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Abstract
Let © : M — R™ be an (n — 1)-dimensional hypersurface in R, L be the Laguerre
tensor, B be the Laguerre second fundamental form and C be the Laguerre form of the
immersion x. The purpose of this paper is to investigate Laguerre characterization and
rigidity of hypersurfaces in R™. We firstly obtain the classification of Laguerre isoparamet-
ric hypersurfaces with three distinct Laguerre principal curvatures one of which is simple
and then we obtain a Laguerre rigidity result of hypersurfaces in R™.
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1 Introduction

In Laguerre geometry, T. Li and C. Wang [4] studied invariants of hypersurfaces in Euclidean
space R™ under the Laguerre transformation group. The Laguerre transformations are the
Lie sphere transformations which take oriented hyperplanes in R™ to oriented hyperplanes and
preserve the tangential distance.

Let UR™ be the unit tangent bundle over R™. An oriented sphere in R™ centered at p with
radius r can be regarded as the oriented sphere {(z, &)|z—p = 7} in UR™, where z is the position
vector and £ the unit normal vector of the sphere. An oriented hyperplane in R™ with constant
unit normal vector £ and constant real number ¢ can be regarded as the oriented hyperplane
{(z,&)|z - & = ¢} in UR™ A diffeomorphism ¢ : UR™ — UR™ which takes oriented spheres
to oriented spheres, oriented hyperplanes to oriented hyperplanes, preserving the tangential
distance of any two spheres, is called a Laguerre transformation. All Laguerre transformations
in UR"™ form a group of dimension (n+ 1)(n+ 2)/2, called Laguerre transformation group. An
oriented hypersurface  : M — R”™ can be identified as the submanifold (z,§) : M — UR",
where ¢ is the unit normal of x. Two hypersurfaces z,z* : M — R" are called Laguerre
equivalent, if there is a Laguerre transformation ¢ : UR™ — UR™ such that (z*,£*) = ¢ o (z,§)
(see [5]).

In [4], T. Li and C. Wang gave a complete Laguerre invariant system for hypersurfaces in
R™. They proved that two umbilical free oriented hypersurfaces in R™ with non-zero principal
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curvatures are Laguerre equivalent if and only if they have the same Laguerre metric g and
Laguerre second fundamental form B. We should notices that the Laguerre geometry of surfaces
in R? has been studied by Blaschke in [1] and other authors in [2], [3], [6].

Let R;’H be the space R"*3 equipped with the inner product (X,Y) = —X1Y; + XoYs +
v+ XpioYiio — XpisYnis. Let C"F2 be the light-cone in R™*3 given by C"™2 = {X €
RIP3|(X, X) = 0}. Let LG be the subgroup of the orthogonal group O(n + 1,2) on R3 ™ given
by LG = {T € O(n + 1,2)|¢T = (}, where ( = (1,—1,0,0) and 0 € R is a light-like vector in

RT3,
Let x : M — R™ be an umbilic free hypersurface with non-zero principal curvatures, and
&: M — S™! be its unit normal vector. Let {e1,€a,...,e,_1} be the orthonormal basis for

TM with respect to dz - dx, consisting of unit principal vectors. The structure equations of
x: M — R"™ are (see [5])

ej(ei(x)) = Zl—‘?jek(x) + kl(s’bjg, 61(5) = _kiei(x)7 ivjvk = ]-7 s, — 1, (11)
k

where k; # 0 is the principal curvature corresponding to e;. Let

1 ritrete e
L = 1.2
LK i’ r n_1 ) ( )

be the curvature radii and mean curvature radius of x respectively. We define Y = p(z - £, —x -
£61) : M — C"*2 C Ry, where p = />, (ri —7)2 > 0. From [4], we know that the
Laguerre metric g of the immersion x can be defined by g = (dY,dY). Let {E1,Es,...,En_1}
be an orthonormal basis for g with dual basis {wy,ws,...,wn—1}. The Laguerre tensor L, the
Laguerre second fundamental form B and the Laguerre form C of the immersion x are defined
by

n—1 n—1 n—1
L= Z Lijwi®wj, B = Z Bijwi®wj, C:ZCiwi7 (13)
hj=1 i.5=1 i=1
respectively, where L;;, B;; and C; are defined by formulas (2.10)-(2.12) in Section 2. We
should notices that g, L, B and C are Laguerre invariants (see [4]).

From [7], we know that an eigenvalue of the Laguerre tensor is called a Laguerre eigenvalue
of x. A hypersurface with vanishing Laguerre form is called a Laguerre isotropic hypersurface
if the Laguerre eigenvalues of x are equal. An eigenvalue of the Laguerre second fundamental
form is called a Laguerre principal curvature of x. An umbilic free hypersurface x : M — R"
with non-zero principal curvatures and vanishing Laguerre form C = 0 is called a Laguerre
isoparametric hypersurface if the Laguerre principal curvatures of x are constants.

We define the Laguerre embedding 7 : UR} — UR"(see [4]). Let R?™* be the Minkowski
space with the inner product (X,Y) = X317 + -+ X,,)Y,, — X1 Y41, Let v = (1,0,1) be
the light-like vector in R7™, 0 € R*~!. Let RZ be the degenerate hyperplane in R?*! defined
by Ry = {X € R""(X,v) = 0}. We define

URY = {(z,&) € R x R (2, v) = 0,(¢,€) =0, (¢,v) = 1}. (1.4)
The Laguerre embedding 7 : URf — UR" is defined by
7(z,§) = (2/,¢') € UR", (1.5)
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where = (z1,20,71) ERXR"™ I xR, £ = (& +1,6,&) € R xR"™! x R and

r_ (%N r_ L S
x( 51,1170 5150)7 ¢ <1+§1’§1>' (16)

Let z : M — R{ be a space-like oriented hypersurface in the degenerate hyperplane Rf.
Let & be the unique vector in R?'! satisfying (¢,dz) = 0, (£,€) = 0, (£,v) = 1. From
7(x,&) = (2, ¢) € UR™, we may obtain a hypersurface 2’ : M — R"™.

We should notice that it is one of the important aims to characterize hypersurfaces in terms
of Laguerre invariants. Concerning this topic, recently, T. Li, H. Li and C. Wang [5] and [7]
studied the Laguerre geometry of hypersurfaces with parallel Laguerre second fundamental form
or constant Laguerre eigenvalues in R™.

Theorem 1.1 ([5]) Let x : M — R"™ be an umbilic free hypersurface with non-zero prin-
cipal curvatures. If the Laguerre second fundamental form of x is parallel, then x is Laguerre
equivalent to an open part of one of the following hypersurfaces:

(1) the oriented hypersurface x : S*~1 x H"% — R"™ given by Evample 2.1; or

(2) the image of T of the oriented hypersurface xz : R"~1 — Ry given by Example 2.2.

In this paper, we firstly classify completely the Laguerre isoparametric hypersurfaces with
three distinct Laguerre principal curvatures one of which is simple and then we obtain a La-
guerre rigidity result of hypersurfaces in R™. More precisely, we obtain the following:

Theorem 1.2 Let x : M — R"(n > 4) be an (n — 1)-dimensional Laguerre isoparametric
hypersurface with three distinct Laguerre principal curvatures one of which is simple. Then x is
Laguerre equivalent to an open part of the image of T of the oriented hypersurface x : R"~! — RZ
gien by Fxample 2.2.

Theorem 1.3 Let x : M — R"(n > 4) be an (n — 1)-dimensional umbilic free hypersur-
face with non-zero principal curvatures and vanishing Laguerre form. If the square of the norm
of Laguerre tensor satisfies

(n—1)R?

L < 2 3

(1.7)

then x is Laguerre equivalent to an open part of the oriented hypersurface x : S"~2 x H! — R"
given by FExample 2.1, where R > 0 is the Laguerre scalar curvature of x.

Remark 1.4 From Example 2.1 in section 2, we see that the pinching constant for |L|?
in Theorem 1.3 is optimal.

2 Laguerre fundamental formulas and examples

In this section, we review the Laguerre invariants and fundamental formulas on Laguerre ge-
ometry of hypersurfaces in R™, for more details, see [4].
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Let z : M — R™ be an (n — 1)-dimensional umbilical free hypersurface with vanishing
Laguerre form in R™. Let {F,..., E,_1} denote a local orthonormal frame for Laguerre metric
g = (dY,dY) with dual frame {w,...,w,—1}. Putting ¥; = E;(Y), then we have

1 1
N=——AY + ———(AY,AY)Y, 2.1
n—1 +2(n—1)2< AY)Y, (2.1)
(YY)=(N,N)=0, (Y,N)=-1, (2.2)
and the following orthogonal decomposition:
RT3 = Span{Y, N} @ Span{V3,...,Y, 1} @V, (2.3)

where {Y, N,Y1,...,Y,_1,n, p} forms a moving frame in Rg” and V = {n, p} is called Laguerre
normal bundle of © . We use the following range of indices throughout this paper:

1<,k 1l,m<n—1.

The structure equations on x with respect to the Laguerre metric g can be written as

dy =) wY;, (2.4)

AN =" Yi + ¢n, (2:5)
J
dp = —pY — Zwin-&-lYia (2.7)

where {9;,w;;,wWint1, ¢} are 1-forms on x with

Wij + Wi = 0, dw; = Zwij A wj, (28)
J

and
Yy = ZLijwjy Lij = Lji, winy1 = ZBijwj7 Bij = Bji, ¢= Z Ciw;. (2.9)
j J '

We define E; = re;, 1 < i < n—1, then {El,...,E’n_l} is an orthonormal basis for
III = d¢ - d€ and {E; = p~'E;} is an orthonormal basis for the Laguerre metric g with dual

frame {w1,...,wn—1}. Lij, B;j and C; are locally defined functions and satisfy
_ ~ - 1
Lij=p {Hessmogp) ~ Ei(log p) B, (log ) + 5 1V log pf? — 1) 6ij}, (2.10)
Bij = pil(’r‘,’ — 7")5,*]', (211)

Ci = —p~* {Ei(r) - Ei(log p)(rs = 1)}, (2.12)
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where g = Y, (r; —7)2I11 = p*I11, r; and r are defined by (1.2), Hess;; and V are the Hessian
matrix and the gradient with respect to the third fundamental form IT1 = d€ - d€ of x(see [4]).
Defining the covariant derivative of Cy, L;;, B;; by

Zc w; = dC; + Zc Wi, (2.13)

Z ng EWE = szy + Z szwkj + Z ijwku (214)
Z Bij rwi = dBij + Z Bikwkj + Z Bkjwki. (2.15)
k k k
We have from [4] that

dwij = Zwik N Wrj — Z Rijriwr Nwi, Rijr = — Ry, (2.16)

k k,l

R
% 7

Lz] k — Lik,jv 2 18)
Cij—Ci= Z(Bikij — BjrLyi), (2.19)

k
Bijk — Bik,j = Cjdir — Crdij, (2.20)
Rijri = Ljidy + Labjr — Ligéji — Ljdip, (2.21)

where R;;i; and R denote the Laguerre curvature tensor and the Laguerre scalar curvature with
respect to the Laguerre metric g on z. Since the Laguerre form C = 0, we have for all indices
i, J, k
Bijk = Birj, Y BiLij=> BijLyi. (2.22)
k k

Defining the second covariant derivative of B;; by
Z Bijwiwr = dBij i + Z Bij ewii + Z Bi,pwi; + Z Bijwik, (2.23)
1 ! ! 1

we have the Ricci identity

Bijwi = Bijik = > BujBmikt + Y Bim Rmjkl. (2.24)

We recall the following examples of hypersurfaces in R™ and calculate their Laguerre invari-
ants.
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Example 2.1([5]) Let z : S*¥~! x H"* — R"™ be an umbilic free hypersurface in R"

defined by
v

u

z(u,v,w) = (a(l + w), E) ,

where H" % = {(v,w) € R} ¥ y.v—w? = —1,w > 0} denotes the hyperbolic space embedded

in the Minkowski space R?_kﬂ. From [5], we know that x has two distinct Laguerre principal

curvatures By = —,/ %7 By =,/ (nfﬁ)ﬁ’ the Laguerre form is zero and the Laguerre
second fundamental form of x is parallel. The Laguerre metric is

(k=1 (n—k)

T -1

where g1 = wdu ~du and g3 = w (dv - dv — dw?). We know that the sectional

n—

(du~du+dv~dv—dw2):g1+92,

curvatures of g; and gy are W_&l_k) and 7%’ respectively. Thus, from (2.21), we see
that
n—1

Lij=————— § 1<ij<k—1

1] 2(/€71)(TL71€)6U, _Zvj_k ’
n—1

Lij= =3y, k<ij<n—1,

IT 3k — 1) — k) bl=n

—1

that is 2 : S¥~1 x H"F — R™ has two constant distinct Laguerre eigenvalues —m and

WM with multiplicities £ — 1 and n — k, respectively. We see that z : S"~2 x H' — R"

(2.17) and a direct calculation, we have |L|? = %.

has two distinct Laguerre eigenvalues —2(’;;12) and 2(" 712) with multiplicities n — 2 and 1, by

Example 2.2([5]) For any positive integers mq,...,ms with m; +--+-+mgs =n — 1 and any
non-zero constants A, ..., A, we define z : R"~! — R¥ to be a spacelike oriented hypersurface
in Ry given by
)\1|u1|2—|—-~-+)\5|u5|2 )\1|u1|2+-~-—|—)\s|u5|2
T = D) , UL, U2,y - vy Us, 2 )
where (ui,...,us) € R™ x .- x R™ = R* ! and |u;|? = u; - us,i = 1,...,s. Then

7o (z,8) = (2/,¢) : R"1 — UR", and we obtain the hypersurfaces 2’ : R®~! — R". From [5],
.. .. o S— .
we know that = has s(s > 3) distinct Laguerre principal curvatures B; = 7\/W7 1<i<s,

where r; = %, r= klrﬁk"’g:’_ﬁ”*ksrs and k; # 0 is the principal curvature corresponding to e;.

Also from [ST7 we know that the Laguerre form is zero, L;; = 0 for 1 < 4,5 < n — 1 and the
Laguerre second fundamental form of x is parallel.

Lemma 2.3([9]) Let A and B be m x m-symmetric matrices satisfying trA = 0, trB = 0
and AB — BA = 0. Then,

trB2A| < — = (trB?)(trA2)Y/2,

m(m —1)
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and the equality in the right (left) hand side holds if and only if (m — 1) of the eigenvalues
, ine e . - G (@B L
x; of B and the corresponding eigenvalues y; of A satisty |z;| = oD zx; >0, y =

_ (trA2)1/2 ( = (trA2)1/2 )

/m(m—1)’ v/ m(m—1)

3 Proofs of theorems

Let L and B denote the (n — 1) x (n — 1)-symmetric matrices (L;;) and (B;;), respectively,
where L;; and B;; are defined by (2.10), (2.11). From (2.22), we know that BL = LB. Thus,
we may choose a local orthonormal basis {Ey, Fa, ..., F,_1} such that

Lij = Libij, Bij = Bidij,

where L; and B; are the Laguerre eigenvalues and the Laguerre principal curvatures of the
immersion x.
Throughout this section, we shall make the following convention on the ranges of indices:
1<a,b<mi, mi+1<p,qg<m+ms,
mi+me+1<a,8<mi+meo+mz=n—1, 1<i,j,k<n-1.

We may prove the following Proposition firstly.

Proposition 3.1 Let x : M — R"(n > 4) be an (n — 1)-dimensional Laguerre isoparamet-
ric hypersurface with three distinct Laguerre principal curvatures one of which is simple. If the
Laguerre second fundamental form of x is not parallel, then there is no such hypersurface in R™.

Proof: Let By, By and B3 be the three constant Laguerre principal curvatures of x with
multiplicities mq, ms and mg. From (2.15), we have

Byj = TI(B; — By), (3.1)
where T" {k is the Levi-Civita connection for the Laguerre metric g given by
Wij = ZFkakv sz = _Fj‘k'
k
It follows that

Bab,k = qu,k = Baﬁ,k =0 for any a7b7paqaa767k' (32)

If the Laguerre second fundamental form of z is not parallel, we see that the only possible
nonzero elements in {B;; ;} are of the form {B,, »}. Since n > 4, without loss of generality,
we may assume that m; > mgp > m3 and m3 = 1.

From (2.16), (2.8) and w;; = Y, I/, wg, the curvature tensor of 2 may be given by (see [8])

Riju =Ei(T}) — Bx(T9) + > T, T7 (3.3)

m

- Z ), T+ Z Ty, — Z T,
m m

m
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Thus, from (3.1) and (3.2), we have

_ o a _ o a _ TP __
I, =I9, =0, T4, =T =0, T%=TI", =0, (3.4)
BO&U«’P

B
P =_—_—®2 1o — 2P o — P22 3.5
“ By—By *" B3—-By " By—Bs (3:5)

From (3.4) and (3.5), we have

=10 =0, Tt = ngjl =0. (3.6)
Ba n—1 Bb n—1 — Bb n—1
FP — P, FP — P, N4 1 _ q, 3.7
an—1 By — B27 n—1b Bs — 327 bq B, — BS’ ( )
Fn71 _ Bbq,nfl
ab By — Bs’
Thus, we have
Rapbg =Eq (ng) - Eb(ng) + ngm Z}) (3-8)
= > Dol + 3 Tailhg = 2 T
zrgn—lrgb_l - FZn—lr‘IT)Lq_l - F:J.Lqilrﬁflb

_Bap,n—leq,n—l + Baq,n—lep,n—l
(B1 — Bs3)(B2 — B3)

On the other hand, from (2.21), we have
Rapbq = 7(La + Lp)(sab(;pq- (39)
It follows from (3.8) and (3.9) that

Bapm—leq,n—l + Baq,n—lep,n—l (310)
= — (L + L)(B1 — B3)(Ba — Bs)Subpa.

If a = b, we have
2Bopn-1Bagn-1 = —(La + Lp)(B1 — B3)(B2 — B3)dpq- (3.11)

If p = q, we have
2Bupn-1Bopn—1 = —(Lg + Lp)(B1 — Bs)(B2 — B3)dap- (3.12)
If mq =1, it follows that 2B1p —1Bign—1 = —(L1 + L) (B1 — B3)(B2 — Bs)d,q. Since the
Laguerre second fundamental form of x is not parallel, we may prove that there exists exactly one

p, such that By, ,—1 # 0. In fact, if there exists more than one p, for example p1, p2, (p1 # p2)
such that Bip, n—1 # 0, Bipy,n—1 # 0, this is a contradiction with Bip, n—1Bip,,n—1 = 0.
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If my = 1, it follows that 2Bomi+1,n—1Bbmi+1,n—1 = _(La +Lm1+1)(B1 — Bg)(Bg - B3)5ab.
The same reason implies that there exists exactly one a, such that Bgpm,+1.n—1 # 0.

If m; > 2 and mo > 2, we may prove that there exists exactly one a and exactly one p
such that By ,—1 # 0. In fact, if there exists more than one a, for example a1, a2, (a1 # a2)
such that Bg,pn—1 # 0, Baypn—1 # 0. From (3.12), we see that Bq,pn—1Baspn-1 = 0, a
contradiction. The same reason implies that there exists exactly one p, such that Bgp -1 # 0.
Thus, we conclude.

Combining with the above three cases, we see that if my > 1 and my > 1, there exists
exactly one a and exactly one p, say a; and p1, such that

Buipyn—17#0, Bapn—1=0, for a#as,Vp, or for p#p,Va. (3.13)

By (3.11) and (3.13), we get

— Lo, — Ly, = 2Baspn (3.14)
“ 7" (By - B3)(By — B)’

—L,—L,, =0, a#a, (3.15)

— Lo, =Ly =0, p#pu, (3.16)

—L,—L,=0, a#ai, p#pi. (3.17)

From (3.1)—(3.3), (2.21) and by reasoning as above, we get

2B2

— L, — L, = a1p1,n—l , 3.18

' ' (B1 — By)(Bs — Ba) (3.18)

— La — Ln—l = O, a 75 ay (319)
2B2

— L, — Ly = g1p1,nl , 3.20

p1 1 (BQ_Bl)(B3_Bl) ( )

—Ly—L,1=0 p#p. (3.21)

23&1?1,7171

By (3.14), (3.18) and (3.20), we obtain that L, = BB BBy

If my > 2, then there exists some p(p # p1) such that (3.17) and (3.21) hold. From (3.17),
(3.19) and (3.21), we see that L,_; = 0, a contradiction. Thus, it follows that ms = 1. By
(3.18)—(3.20), we know that = has Laguerre eigenvalues

QBawlyn*l

L,=— , aF#ap, 3.22
(Bl—Bg)(BQ—Bg) # 1 ( )
2B 1
L, = AL , 3.23
" (B2— B1)(Bs — B1) (3.23)
2B _1
L, = a2 T , 3.24
p1 (Bl _ BQ)(BS _ BQ) ( )
Lyy = - 2Deapinct (3.25)

(B1 — B3)(B2 — B3)
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We may prove that By, p, n—1 is a constant. In fact, from w;; = >, ngwk, (2.23), (3.1) and
(3.2), we have

Z Bappiw; =dBap p + Z By pwia + Z B pwip + Z Bapiwip

_Z n 1b7p n— 1al+Bn la,an lbl

Bs — By
Thus
B 1b,pBn—1a1 + Bn—1a,pBn—10,
Bopo = P 2 P =~V a,b,p,l. 3.26
b,pl B3 — B1 9 a,0,p ( )
By reasoning as above, we also have
anla anll + anla anll
B ol = sP ,q sq sP V l 327
pq,al B3 - B2 ) a,p,q,t, ( )
anlnfl’ap = 07 A a,p. (328)

From (2.24), we have B;j 1 — Biju = (B; — Bj)Riji. By (2.21) and L;; = L;0;;, we know that
if three of {i,j,k,1} are distinct, then R;;i; = 0. Thus, if three of {3, k,1} are distinct, we
have

Bij ki = Bijiik- (3.29)
From (2.23), (3.1) and (3.2), we have
dBa,pn—1 = Z Ba,pi n—11wi = Baypi n—1a,Wa, (330)
l
+ Z Ba,pin—1wi + Baypy n—1p, Wp,
l=a,a#a1
+ Z Balpl,nfllwl + Balpl,nflnflwnfl'
l=p,p#p1

Thus, it follows from (3.26)—(3.29) that dBy,p, n—1 = 0, that is, By, p, n—1 is constant. Thus,
we see that x has constant Laguerre eigenvalues

La(a#al)v Lan Lpu Ln—l-

If my > 2, then there exists some a(a # a1) such that (3.15), (3.19) and (3.22) hold. From
(3.15) and (3.19), we see that L,, = L,_1, that is, from (3.24) and (3.25), we have

2B; — By — B3 = 0. (3.31)
We may prove that Lo, # Lp,. In fact, if L,, = L,,, we have

9B3 — By — By = 0. (3.32)
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Combining with (3.31), we see that By = By = B3, a contradiction. It may be easily checked
that L, # Lq,, Lq # Ly, , this shows that x has three distinct constant Laguerre eigenvalues

La(a#al)v La17 Lp1:Ln—17

and therefore is not a Laguerre isotropic hypersurface. But from a result of [7] (see Proposition
6.1 in [7]), we know that if # has constant Laguerre eigenvalues, then it must have only two
distinct constant Laguerre eigenvalues, a contradiction. Thus, it follows that m; = 1. Com-
bining with m3 = 1 and ms = 1, we see that n = 4. This shows that = has constant Laguerre
eigenvalues

L — 2B123
(B2 — B1)(Bs — B1)’
L= 2B123
(B1 — B2)(B3 — Ba)’
Ly = 2B123 '
(By — B3)(By — Bs)
If Ly = Ly = L3, we easily see that B| = By = Bgs, a contradiction. Thus z is not a

Laguerre isotropic hypersurface. From Proposition 6.1 in [7], we know that two of Lj, Lo, L3
must be equal and be equal to the opposite number of the third, that is,  must have two
constant Laguerre eigenvalues which are opposite numbers. Without loss of generality, we may
assume that L; = Lo = —L3, from the above three equation of Lq, Lo, L3, we also see that
By = By = Bj, a contradiction. Thus, if the Laguerre second fundamental form of x is not
parallel, there is no Laguerre isoparametric hypersurface with three distinct Laguerre principal
curvatures one of which is simple. This completes the proof of Proposition 3.1. O

Proof of Theorem 1.2: If the Laguerre second fundamental form of z is parallel, since x
has three distinct constant Laguerre principal curvatures, from Theorem 1.1, Example 2.1 and
Example 2.2, we know that x is Laguerre equivalent to an open part of the image of 7 of the
oriented hypersurface x : R"~! — R¥ given by Example 2.2.

If the Laguerre second fundamental form of z is not parallel, from Proposition 3.1, we know
that there is no Laguerre isoparametric hypersurface with three distinct Laguerre principal
curvatures one of which is simple. This completes the proof of Theorem 1.2. O

Proof of Theorem 1.3: Putting L = (f/”) with Lj =L;; — ﬁtr[ﬁij, thus

trL =0, BL = LB, tr(LB?) = tr(LB?) —

1
CtrL, (3.33)

and 1
: (trL)2. (3.34)

n —

- 1 .
2 _ 2 )2 2 _ (72
IL|" = ;(Lw) = ;(sz) +o—gtrL)” =L +
From (1.7), (2.17) and (3.34), we see that
R2
(n—1)(n—2)(n—3)%

- 1
L?=|L? - ——(trL)* <
L = |LP - —(uL)* <
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Since we assume that R > 0, it follows that

|L] < R . (3.35)
(n—3)y/(n—1)(n—2)

From (2.21), (2.22), (2.24), (3.33), (3.35), Lemma 2.3 and by a direct calculation, we have

1
0:§AZB ZB”,CJFZ;BMAB”- (3.36)
1,5,k P
=Y B}, — (n—1)tr(LB?) - trL
i3,k
B? 1) tr(LB? L ) — oL
_Z e — (n—1) | tr( )—|—n_1r —tr
1,5,k
n—3 ~ 1
>y BL,—(n—1) |L| + trL}—trL
> a0 g
R n—1 -
_ 2

Thus, the equalities in (3.36) hold. We have B;; ; = 0, that is, the Laguerre second fundamen-
tal form of x is parallel. Further, the inequality in the right hand side of Lemma 2.3 becomes
equality. Thus, we know that x has two distinct constant Laguerre principal curvatures. From
Theorem 1.1, Example 2.1 and Example 2.2, we know that x is Laguerre equivalent to an open
part of the oriented hypersurface x : S"~2 x H! — R" given by Example 2.1. This completes
the proof of Theorem 1.3. O
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