Next(Σ).

We remark that each function f ∈ Next(Σ) can be expressed as f = Σ
a∈Σ

f(a) · ã. Since Sf

is finite, the previous sum is finite. Therefore Next(Σ) is a free abelian monoid with basis Σ.
According to the proof of Theorem 4 every ã is finitely supported, and so, the the expression
of f makes sense in FM. Whenever Σ is finite we have Next(Σ) = N(Σ).
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Definition 11. A nominal monoid is a triple (M,+, ·) such that the following conditions are
satisfied:

• (M,+, 0) is a monoid;

• (M, ·) is a nominal set;

• for each π ∈ SA and x, y ∈M we have π · (x+ y) = π · x+ π · y and π · 0 = 0.

The relation requested on item 3 from Definition 11 is justified by the fact that in the FM
universe only finitely supported elements are allowed. According to Proposition 3, this relation
is equivalent to the equivariance of +.

According to Proposition 4 we know that (N(Σ),+) is a free abelian monoid if we work
in the standard ZF set theory. Analogue (Next(Σ),+) is a free abelian monoid. In the FM
framework we have the following result:

Theorem 3. Next(Σ) is a free abelian nominal monoid whenever (Σ, ·) is a nominal set.

Proof: We already know that (Next(Σ),+) is a free abelian monoid. Also π ? f ∈ Next(Σ) for
all f ∈ Next(Σ), where ? is the standard SA-action on NΣ. According to Proposition 6 we have
that (Next(Σ), ?) is a nominal set with the SA-action ? : SA × Next(Σ) → Next(Σ) defined by
(π ? f)(x) = f(π−1 · x) for all π ∈ SA, f ∈ Next(Σ) and x ∈ Σ . Let f, g ∈ Next(Σ). For each
x ∈ Σ we have (π?(f+g))(x) = (f+g)(π−1 ·x) = f(π−1 ·x)+g(π−1 ·x) = (π?f)(x)+(π?g)(x) =
((π ? f) + (π ? g))(x). Hence π ? (f + g) = π ? f + π ? g. Also, π ? θ = θ, where θ is the empty
multiset.

For nominal monoids we also have an universality property which is similar to Proposition
5 in the FM framework.

Theorem 4. Let (Σ, ·) be a nominal set. Let j : Σ→ Next(Σ) be the function which maps each

a ∈ Σ into ã ∈ Σ̃. If (M,+, �) is an arbitrary abelian nominal monoid and ϕ : Σ → M is an
arbitrary finitely supported function, then there exists a unique finitely supported homomorphism
of abelian monoids ψ : Next(Σ)→M with ψ ◦ j = ϕ , i.e. ψ(ã) = ϕ(a) for all a ∈ Σ. Moreover,
if a finite set S supports ϕ, then the same set S supports ψ. Therefore, if ϕ is equivariant, then
ψ is also equivariant.

Proof: First we show that the statement of the theorem is well written in FM. We know that in
the FM universe only elements with finite support are allowed. For this, we have to prove that j
is finitely supported. According to Proposition 2 we know that Next(Σ)Σ is an SA-set with the
SA-action . : SA×Next(Σ)Σ → Next(Σ)Σ defined by (π . f)(x) = π ? (f(π−1 ·x)) for all π ∈ SA,
f ∈ Next(Σ)Σ and x ∈ Σ (the SA-action on Next(Σ) is denoted by ?). A function f : Σ→ Next(Σ)
is finitely supported in the sense of Definition 4 if and only if it is finitely supported with respect
the permutation action .. We prove that j is equivariant. In the view of Proposition 3 we must
prove that j(π ·x) = π?j(x) for each π ∈ SA and each x ∈ Σ. Let π ∈ SA and x ∈ Σ be arbitrary

elements. For each y ∈ Σ we have (by the definition of j) that (j(π·x))(y) =

{
1 for π · x = y
0 for π · x 6= y

.



10 Andrei Alexandru and Gabriel Ciobanu

Also (π ? j(x))(y) = j(x)(π−1 · y) =

{
1 for x = π−1 · y
0 for x 6= π−1 · y =

{
1 for π · x = y
0 for π · x 6= y

. Hence

j(π · x) = π ? j(x) for each π ∈ SA and each x ∈ Σ which means that j has empty support.
The homomorphism ψ is defined in the same way as the homomorphism g in Proposition

5. As in the standard theory of abelian monoids (or free N-semimodules) the homomorphism
ψ is defined by ψ(f) = Σ

a∈Sf

f(a) · ϕ(a) whenever f = Σ
a∈Sf

f(a) · ã. We must prove only that

ψ is finitely supported because the other properties of ψ requested in the statement of the
theorem have standard proofs as in the classical monoids theory. According to Proposition 2
we know that MNext(Σ) is an SA-set with the SA-action • : SA ×MNext(Σ) →MNext(Σ) defined
by (π•φ)(g) = π�(φ(π−1?g)) for all π ∈ SA, φ ∈MNext(Σ) and g ∈ Next(Σ). We prove that S =
supp(ϕ) supports ψ. Let π ∈ Fix(S). In the view of Proposition 3, for proving that π•ψ = ψ it is
enough to prove that ψ(π ? g) = π �ψ(g) for each g ∈ Next(Σ). Let f ∈ Next(Σ) be an arbitrary
element. Then f = Σ

a∈Sf

f(a) · ã. Since j is equivariant and ψ is a monoid homomorphism

we obtain ψ(π ? f) = ψ( Σ
a∈Sf

f(a) · (π ? ã)) = ψ( Σ
a∈Sf

f(a) · (π̃ · a)) = Σ
a∈Sf

f(a) · ψ(π̃ · a) =

Σ
a∈Sf

f(a)·ϕ(π ·a). Also π�ψ(f) = π�( Σ
a∈Sf

f(a)·ϕ(a)) = Σ
a∈Sf

f(a)·(π�ϕ(a)) = Σ
a∈Sf

f(a)·ϕ(π ·a);

the second equality follows because (M,+, �) is a nominal monoid and the third because π fixes
supp(ϕ) pointwise. Therefore S supports ψ.

In the previous subsection we established a connection between N(Σ) and the free monoid
Σ∗. Our aim is to prove that the results obtained in the previous subsection in the ZF framework
can also be proved in the FM framework. Analogue as in Proposition 3.6 of [1], we can prove
the following result.

Theorem 5. Σ∗ is a nominal monoid whenever (Σ, ·) is a (possible infinite) nominal set. The
the SA-action ?̃ : SA × Σ∗ → Σ∗ is defined by π?̃x1x2 . . . xl = (π · x1) . . . (π · xl) for all π ∈ SA
and x1x2 . . . xl ∈ Σ∗ \ {1}, and π?̃1 = 1 for all π ∈ SA.

Theorem 1 which represents the universality property for Σ∗ in the ZF framework has a
similar result in FM. This result can be proved analogue as Theorem 3.7 from [1] by replacing
“free group” with “free monoid”.

Theorem 6. Let (Σ, �) be a (possible infinite) nominal set. Let i : Σ → Σ∗ be the standard
inclusion of Σ into Σ∗ which maps each element a ∈ Σ into the word a. If (M, ·, �) is an
arbitrary nominal monoid and ϕ : Σ → M is an arbitrary finitely supported function, then
there exists a unique finitely supported homomorphism of monoids ψ : Σ∗ →M with ψ ◦ i = ϕ.
Moreover, if a finite set S supports ϕ, then the same set S supports ψ. Therefore, if ϕ is
equivariant, then ψ is also equivariant.

Several results obtained in the previous subsection (in the ZF framework) can be translated
to the FM framework. If we replace in the statement of Theorem 6, M with Next(Σ), and
ϕ : Σ → M with j : Σ → Next(Σ) where j maps each a into ã, we get an equivariant monoid
homomorphism ψ : Σ∗ → Next(Σ) such that ψ ◦ i = j, where i : Σ → Σ∗ is the standard
inclusion of Σ into Σ∗ which maps each element a ∈ Σ into the word a. Now if w = x1x2 . . . xn
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then we obtain that ψ(w) = j(x1) + j(x2) + . . .+ j(xn). Now, clearly, ψ is surjective and, from
the first isomorphism theorem for monoids we have Σ∗/Ker ψ ∼= Next(Σ). Moreover, in FM we
have the following result:

Proposition 8. Σ∗/Ker ψ is a nominal monoid and the isomorphism Θ between the nominal
monoids Σ∗/Ker ψ and Next(Σ), defined by Θ([w]) = ψ(w) for each w ∈ Σ∗ (where [w] is the
equivalence class of w modulo the equivalence relation Ker ψ) is equivariant.

Proof: We remark that Θ is defined as in the standard proof of the first isomorphism theorem
for monoids. First we prove that we can define a nominal structure on Σ∗/Ker ψ. We know
that (Σ∗, ?̃) is a nominal set (Theorem 5). We define � : SA × Σ∗/Ker ψ → Σ∗/Ker ψ by
π�[w] = [π?̃w] for each w ∈ Σ∗ and each π ∈ SA. First we show that� is a well defined function.
Let w = x1x2 . . . xn and v = y1y2 . . . ym be two elements in Σ∗ such that [w] = [v]. This means
ψ(w) = ψ(v) which by the definition of ψ is the same with j(x1) + j(x2) + . . .+ j(xn) = j(y1) +
j(y2)+. . .+j(ym). Now we have π?(j(x1)+j(x2)+. . .+j(xn)) = π?(j(y1)+j(y2)+. . .+j(ym))
for each π ∈ SA (where ? represents the SA-action on Next(Σ)). Since Next(Σ) is a nominal
monoid and because j is equivariant (see the proof of Theorem 4), in the view of Proposition 3
we have j(π · x1) + j(π · x2) + . . .+ j(π · xn) = j(π · y1) + j(π · y2) + . . .+ j(π · ym) which means
ψ(π?̃w) = ψ(π?̃v) for each π ∈ SA. Therefore [π?̃w] = [π?̃v] for each π ∈ SA which means that
� is well defined. Since ?̃ is an SA-action on Σ∗, an easy calculation shows us that � is an SA-
action on Σ∗/Ker ψ. Moreover, each element in Σ∗/Ker ψ is finitely supported by the support
of its representative. Therefore (Σ∗/Ker ψ,�) is a nominal set. Since (Σ∗,#, ?̃) is a nominal
monoid (the axioms in Definition 11 are satisfied) it is trivial to check that (Σ∗/Ker ψ,#,�) (we
denote also by # the internal law on the factor monoid Σ∗/Ker ψ) is also a nominal monoid; the
proof is an easy calculation which uses only the definition on � and the distributivity property
of ?̃ over #.

We claim that Θ is equivariant. For this, in the view of Proposition 3, it is sufficient to prove
that for each π ∈ SA we have Θ(π � [w]) = π ? (Θ[w]), ∀w ∈ Σ∗. Let π ∈ SA be an arbitrary
element. Since ψ is equivariant we have Θ(π � [w]) = Θ([π?̃w]) = ψ(π?̃w) = π ? ψ(w) =
π ? (Θ([w]). This means Θ is equivariant.

If Σ = {a1, . . . , ak}, the Parikh image ϕΣ : Σ∗ → Nk is finitely supported. Indeed, N is an
SA-set with the SA-action · : SA × N → N defined by π · x := x for all π ∈ SA and x ∈ N.
From Example 1 (4) we know how an SA-action on the Cartesian product of two nominal sets
looks like. Therefore Nk is endowed with a trivial SA-action defined by π ·x := x for all π ∈ SA
and x ∈ Nk. Also Nk is a nominal set because for each x ∈ Nk we have that ∅ supports x.
Moreover, supp(x) = ∅ for each x ∈ Nk. According to Proposition 3 and Theorem 5, by easy
calculation we obtain that supp(a1)∪. . .∪supp(ak) supports ϕΣ. If we replace, in the statement
of Theorem 4, M with Nk and ϕ : Σ → M with the function ϕΣ ◦ i where i : Σ → Σ∗ is the
standard inclusion of Σ into Σ∗, then there exists a unique finitely supported homomorphism
of abelian monoids ψΣ : N(Σ)→ Nk with ψΣ ◦ j = ϕΣ ◦ i.

According to [14], a nominal partially ordered set (E,v) is a nominal set E together with a
partial order relation v which is equivariant as a subset of E × E in the sense of Definition 3.
Similarly nominal strictly ordered set (E,<) is a nominal set E together with a strict (partial
or total) order relation < which is equivariant as a subset of E×E in the sense of Definition 3.
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Proposition 9. If (Σ, ·) is a nominal set, then (Next(Σ), ?,⊆) is a nominal partially ordered
set.

Proof: According to Proposition 6 we have that (Next(Σ), ?) is a nominal set with the SA-action
? : SA ×Next(Σ)→ Next(Σ) defined by (π ? f)(x) = f(π−1 · x) for all π ∈ SA, f ∈ Next(Σ) and
x ∈ Σ. Let f, g ∈ Next(Σ) such that f ⊆ g. This means f(x) ≤ g(x) for all x ∈ Σ. We should
prove that π ? f ⊆ π ? g. Let x ∈ Σ. We have (π ? f)(x) = f(π−1 · x) ≤ g(π−1 · x) = (π ? g)(x).
Therefore ⊆ is equivariant.

In [1] we presented an embedding theorem of Cayley-type valid for a particular class of
nominal groups, namely the uniform nominal groups. In this paper we are able to prove an
embedding theorem of Cayley-type that works for all nominal monoids and not only for those
which are uniformly supported. This theorem leads to an interesting property of extended
multisets, namely Corollary 1.

Definition 12. Let (M,+, ·) be a nominal monoid. A submonoid M ′ of M is called a nominal
submonoid of M if (M ′, ·|M ′) is a nominal set, that is, π ·m′ ∈ M ′ for all m′ ∈ M ′ and all
π ∈ SA.

Lemma 1. Let (X, ·) be a nominal set. The finitely supported elements from XX form a
nominal monoid.

Proof: Since X is a nominal set, we have that XX is an SA-set with the SA-action ? defined
as in Proposition 2. According to Proposition 1, the finitely supported elements from XX form
a nominal set. It is clear that (XX , ◦) is a monoid (where ◦ represent the usual composition of
functions). It remains to prove that for each f, g ∈ XX we have π ? (f ◦ g) = (π ? f) ◦ (π ? g).
Indeed, for each x ∈ X, we have (π ? (f ◦ g))(x) = π · (f(g(π−1 · x))). Also, if we denote
(π?g)(x) = y we have y = π ·(g(π−1 ·x)) and ((π?f)◦(π?g))(x) = (π?f)(y) = π ·(f(π−1 ·y)) =
π · (f((π−1 ◦ π) · g(π−1 · x))) = π · (f(g(π−1 · x))). Therefore π ? (f ◦ g) = (π ? f) ◦ (π ? g), and
XX is a nominal monoid.

Theorem 7 (Cayley-theorem for nominal monoids). Let (X,+, ·) be a nominal monoid. There
exists an equivariant isomorphism between X and a nominal submonoid of the nominal monoid
formed by the finitely supported elements from XX .

Proof: For each x ∈ X we consider the function fx : X → X defined by fx(y) = x + y. Let
M = {fx |x ∈ X}. According to Proposition 3 and because + is equivariant we have that
each element of form fx is supported by supp(x). Therefore each element in M is finitely
supported, and M is a submonoid of XX . Moreover, we have that M is a nominal submonoid
of XX . Indeed, if m ∈ M we have that m = fx for some x ∈ X. Let π ∈ SA. We have
(π ?m)(y) = π · (fx(π−1 · y)) = π · (x+ (π−1 · y)) = (π · x) + y = fπ·x(y). Therefore π ?m ∈M
for all π ∈ SA and all m ∈M , and M is a a nominal submonoid of XX .

Let T : X → XX be the function defined by T (x) = fx for each x ∈ X. As in the standard
proof of Cayley’s theorem for monoids, it can be proved (by direct calculation) that T is an
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injective monoid homomorphism whose image is M . It remains to prove that T is equivariant. It
is sufficient to prove that T (π ·x) = π?T (x) for each x ∈ X and π ∈ SA, where by ? we denoted
the SA-action on XX . However, according to the paragraph above, we have T (π · x) = fπ·x,
π ? T (x) = π ? fx, and π ? fx = fπ·x for all π ∈ SA.

According to Theorem 7, we have the following Cayley-type result in the FM framework.

Corollary 1. Let Σ be a possible infinite nominal set. There exists an equivariant isomor-
phism between Next(Σ) and a nominal submonoid of the nominal monoid formed by the finitely
supported elements from (Next(Σ))(Next(Σ)).

5 An Extension of the Framework to the FM Cumulative Hierarchy

Since a finite nominal set necessarily has a trivial permutation action (see Example 2.2.3.1 from
[14]), the restriction of the results in Section 4 for N(Σ) 1 become trivial. This is the reason
why we do not discuss the results in Section 4 (which are valid in the general case when Σ is
an infinite nominal set) in the particular case when Σ is a finite alphabet. The triviality of the
properties of N(Σ) could be avoided if we would replace “finite nominal set” by “finite set in the
Fraenkel-Mostowski cumulative hierarchy”. The FM cumulative hierarchy FMA described in
[8] is a nominal set with the SA-action · : SA×FMA → FMA defined inductively by π ·a := π(a)
for all atoms a ∈ A and π ·x := {π ·y | y ∈ x} for all x ∈ FMA. An FM-set is a finitely supported
element in FMA; additionally an FM-set have the recursive property that all its elements are
also FM-sets. We generalize the results in the previous section in order to be closer from the
framework of FM-sets. However we preserve the terminology of nominal sets in order to present
the following results.

Definition 4 can be generalized in the following way:

Definition 13. Let X and Y be nominal sets, and let Z be a finitely supported subset of X. A
function f : Z → Y is finitely supported if f ∈ ℘fs(X × Y ).

The following result generalizes Proposition 3.

Proposition 10. Let (X, ·) and (Y, �) be nominal sets, and let Z be a finitely supported subset
of X. Let f : Z → Y be a function. The function f is finitely supported in the sense of
Definition 13 if and only if there exists a finite set S of atoms such that for all x ∈ Z and all
π ∈ Fix(S) we have π · x ∈ Z and f(π · x) = π � f(x) 2.

Proof: Suppose that f is finitely supported in the sense of Definition 13. There exists a finite set
S of atoms such that π?f = f for all π ∈ Fix(S), where ? represents the SA-action on ℘(X×Y )
defined as in Example 1(3). Let x ∈ Z and π ∈ Fix(S) be arbitrary elements. Then there
exists an unique y ∈ Y such that (x, y) ∈ f . Since π?f = f we have (π ·x, π �y) ∈ f ⊆ (Z×Y ).
Thus π · x ∈ Z and f(π · x) = π � y = π � f(x).

1In the particular case when Σ is a finite alphabet we have that Next(Σ) coincides with N(Σ).
2The case when Z is equivariant reduces to Proposition 3 because the equivariant subsets have similar

properties as the nominal sets.
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Conversely, assume that there exists a finite set S of atoms such that for all x ∈ Z and
all π ∈ Fix(S) we have π · x ∈ Z and f(π · x) = π � f(x). We claim that π ? f = f for all
π ∈ Fix(S). Fix some π ∈ Fix(S), and consider (x, y) an arbitrary element in f . We have
f(x) = y, and so (π ·x, π � y) ∈ f . However π . (x, y) = (π ·x, π � y) ∈ f , where . represents the
SA-action on X × Y defined as in Example 1(4). That means π ? f = f .

According to Proposition 10 we conclude that, if X and Y are nominal sets and Z is a
finitely supported subset of X, then the set of all finitely supported functions from Z to Y is
a finitely supported subset of the nominal set X × Y . Moreover, if f : Z → Y is a finitely
supported function, then we can define the function g : X → Y by considering g(x) = f(x),
∀x ∈ Z and g(x) = y0, ∀x ∈ X \ Z for some fixed y0 ∈ Y . Obviously, g is supported by
supp(f) ∪ supp(y0). Therefore we can extend each finitely supported function f : Z → Y to a
finitely supported function g : X → Y . Informally, we agree to say that the set of all finitely
supported functions from Z to Y is a finitely supported subset of the nominal set formed by
the collection of all finitely supported functions from X to Y .

According to Proposition 10 the results in Section 4 can be generalized in terms of “finitely
supported subsets of (possible infinite) nominal sets”. We present only their statements because
their proofs are analogue with the original proofs presented in Section 4 (just note that instead
of Proposition 3 we have to use Proposition 10).

Proposition 11. Let (Σ, ·) be a nominal set (possible infinite), (Σ0, ·) be a finitely supported

subset of Σ, and f : Σ0 → N a function such that its algebraic support Sf
def
= {x ∈ Σ0 | f(x) 6= 0}

is finite. Then f is finitely supported and supp(f) ⊆ supp(Sf ) ∪ supp(Σ0).

Corollary 2. Let Σ0 = {a1, . . . , ak} be a finite subset of a nominal set (Σ, ·). Then each
function f : Σ0 → N is supported by the set S = supp(a1) ∪ . . . ∪ supp(ak).

Definition 14. Given a nominal set (Σ, ·) (possible infinite) and (Σ0, ·) a finitely supported
subset of Σ, any function f : Σ0 → N with the property that Sf is finite is called extended
multiset over Σ0 of rank 1. The set of all extended multisets over Σ0 of rank 1 is denoted by
N1
ext(Σ0).

If f : Σ0 → N is an extended multiset over Σ0 of rank 1, then we can define the function
g : Σ → N by considering g(x) = f(x), ∀x ∈ Σ0 and g(x) = 0, ∀x ∈ Σ \ Σ0. Obviously, g is
an extended multiset over Σ which is supported by supp(f). Informally, N1

ext(Σ0) is a finitely
supported subset of the nominal set Next(Σ).

Definition 15. A finitely supported monoid is a triple (M,+, ·) such that the following con-
ditions are satisfied:

• (M,+, 0) is a monoid;

• (M, ·) is a finitely supported subset of a nominal set;

• for each π ∈ Fix(supp(M)) and each x, y ∈ M we have π · (x + y) = π · x + π · y and
π · 0 = 0.
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Theorem 8. Let (Σ, ·) be a nominal set and (Σ0, ·) be a finitely supported subset of Σ. The set
N1
ext(Σ0) is a free abelian finitely supported monoid.

Theorem 9. Let (Σ, ·) be a nominal set and (Σ0, ·) a finitely supported subset of Σ. Let

j : Σ0 → N1
ext(Σ0) be the function which maps each a ∈ Σ0 into ã ∈ Σ̃0. Then j is supported by

supp(Σ0). If (M,+, �) is an arbitrary abelian finitely supported monoid and ϕ : Σ0 →M is an
arbitrary finitely supported function, then there exists a unique finitely supported homomorphism
of abelian monoids ψ : N1

ext(Σ0)→M with ψ◦j = ϕ , i.e. ψ(ã) = ϕ(a) for all a ∈ Σ0. Moreover,
if a finite set S supports ϕ, then the set S ∪ supp(M) ∪ supp(Σ0) supports ψ.

Theorem 10. Let (Σ, ·) be a nominal set and (Σ0, ·) a finitely supported subset of Σ. Σ∗0 is a
finitely supported monoid. Moreover, each element of form x1x2 . . . xn from Σ∗0 is supported by
the set U = supp(a1) ∪ . . . ∪ supp(ak) when Σ0 is a finite subset {a1, . . . , ak} of Σ.

Clearly, Σ∗0 is a finitely supported subset of Σ∗ (supported by supp(Σ0)).

Theorem 11. Let (Σ, ·) be a nominal set and (Σ0, ·) a finitely supported subset of Σ. Let
i : Σ0 → Σ∗0 be the standard inclusion of Σ0 into Σ∗0 which maps each element a ∈ Σ0 into the
word a. Then i is supported by supp(Σ0). If (M, ·, �) is an arbitrary finitely supported monoid
and ϕ : Σ0 → M is an arbitrary finitely supported function, then there exists a unique finitely
supported homomorphism of monoids ψ : Σ∗0 → M with ψ ◦ i = ϕ. Moreover, if a finite set S
supports ϕ, then the set S ∪ supp(M) ∪ supp(Σ0) supports ψ.

Proposition 12. Let (Σ, ·) be a nominal set and (Σ0, ·) be a finitely supported subset of Σ.
The sub-multiset order ⊆ on N1

ext(Σ0) is supported (as a subset of Σ× Σ) by supp(Σ0).

Theorem 12. Let (Σ, ·) be a nominal set and (Σ0, ·) be a finite subset of Σ. Let ≺ be a
strictly order relation on Σ0. The Dershowitz and Manna order � on N1

ext(Σ0) induced by ≺
is supported (as a subset of Σ× Σ) by supp(Σ0) ∪ supp(≺).

Proof: We know that ≺ be a strictly order relation on Σ0. Since ≺ is a finite subset of
Σ0 × Σ0, it follows that ≺ is finitely supported. Let π ∈ Fix(supp(Σ0) ∪ supp(≺ )). Since
Σ0 is finite we use the HO definition of � (see Definition 9). Let f, g ∈ N1

ext(Σ0) such that
f � g, and π ∈ SA. Since f 6= g there exists x ∈ Σ0 such that f(x) 6= g(x). Therefore
f(x) = (π ? f)(π · x) 6= (π ? g)(π · x) = g(x). Since π · x ∈ Σ0 we have π ? f 6= π ? g. Let y ∈ Σ0

such that (π ? f)(y) > (π ? g)(y). Then f(π−1 · y) > g(π−1 · y). According to Definition 9 there
exists x ∈ Σ0 with π−1 · y ≺ x and f(x) < g(x). Since π ∈ Fix(supp(≺)) we have y ≺ π · x.
Since f(x) < g(x) we obtain (π ? f)(π · x) < (π ? g)(π · x). Thus π ? f � π ? g.

Theorem 13 (Cayley-theorem for finitely supported monoids). Let (X,+, ·) be a finitely sup-
ported monoid. There exists a finitely supported isomorphism φ between X and a finitely sup-
ported submonoid M of the finitely supported monoid formed by the finitely supported elements
from XX . Moreover, M and φ are supported by supp(X).

Corollary 3. Let Σ be a possible infinite nominal set, and Σ0 a finitely supported subset
of Σ. There exists a finitely supported isomorphism φ between N1

ext(Σ0) and a nominal sub-
monoid M of the finitely supported monoid formed by the finitely supported elements from
(N1

ext(Σ0))(N1
ext(Σ0)). Moreover M and φ are supported by supp(Σ0).
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Note that none of the results in this section leads to a trivial corollary when we request
Σ0 to be finite. Therefore the properties of N1

ext(Σ0)=N(Σ0) are non-trivial even when Σ0 is a
finite subset of a nominal set.

6 Conclusion and Related Work

The aim of this paper is to define and study “multisets” in the framework of nominal sets.
Classical multisets over finite alphabets are extended using specific nominal techniques. We
define “extended nominal multisets” over possible infinite alphabets, presenting also some pro-
perties of this new concept. The analogy between the results obtained by using the FM axioms
of set theory and those obtained by using the ZF axioms of set theory is emphasized by the
results presented in Section 4. In Theorem 3 we proved that the set of all extended multisets
over a (possible infinite) nominal set Σ is a free abelian nominal monoid, and it satisfies the
universality property expressed in Theorem 4. The free monoid over Σ is also a nominal monoid
according to Theorem 5, and it satisfies the universality property presented in Theorem 6. By
repeatedly applying these universality properties, a connection between the extended multisets
over Σ and the free monoid over Σ is given firstly in ZF approach, and secondly in FM approach,
in terms of finitely supported homomorphisms. Several nominal order properties of multisets
and extended multisets are presented in Proposition 9 and Theorem 12. An embedding theorem
of Cayley-type for Next(Σ) is presented as Corollary 1. Since every ZF-set together with the
discrete SA-action is a nominal set, we conclude that the results in Section 3 can be obtained
by particularizing the results in Section 4. The framework for studying multisets is again ex-
tended in Section 5 by the informal replacement of “equivariant” with “finitely supported”,
namely we consider a new class of multisets defined over finitely supported subsets of nominal
sets instead of the class of those multisets defined on nominal sets. Several properties of the
extended multisets of rank 1 are presented in Section 5.

The classical theory of nominal sets over a fixed set A of atoms is generalized in [5] to a
new theory of nominal sets over arbitrary unfixed sets of data values. The notion of ‘SA-set’ is
replaced by the notion of ‘set endowed with an action of a subgroup of the symmetric group of
D’ for an arbitrary set of data values D, and the notion of ‘finite set’ is replaced by the notion of
‘set with a finite number of orbits according to the previous group action (orbit-finite set)’. The
theory of automata have been studied in this framework. According to definitions used in [5],
the set A of atoms is a single-orbit set. However the set Next(A) has an infinite number of orbits
because if two functions from Next(A) are in the same orbit, then their corresponding algebraic
supports must have the same cardinality. Therefore we are able to develop a nominal theory
of multisets even when the alphabet is infinite, and the set of all multisets over the related
alphabet is neither finite nor orbit-finite. Informally, our paper extends the framework from
‘finite/orbit-finite’ to ‘infinite/orbit-infinite but with a finite algebraic support’. Bojanczyk
introduces a notion of nominal monoid over arbitrary data symmetries [4] in order to prove
that a language of data words is definable in first-order logic if and only if its syntactic monoid
is aperiodic. We have a little different perspective. The notion of nominal monoid introduced in
Definition 11 makes sense only when the set of atoms is fixed, and nominal monoids are used in
order to obtain nominal properties of multisets and to connect such nominal properties in terms
of finitely supported homomorphisms. The notion of nominal monoid presented in Definition
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11 is similar to the notion of nominal group analyzed in [1]. Therefore the correspondence,
isomorphism and embedding theorems presented in [1] for nominal groups can be naturally
rephrased for nominal monoids. Thus the results obtained in [1] can also provide new algebraic
properties of Next(Σ). Bojanczyk uses alternative definitions for nominal algebraic structures in
the generalized framework of G-sets described in [5], just to study the languages of data words.
However our perspective allow us to study algebra in the classical framework of nominal sets.
Some original results in this direction are presented in [1, 2, 3].

Extending a ZF algebraic structure to an FM structure is not trivial, because in the FM
framework only finitely supported elements are allowed. Hence several non-trivial SA-actions
had to be defined first, in order to build a nominal structure on some algebraic structures
like free monoids (Theorem 5) or factor monoids (Proposition 8). After these SA-actions were
defined, we have to check whether the classical ZF results can be naturally translated in FM
only by replacing “structure” with “nominal structure”. If this is possible, then things go
smoothly. Using nominal techniques we are able to prove a similar FM result for each ZF result
presented in Section 3. However, it is not always so simple. For example, Theorem 3.3 from [3]
shows that the Tarski theorem for complete lattices cannot be translated in FM using such a
procedure. The FM Tarski-like theorem is not valid for all finitely supported functions defined
on an FM complete lattice, but only for those functions which are equivariant. Also the nominal
embedding theorems for groups presented in Section 5 from [1] can be proved only for uniform
nominal groups, and not for all nominal groups. We present another example regarding the non-
triviality of the translation of a ZF result into the FM framework. We know there exist models
of ZF without choice that satisfy the statement “Every set can be totally ordered” named “the
ordering principle”; an example of such a model is the Howard-Rubin’s first model (N38 in
[9]). However we claim that the statement “For every nominal set X there exists a finitely
supported total order relation on X” is inconsistent with the axioms of the FM set theory.
Indeed, suppose that there exists a finitely supported total order < on the nominal set A. Let
a, b, c /∈ supp(<) with a < b. Since (a c) ∈ Fix(supp(<)) we have (a c)(a) < (a c)(b), so c < b.
However we also have (a b), (b c) ∈ Fix(supp(<)), and so ((a b) ◦ (b c))(a) < ((a b) ◦ (b c))(b),
that is b < c. We get a contradiction, and so the translation of the ordering principle in FM
realized by replacing “structure” with “finitely supported structure” yields to a false statement.
Other examples of results which fail in the FM settings are represented by the Stone duality
[12], the determinization of finite automata [5], or the equivalence of two-way and one-way finite
automata [5].

The reader might ask why we choose not to use the general nominal equivariance and finite
support principle of [13] in the proof of Theorem 4 and in the similar proof of Theorem 6. Well,
this principle could ensure that the function ψ is finitely supported, but we cannot conclude
from this principle that any set supporting ϕ also supports ψ. Thus, in order to prove that
supp(ψ) ⊆ supp(ϕ), we need to present a constructive method of defining a set supporting
ψ. A similar remark can also be formulated for Theorem 9 and Theorem 11. Moreover, since
in applying the equivariance and finite support principle one must take into account all the
parameters upon which a particular construction depends. The precise verification whether the
conditions for applying the equivariance and finite support principle are properly satisfied is
sometimes at least as difficult as a direct proof. In some cases we can prove stronger properties
without involving this finite support principle. For example, each function fx in the proof of
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Theorem 7 has a non-empty finite support. The reader could say that the function T from this
theorem has also a non-empty finite support. We prove something stronger: the function T is
equivariant. Moreover, many times it is necessary to present a constructive method of defining
the support in order to ensure that some structures are (uniformly) finitely supported (see [1]).

It is also worth noting that the general equivariance and finite support principle is presented
using the higher-order logic (see Theorem 3.5 from [13]). Our paper is self-contained and the
results we presented can be understood without using any notions regarding the higher-order
logic or the category theory.
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