# Ultrametric $q$-difference equations and $q$-Wronskian 

by<br>Benharrat Belaïdi ${ }^{1}$, Rabab Bouabdelli ${ }^{2}$ and Abdelbaki Boutabaa ${ }^{3}$


#### Abstract

Let $\mathbb{K}$ be an ultrametric complete and algebraically closed field and let $q$ be an element of $\mathbb{K}$ which is not a root of unity and is such that $|q|=1$. In this article, we establish some inequalities linking the growth of generalized $q$-wronskians of a finite family of elements of $\mathbb{K}[[x]]$ to the growth of the ordinary $q$-wronskian of this family of power series.

We then apply these results to study some $q$-difference equations with coefficients in $\mathbb{K}[x]$. Specifically, we show that the solutions of such equations are rational functions.


Key Words: Ultrametric, $p$-adic, $q$-difference equation, $q$-wronskian.
2010 Mathematics Subject Classification: Primary 12J25, Secondary 46S10.

## 1 Introduction

For every prime number $p$, we denote by $\mathbb{Q}_{p}$ the field of $p$-adic numbers and by $\mathbb{C}_{p}$ the completion of an algebraic closure of $\mathbb{Q}_{p}$, (cf. [1] for further details). More generally, in the sequel, $\mathbb{K}$ is a complete ultrametric algebraically closed field.

Given $R>0$, we denote by $d\left(0, R^{-}\right)$and $d(0, R)$ the disks: $\{x \in \mathbb{K} /|x|<R\}$ and $\{x \in \mathbb{K} /|x| \leq R\}$ respectively. We denote by $\mathcal{A}(\mathbb{K})$ the $\mathbb{K}$-algebra of entire functions in $\mathbb{K}$ and by $\mathcal{M}(\mathbb{K})$ the field of meromorphic functions in $\mathbb{K}$. In the same way, we denote by $\mathcal{A}\left(d\left(0, R^{-}\right)\right)$ the $\mathbb{K}$-algebra of analytic functions inside the disk $d\left(0, R^{-}\right)$and by $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$the field of meromorphic functions in $d\left(0, R^{-}\right)$.

For every $r \in] 0, R\left[\right.$ we define a multiplicative norm $| |(r)$ on $\mathcal{A}\left(d\left(0, R^{-}\right)\right)$by $|f|(r)=$ $\sup _{n \geq 0}\left|a_{n}\right| r^{n}$ for every function $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ of $\mathcal{A}\left(d\left(0, R^{-}\right)\right)$. We extend this to $\mathcal{M}$ $\left(d\left(0, R^{-}\right)\right)$by setting $|f|(r)=|g|(r) /|h|(r)$ for every element $f=g / h$ of $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$, (cf. [5]).

Let $q$ be an element of $\mathbb{K}$ which is not a root of unity and is such that $|q|=1$. In this work, we will first prove some inequalities linking the growth of a generalized $q$-Wronskian to the growth of the "ordinary" $q$-Wronskian.

We then apply this result to study some $q$-difference equations and show that: If a linear $q$-difference equation $(E)$ with coefficients in $\mathbb{K}[x]$ has a complete system of solutions consisting of elements of $\mathcal{M}(\mathbb{K})$, then any solution of $(E)$ is a rational function.

This work has its origins in the articles [3] and [4] where it is established that, in general, a differential equation with coefficients in $\mathbb{K}[x]$ could admit transcendental entire solutions. This study is continued in [2], where J. P. Bézivin gets rationality criteria for solutions of some $p$-adic differential equations. Here, we study some $q$-difference equations and show that several types of such equations have no solution except rational functions. The method used is based on a comparison of the growth of $q$-Wronskians and closely follows the one used in [2].

## $2 q$-difference operators and $q$-wronskian.

For $n \in \mathbb{N}^{*}$, we set $[n]=\left(q^{n}-1\right) /(q-1)$ and $[n]!=\prod_{i=1}^{n}[i], \quad($ we agree that $[0]!=1)$. For $k \in \mathbb{N}$ such that $k \leq n$, we set $\left[\begin{array}{c}n \\ k\end{array}\right]=[n]!/([k]!)([n-k]!)$. We easily check that: $\left[\begin{array}{c}n+1 \\ k\end{array}\right]=$ $\left[\begin{array}{c}n \\ k-1\end{array}\right]+q^{k}\left[\begin{array}{l}n \\ k\end{array}\right]$. We finally define the operators $\sigma_{q}$ and $D_{q}$ in $\mathbb{K}[[x]]$ by: $\sigma_{q}(f)(x)=f(q x)$ and $D_{q}(f)(x)=\left(\sigma_{q}-I d\right)(f)(x) /(q-1) x$. The operator $D_{q}$ is an endomorphism of the $K$ vector space $\mathbb{K}[[x]]$. The operator $\sigma_{q}$ is an automorphism of the $K$-algebra $\mathbb{K}[[x]]$ and we have $\sigma_{q}^{-1}=\sigma_{\frac{1}{q}}$. For $k \in \mathbb{N}^{*}$, we denote by $\sigma_{q}^{k}(f)$ (resp. $\left.D_{q}^{k}(f)\right)$ the application $\mathbb{K}$ times of the operator $\sigma_{q}\left(\operatorname{resp} . D_{q}\right)$ to the formal power series $f$. We agree that $\sigma_{q}^{0}=D_{q}^{0}=I d$, where $I d$ is the identity mapping in $\mathbb{K}[[x]]$. Some properties of these operators are summarized in the following Lemma:

Lemma 1. i) $\sigma_{q}=(q-1) x D_{q}+I d, \quad D_{q}=(1 / q) D_{(1 / q)} \circ \sigma_{q}$,
ii) $D_{q}^{k} \circ \sigma_{q}^{\ell}=q^{k \ell} \sigma_{q}^{\ell} \circ D_{q}^{k}, \forall k, \ell \in \mathbb{N}$,
iii) $D_{q} x-x D_{q}=\sigma_{q}$, and $D_{q} x-q x D_{q}=I d$,
iv) $\quad D_{q}(f g)=\left(D_{q} f\right)\left(\sigma_{q} g\right)+f\left(D_{q} g\right), \quad \forall f, g \in \mathbb{K}[[x]]$,
v) $\quad D_{q}((f / g))=\left(g D_{q} f-f D_{q} g\right) / g \sigma_{q} g, \forall f, g \in \mathbb{K}[[x]]$,
vi) $\quad D_{q}^{n}(f g)(x)=\sum_{k=0}^{n}\left[\begin{array}{c}n \\ k\end{array}\right] D_{q}^{k}(f) \sigma_{q}^{k} D_{q}^{n-k}(g)(x), \quad \forall f, g \in \mathbb{K}[[x]]$.

Let $f_{1}, \cdots, f_{s},(s \geq 1)$, be elements of $\mathbb{K}[[x]]$ and let $k_{1}, \cdots, k_{s} \in \mathbb{N}$.
Definition 1. We call $q$-wronskian (or ordinary $q$-wronskian) of $\underline{f}=\left(f_{1}, \cdots, f_{s}\right.$ ) and we denote by $W_{q}(\underline{f})$ the determinant of the matrix $\left(D_{q}^{j}\left(f_{i}\right)\right)_{1 \leq i \leq s, 0 \leq j \leq s-1}$.

Definition 2. We call generalized $q$-wronskian of $\underline{f}=\left(f_{1}, \cdots, f_{s}\right)$ relatively to $\underline{k}=\left(k_{1}, \cdots, k_{s}\right)$ and we denote by $W_{q}(\underline{f} ; \underline{k})$ the determinant of the matrix $\left(D_{q}^{k_{j}}\left(f_{i}\right)\right)_{1 \leq i \leq s, 1 \leq j \leq s}$.

Remark 1. 1) The ordinary $q$-wronskian of $\underline{f}=\left(f_{1}, \cdots, f_{s}\right)$ is equal to the generalized $q$ wronskian $W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$ of $\underline{f}$ relatively to $\underline{k}_{s}=(0,1, \ldots, s-1)$.
2) More generally, let $\underline{k}_{j}=(0, \cdots, \hat{j}, \cdots, s)=(0, \cdots, j-1, j+1, \cdots, s)$ for every $j \in$ $\{0, \cdots, s\}$. If we consider the usual derivation $D=d / d x$, we obtain a family of (usual) generalized wronksians $W\left(\underline{f} ; \underline{k}_{j}\right)$ of $\underline{f}=\left(f_{1}, \cdots, f_{s}\right)$, for $0 \leq j \leq s$. And we easily check : $D W\left(\underline{f} ; \underline{k}_{s}\right)=W\left(\underline{f} ; \underline{k}_{(s-1)}\right)$.

Now, consider the family of generalized $q$-wronksians $W_{q}\left(\underline{f} ; \underline{k}_{j}\right)$ of $\underline{f}$ for $0 \leq j \leq s$. We see that, for $D_{q} W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$, we do not have an expression as simple as the one above. However, the following lemma allows us to express $D_{q} W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$ as a combination of all the generalized $q$-wronksians $W_{q}\left(\underline{f} ; \underline{k}_{j}\right)$ of $\underline{f}$ for $0 \leq j \leq s-1$.

Lemma 2. With the notations above, we have:

$$
D_{q}\left(W_{q}\left(\underline{f} ; \underline{k}_{s}\right)\right)=\sum_{j=0}^{s-1}[(q-1) x]^{s-1-j} W_{q}\left(\underline{f} ; \underline{k}_{j}\right)
$$

Let $s \geq 2$ and let $f_{1}, \cdots, f_{s}$ be elements of $K K[[x]]$, linearly independent over $\mathbb{K}$. Let us set $\underline{f}=\left(f_{1}, \cdots, f_{s}\right)$ and $\underline{k}_{j}=(0, \cdots, \hat{j}, \cdots, s)$ for $0 \leq j \leq s$. Let us also set $\underline{g}=\left(f_{1}, \cdots, f_{s-1}\right)$, $\underline{\ell}_{i}=(0, \cdots, \hat{i}, \cdots, s-1)$ for $0 \leq i \leq s-1$ and $\underline{\ell}_{(i, s-1)}=(0, \cdots, i-1, i+1, \cdots, s-2, s)$ for $0 \leq i \leq s-2$. Recall that $W_{q}\left(\underline{f} ; \underline{k}_{j}\right)$ is the generalized $q$-wronskian of $\underline{f}$ relatively to $\underline{k}_{j}$, for $0 \leq j \leq s$. In the same way, $W_{q}\left(\underline{g} ; \underline{\ell}_{i}\right)$ is the generalized $q$-wronskian of $\underline{g}$ relatively to $\underline{\ell}_{i}$, for $0 \leq i \leq s-1$. Finally, $W_{q}\left(\underline{g} ; \underline{\ell}_{(i, s-1)}\right)$ is the generalized $q$-wronskian of $\underline{g}$ relatively to $\underline{\ell}_{(i, s-1)}$, for $0 \leq i \leq s-2$. In the following lemma, the $q$-derivative of the $q$-wronskian is given by an expression which is better suited for the comparison of the growth of $q$-wronskians.

Lemma 3. With the notations above, we have for $s \geq 2$ :
i) $\frac{W_{q}\left(\underline{f} ; \underline{k}_{j}\right)}{W_{q}\left(\underline{f} ; \underline{k}_{s}\right)}=\frac{W_{q}\left(\underline{q} ; \underline{\ell}_{j}\right)}{W_{q}\left(\underline{g} \underline{\left.\ell_{(s-1)}\right)}\right.} \frac{W_{q}\left(\underline{f} ; \underline{k}_{(s-1)}\right)}{W_{q}\left(\underline{f} ; \underline{k}_{s}\right)}-\frac{W_{q}\left(\underline{g} ; \underline{\ell}_{(j, s-1)}\right)}{W_{q}\left(\underline{g} \underline{\ell}_{(s-1)}\right)}, \quad \forall 0 \leq j \leq s-2$;
ii) $\frac{W_{q}\left(\underline{f} ; \underline{k}_{(s-1)}\right)}{W_{q}\left(\underline{f} ; \underline{k}_{s}\right)}=\frac{W_{q}\left(\underline{g} ; \underline{\ell}_{(s-1)}\right)}{\sigma_{q} W_{q}\left(\underline{\underline{\ell}} ; \underline{\underline{\ell}}_{(s-1)}\right)} \frac{D_{q} W_{q}\left(f ; \underline{k}_{s}\right)}{W_{q}\left(\underline{f} ; \underline{k}_{s}\right)}+\left(\sum_{i=0}^{s-2}[(q-1) x]^{s-1-i} \frac{W_{q}\left(\underline{g} ; \underline{\ell}_{(i, s-1)}\right)}{\sigma_{q} W_{q}\left(\underline{\underline{\ell}} ; \underline{\ell}_{(s-1)}\right)}\right)$.

Here, we only consider the case $|q|=1$. Indeed the case $|q| \neq 1$ is more difficult and will be treated later. Hence, from now on, we make this assumption: $q$ is an element of $\mathbb{K}$ which is not a root of unity and is such that $|q|=1$.

## 3 Growth of the $q$-wronskians

In the following result, we give inequalities linking the growth of generalized $q$-wronskians of a family of analytic functions to that of the of ordinary $q$-wronskian of this family of functions.

Theorem 1. Let $s$ be an integer $\geq 1$ and let $f_{1}, \cdots, f_{s}$ be $s$ elements of $\mathcal{A}\left(d\left(0, R^{-}\right)\right)$. Let $k_{1}, \cdots, k_{s}$ be integers $\geq 0$. Let $\underline{k}=\left(k_{1}, \cdots, k_{s}\right)$, and $\underline{k}_{s}=(0,1, \cdots, s-1)$. For every $\left.\rho \in\right] 0, R[$, we have:
i) $\left|W_{q}(\underline{f} ; \underline{k})\right|(\rho) \leq\left|W_{q}\left(\underline{f} ; \underline{k}_{s}\right)\right|(\rho) / \rho^{k_{1}+k_{2}+\cdots+k_{s}-\frac{s(s-1)}{2}}$.

Particularly, for $\underline{k}_{j}=(0, \cdots, \hat{j}, \cdots, s), \quad j=0, \cdots, s$, we have:
ii) $\left|W_{q}\left(\underline{f} ; \underline{k}_{j}\right)\right|(\rho) \leq\left|W_{q}\left(\underline{f} ; \underline{k}_{s}\right)\right|(\rho) / \rho^{s-j}$.

In order to prove Theorem 1, we will first deal with the case $s \leq 2$ and then proceed by induction. The following lemma is easily shown by using Lemma 1.

Lemma 4. Let $R>0$ and let $f$ be an element of $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$. For every $\left.\rho \in\right] 0, R[$ and every $s \in \mathbb{N}$, we have: $\left|\sigma_{q}^{s}(f)\right|(\rho)=|f|(\rho)$ and $\left|D_{q}^{s}(f)\right|(\rho) \leq|f|(\rho) / \rho^{s}$.

We also have:

Lemma 5. Let $f_{1}, f_{2} \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$be linearly independent over $\mathbb{K}$. Let us set: $\underline{f}=\left(f_{1}, f_{2}\right), \underline{k}_{2}=$ $(0,1), \underline{k}_{1}=(0,2)$, and $\underline{k}_{0}=(1,2)$. Then, for every $\left.\rho \in\right] 0, R\left[\right.$, we have: $\left|\bar{W}_{q}\left(\underline{f} ; \underline{k}_{0}\right)\right|(\rho) \leq$ $\left|W_{q}\left(\underline{f} ; \underline{k}_{2}\right)\right|(\rho) / \rho^{2}$ and $\left|W_{q}\left(\underline{f} ; \underline{k}_{1}\right)\right|(\rho) \leq\left|W_{q}\left(\underline{f} ; \underline{k}_{2}\right)\right|(\rho) / \rho$.

Proof: We apply Lemma 3 with $s=2$ and the same notations. As $|q|=1$, we complete the proof by using Lemma 4.

Let $y=y(x) \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$. We define two sequences $A_{n, k}=A_{n, k}(x),(k=0 ; 1)$ of elements of $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$in the following way: $A_{1,0}=0, A_{0,0}=1, A_{1,1}=1, A_{0,1}=$ 0 , and $D_{q}^{n} y(x)=A_{1, n}(x) D_{q} y(x)+A_{0, n}(x) y(x)$. We further define $A_{0}$ and $A_{1}$ by: $D_{q}^{2} y(x)=$ $A_{1}(x) D_{q} y(x)+A_{0}(x) y(x)$.
If $f_{1}, f_{2} \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$are two solutions of the above equation linearly independent over $\mathbb{K}$, we have: $A_{0}=W_{q}\left(\underline{f} ; \underline{k}_{1}\right) / W_{q}\left(\underline{f} ; \underline{k}_{2}\right)$ and $A_{1}=-W_{q}\left(\underline{f} ; \underline{k}_{0}\right) / W_{q}\left(\underline{f} ; \underline{k}_{2}\right)$.

The following formulas are easily checked.

Lemma 6. We have the following induction relations for every integer $n \geq 0$ :
i) $\quad A_{1, n+1}=A_{1} \sigma_{q} A_{1, n}+\sigma_{q} A_{0, n}+D_{q} A_{1, n}$;
ii) $\quad A_{0, n+1}=A_{0} \sigma_{q} A_{1, n}+D_{q} A_{0, n}$.

Proposition 1. Let $f_{1}, f_{2}$ be two elements of $\mathcal{A}\left(d\left(0, R^{-}\right)\right)$. Let $\underline{\ell}=(0,1)$ and let $\underline{k}=\left(k_{1}, k_{2}\right)$ be a pair of positive integers. We have, for every $\rho \in] 0, R\left[\right.$, the inequality: $\left|W_{q}(\underline{f} ; \underline{k})\right|(\rho) \leq$ $\left|W_{q}(\underline{f} ; \underline{\ell})\right|(\rho) / \rho^{k_{1}+k_{2}-1}=\left|W_{q}(\underline{f})\right|(\rho) / \rho^{k_{1}+k_{2}-1}$.

Proof: Using Lemma 5, we show first that for every $n \geq 0$ and every $\rho \in] 0, R[$, we have: $\left|A_{1, n}\right|(\rho) \leq 1 / \rho^{n-1}$ and $\left|A_{0, n}\right|(\rho) \leq 1 / \rho^{n}$. Then we can write:

$$
\left(\begin{array}{cc}
D_{q}^{k_{1}}\left(f_{1}\right) & D_{q}^{k_{2}}\left(f_{1}\right) \\
D_{q}^{k_{2}}\left(f_{2}\right) & D_{q}^{k_{2}}\left(f_{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
f_{1} & D_{q} f_{1} \\
f_{2} & D_{q} f_{2}
\end{array}\right)\left(\begin{array}{cc}
A_{0, k_{1}} & A_{0, k_{2}} \\
A_{1, k_{1}} & A_{1, k_{2}}
\end{array}\right) .
$$

Taking the determinant of both sides, we express $W_{q}(\underline{f}, \underline{k})$ as a function of the $A_{m, j}$ 's and $W(\underline{f})$, and we deduce the result.

We are now able to prove Theorem 1.
Proof: (of Theorem 1)
We proceed by induction. By Lemma 4 and Proposition 1, the inequalities $i$ ) and $i i$ ) are true for $s \leq 2$. Suppose that these inequalities are true up to a rank $s \geq 2$.
Now, let $f_{1}, \cdots, f_{s}, f_{s+1} \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$be linearly independent over $\mathbb{K}$. Let us set $\underline{f}=$ $\left(f_{1}, \cdots, f_{s}, f_{s+1}\right)$, and $\underline{k}_{j}=(0, \cdots, \hat{j}, \cdots, s+1)$ for $0 \leq j \leq s+1$. Let us also set $\underline{g}=$ $\left(f_{1}, \cdots, f_{s}\right), \quad \underline{\ell}_{i}=(0, \cdots, \hat{i}, \cdots, s)$ for $0 \leq i \leq s$ and $\underline{\ell}_{(i, s)}=(0, \cdots, \hat{i}, \cdots, s-1, s+1)$ for $0 \leq i \leq s-1$.
By Lemma 3, we have:
(1) $\frac{W_{q}\left(\underline{f} ; \underline{k}_{j}\right)}{W_{q}\left(\underline{f ;} \underline{k}_{(s+1)}\right)}=\frac{W_{q}\left(\underline{g} ; \underline{\ell}_{j}\right)}{W_{q}\left(\underline{g} ; \underline{\ell}_{s}\right)} \frac{W_{q}\left(\underline{f} ; \underline{k}_{s}\right)}{W_{q}\left(\underline{f ;} \underline{k}_{(s+1)}\right)}-\frac{W_{q}\left(\underline{g} ; \underline{\ell}_{(j, s)}\right)}{W_{q}\left(\underline{g} ; \underline{\ell}_{s}\right)}, \quad \forall 0 \leq j \leq s-1 ;$
(2) $\frac{W_{q}\left(\underline{f} ; \underline{k}_{s}\right)}{W_{q}\left(\underline{f} ; \underline{k}_{(s+1)}\right)}=\frac{W_{q}\left(\underline{g} ; \underline{\ell}_{s}\right)}{\sigma_{q} W_{q}\left(\underline{g} ; \underline{\ell}_{s}\right)} \frac{D_{q} W_{q}\left(\underline{f} ; \underline{k}_{(s+1)}\right)}{W_{q}\left(\underline{f} ; \underline{k}_{(s+1)}\right)}+\sum_{i=0}^{s-1}[(q-1) x]^{s-i} \frac{W_{q}\left(\underline{g} ; \underline{\ell}_{(i, s)}\right)}{\sigma_{q} W_{q}\left(\underline{g} ; \underline{\ell}_{s}\right)}$.

By Lemma 4, we have: $\frac{\left|W_{q}\left(\underline{g} ; \underline{\ell}_{s}\right)\right|(\rho)}{\left|\sigma_{q} W_{q}\left(\underline{g} ; \underline{\ell}_{s}\right)\right|(\rho)}=1$ and $\left.\frac{\left|D_{q} W_{q}\left(\underline{f} ; \underline{k}_{(s+1)}\right)\right|(\rho)}{\left|W_{q}\left(\underline{f} ; \underline{k}_{(s+1)}\right)\right|(\rho)} \leq \frac{1}{\rho}, \forall \rho \in\right] 0, R[$.
From the hypothesis, we deduce that for every $0 \leq i \leq s-1$ :
$\left|[(q-1) x]^{s-i}\right|(\rho) \frac{\left|W_{q}\left(\underline{g} ; \underline{\ell}_{(i, s)}\right)\right|(\rho)}{\left|\sigma_{q} W_{q}\left(\underline{g} ; \underline{\ell}_{s}\right)\right|(\rho)} \leq 1 / \rho$.
It follows, by some calculation, that the inequality $i i)$ is true for the rank $s+1$ and is therefore true for $s \geq 1$. This completes the proof of Inequality $i i$ ).
Let us now prove inequality $i$ )
The equation verified by $f_{1}, \cdots, f_{s+1}$ is: $\quad \sum_{j=0}^{s+1}(-1)^{j} W_{q}\left(\underline{f} ; \underline{k}_{j}\right) D_{q}^{j} y=0$.
This equation can be written in the following form:
(3) $D_{q}^{s+1} y=\sum_{j=0}^{s} A_{j} D_{q}^{j} y$, where $A_{j}=(-1)^{s-j} W_{q}\left(\underline{f} ; \underline{k}_{j}\right) / W_{q}\left(\underline{f} ; \underline{k}_{(s+1)}\right)$.

More generally, for every $n \geq 0$, let us set:
(4) $D_{q}^{n} y=\sum_{j=0}^{s} A_{j, n} D_{q}^{j} y$,
where the $A_{j, n}$ 's are elements of $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$satisfying the following relations:
(5) $A_{j, n}=0$ if $j \neq n$ and $A_{j, n} 1$ if $j=n$, for $0 \leq n \leq s$;
(6) $A_{j, s+1}=A_{j}, \quad$ for $0 \leq j \leq s$;
(7) $A_{0, n+1}=D_{q} A_{0, n}+A_{0} \sigma_{q} A_{s, n}$ and $A_{j, n+1}=D_{q} A_{j, n}+A_{j} \sigma_{q} A_{s, n}+\sigma_{q} A_{j-1, n}$ for $1 \leq j \leq s$.

Let us now show that, for every $j \in\{0, \cdots, s+1\}$ and every $\rho \in] 0, R[$, we have:
(8) $\left|A_{j, n}\right|(\rho) \leq 1 / \rho^{n-j}, \quad \forall n \geq 0$.

Inequality (8) is trivial for $0 \leq n \leq s$ because of the formula (5). Using (6) and (2), we see that Inequality (8) is true for $n=s+1$. Using (7) and Proposition 1, we complete the proof of Inequality (8) by induction on $n$.
Now, we have the formula:

$$
\left(\begin{array}{ccc}
D_{q}^{k_{1}} f_{1} & \cdots & D_{q}^{k_{s+1}} f_{1} \\
\vdots & \vdots & \vdots \\
D_{q}^{k_{1}} f_{s+1} & \cdots & D_{q}^{k_{s+1}} f_{s+1}
\end{array}\right)=\left(\begin{array}{ccc}
f_{1} & \cdots & D_{q}^{s} f_{1} \\
\vdots & \vdots & \vdots \\
f_{s+1} & \cdots & D_{q}^{s} f_{s+1}
\end{array}\right)\left(\begin{array}{ccc}
A_{0, k_{1}} & \cdots & A_{0, k_{s+1}} \\
\vdots & \vdots & \vdots \\
A_{s, k_{1}} & \cdots & A_{s, k_{s+1}}
\end{array}\right)
$$

Taking the determinants of both sides, we have: $W_{q}(\underline{f} ; \underline{k})=\Delta W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$, where $\Delta$ is the determinant of the matrix

$$
\left(\begin{array}{ccc}
A_{0, k_{1}} & \cdots & A_{0, k_{s+1}} \\
\vdots & \vdots & \vdots \\
A_{s, k_{1}} & \cdots & A_{s, k_{s+1}}
\end{array}\right)
$$

We complete then the proof of $i i)$ by showing that $|\Delta|(\rho) \leq \frac{1}{\rho^{\left(k_{1}+\cdots+k_{s+1}\right)-\frac{s(s+1)}{2}}}$ as in Theorem 2.1 of [2].

Remark 2. The property $|q|=1$ is used when it is stated that, for a meromorphic function $\varphi$, we have $\left|\sigma_{q}(\varphi)\right|(\rho)=|\varphi|(\rho)$, which is not true in general if $|q| \neq 1$. So, generalizing our results to any $|q|$ is not at all clear and would require a deep change in the method of proof.

Now, we extend the result of Theorem 1 to meromorphic functions.
Corollary 1. Let $f_{1}, \cdots, f_{s}$, be elements of $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$and let $k_{1}, \cdots, k_{s}$ be integers $\geq 0$. Let $\underline{f}=\left(f_{1}, \cdots, f_{s}\right), \underline{k}=\left(k_{1}, \cdots, k_{s}\right)$ and $\underline{k}_{s}=(0, \cdots, s-1)$. Then, we have for every $\left.\rho \in\right] 0, R[$ : $\left|W_{q}(\underline{f} ; \underline{k})\right|(\rho) \leq \frac{\left|W_{q}\left(\underline{f} ; \underline{k}_{s}\right)\right|(\rho)}{\rho^{\left(k_{1}+\cdots+k_{s}\right)-\frac{s(s-1)}{2}}}$.

Proof: Let $\rho \in] 0, R[$ and let $r \in] \rho, R[$. Then, there exists a nonzero polynomial $P$ such that: $g_{1}=P f_{1}, \cdots, g_{s}=P f_{s}$ are elements of $\mathcal{A}\left(d\left(0, r^{-}\right)\right)$. We can easily prove that: $W_{q}\left(\underline{f} ; \underline{k}_{s}\right)=$ $\left(\prod_{j=0}^{s-1} \sigma_{q}^{j} P\right)^{-1} W_{q}\left(\underline{g} ; \underline{k}_{s}\right)$, and then: $\left|W_{q}\left(\underline{f} ; \underline{k}_{s}\right)\right|(\rho)=\left|W_{q}\left(\underline{g} ; \underline{k}_{s}\right)\right|(\rho)(|P|(\rho))^{-s}$.
Since the $g_{i}$ 's are analytic functions in $d\left(0, r^{-}\right)$, by Theorem 1 we have:

$$
\left|W_{q}(\underline{g} ; \underline{\ell})\right|(\rho) \leq\left|W_{q}\left(\underline{g} ; \underline{k}_{s}\right)\right|(\rho) / \rho^{\left(\ell_{1}+\cdots+\ell_{s}\right)-\frac{s(s-1)}{2}}
$$

From this and the property of the ultrametric inequality we get:

$$
\left|W_{q}(\underline{f} ; \underline{k})\right|(\rho) \leq \frac{\left|W_{q}\left(\underline{g} ; k_{s}\right)\right|(\rho)}{|P|^{s}(\rho)} \frac{1}{\rho^{\left(k_{1}+\cdots+k_{s}\right)-\frac{s(s-1)}{2}}}=\frac{\left|W_{q}\left(\underline{f}, \underline{k}_{s}\right)\right|(\rho)}{\rho^{\left(k_{1}+\cdots+k_{s}\right)-\frac{s(s-1)}{2}}} .
$$

That completes the proof of Corollary 1.

The following result gives an algebraic property of the $q$-wronskians of polynomials or rational functions. Recall that if $P(x), Q(x)$ are polynomials, then the algebraic degree of the rational function $R(x)=P(x) / Q(x)$ is $\operatorname{deg}_{a} R=\operatorname{deg} P-\operatorname{deg} Q$.

Corollary 2. Let $L$ be a field and let $q$ be a nonzero element of $L$ different from any root of unity. Let $Q_{1}, \cdots, Q_{s}, s \geq 1$, be elements of $L(x)$ linearly independent over $L$. Let $\underline{Q}=$ $\left(Q_{1}, \cdots, Q_{s}\right), \underline{k}_{s}=(0, \cdots, s-1)$ and $\underline{k}=\left(k_{1}, \cdots, k_{s}\right)$, where $k_{1}, \cdots, k_{s}$ are integers $\geq 0$. Let $d_{1}, d_{2}$ be the algebraic degrees of the rational functions $W_{q}\left(\underline{Q} ; \underline{k}_{s}\right)$ and $W_{q}(\underline{Q} ; \underline{k})$ respectively. Then we have:

$$
d_{2} \leq d_{1}+\frac{s(s-1)}{2}-\left(k_{1}+\cdots+k_{s}\right)
$$

Proof: We may assume that $L$ is an algebraically closed field equipped with the trivial absolute value $\left.\left|\left.\right|_{0}\right.$ defined by $| 0\right|_{0}=0$ and $|x|_{0}=1$ if $x \neq 0$. Then it is clear that $L$ is a complete ultrametric field with respect to this absolute value. Moreover the entire functions (resp. meromorphic functions) on $L$ are just the polynomials (resp. rational functions) on $L$. On the one hand, we have:
(1) $\left|W_{q}\left(\underline{Q} ; \underline{k_{s}}\right)\right|(\rho)=\rho^{d_{1}}$ and $\left|W_{q}(\underline{Q} ; \underline{k})\right|(\rho)=\rho^{d_{2}}$, for every $\rho>1$.

On the other hand, by Theorem 1, we have:
(2) $\left|W_{q}(\underline{Q} ; \underline{k})\right|(\rho) \leq\left|W_{q}\left(\underline{Q} ; \underline{k}_{s}\right)\right|(\rho) / \rho^{\left(k_{1}+\cdots+k_{s}\right)-\frac{s(s-1)}{2}}$.

From (1) and (2), we have: $1 \leq \rho^{d_{1}-d_{2}+\frac{s(s-1)}{2}-\left(k_{1}+\cdots+k_{s}\right)}$.
The required inequality follows immediately.

Theorem 2. Let $f_{1}, \cdots, f_{s}, s \geq 1$, be elements of $\mathcal{A}(\mathbb{K}), \underline{f}=\left(f_{1}, \cdots, f_{s}\right)$ and $\underline{k}_{s}=(0, \cdots, s-$ $1)$. Suppose that the $q$-Wronskian $W_{q}\left(\underline{f}, \underline{k}_{s}\right)$ is a nonzero polynomial. Then $f_{1}, \cdots, f_{s}$ are polynomials.

Proof: The result is trivial for $s=1$. Suppose that $s \geq 2$ is such that the result is true for $s-1$. So, by hypothesis, $W_{q}\left(f, \underline{k}_{s}\right)$ is a nonzero polynomial $P(x)$.
Let us first consider the case when $P(x)$ is a constant $C$. Then, by Theorem 1, we have: $\left|W_{q}\left(\underline{f} ; \underline{k}_{j}\right)\right|(\rho) \leq\left|W_{q}\left(\underline{f} ; \underline{k}_{s}\right)\right|(\rho) / \rho^{s-j}=|C| / \rho^{s-j}$, for $j=0, \cdots, s-1$.
The considered functions being entire, this implies that: $W_{q}\left(\underline{f} ; \underline{k}_{j}\right)=0$, for $j=0, \cdots, s-1$. The $q$-difference equation verified by $f_{1}, \cdots, f_{s}$ is then reduced to $C D_{q}^{s} y=0$, which implies easily that $f_{1}, \cdots, f_{s}$ are polynomials.

We then proceed by induction on the degree of the polynomial $P(x)$. Suppose that the result is true if $P(x)$ is of degree $\leq n$ and consider the case when $P(x)$ is of the degree $n+1$. By Theorem 1, we have: $\left|W_{q}\left(\underline{f} ; \underline{k}_{0}\right)\right|(\rho) \leq|P|(\rho) / \rho^{s}$. Hence, by Liouville ultrametric Theorem, we see that $W_{q}\left(\underline{f} ; \underline{k}_{0}\right)$ is a polynomial of degree $\leq n+1-s<n$. If this polynomial is nonzero, then $D_{q} \bar{f}_{1}, \cdots, D_{q} f_{s}$ are polynomials by the induction hypothesis and thus $f_{1}, \cdots, f_{s}$ are polynomials.
If the polynomial $W_{q}\left(\underline{f} ; \underline{k}_{0}\right)$ is null, then the system $D_{q} f_{1}, \cdots, D_{q} f_{s}$ is of rank $r \leq s-1$. We may assume that $D_{q} f_{1}, \cdots, D_{q} f_{r}$ are linearly independent. Then every $D_{q} f_{j}$ is a linear combination of $D_{q} f_{1}, \cdots, D_{q} f_{r}$ and thus every $f_{j}$ is a linear combination of $f_{1}, \cdots, f_{r}$ and the constant function 1 . Hence, the $\mathbb{K}$-vector subspace generated by the functions $f_{1}, \cdots, f_{s}$ (of dimension $s$ ) is included in the $\mathbb{K}$-vector subspace generated by $f_{1}, \cdots, f_{r}, 1$ (of dimension $\leq r+1$ ) and therefore $s \leq r+1$. Finally, it follows that $r=s-1$. So we may assume that $D_{q} f_{1}, \cdots, D_{q} f_{s-1}$ are linearly independent and that $D_{q} f_{s}$ is a linear combination of $D_{q} f_{1}, \cdots, D_{q} f_{s-1}$ with coefficients in $\mathbb{K}: \quad D_{q} f_{s}=a_{1} D_{q} f_{1}+a_{2} D_{q} f_{2}+\cdots+a_{s-1} D_{q} f_{s-1}$. We deduce that $f_{s}=$ $a_{1} f_{1}+a_{2} f_{2}+\cdots+a_{s-1} f_{s-1}+b$ with a nonzero constant $b$. We can easily see that the $q$-wronskian of $f_{1}, \cdots, f_{s}$ is equal (up to sign) to $b$ multiplied by the $q$-wronskian of $D_{q} f_{1}, \cdots, D_{q} f_{s-1}$. Hence, this last $q$-wronskian is a nonzero polynomial, and the induction hypothesis on $s$ shows that $D_{q} f_{1}, \cdots, D_{q} f_{s-1}$ are polynomials and then $f_{1}, \cdots, f_{s-1}$ are polynomials. The formula $f_{s}=a_{1} f_{1}+a_{2} f_{2}+\cdots+a_{s-1} f_{s-1}+b$ then shows that $f_{s}$, too, is a polynomial. Thus the proof of Theorem 2. is completed.

Remark 3. The previous result does not extend to $\mathcal{M}(\mathbb{K})$. Indeed, let $g$ be a non-polynomial entire function and let $h$ be an entire function such that $D_{q} h=g \sigma_{q} g$. Let $f_{1}=1 / g$, and $f_{2}=h / g$. We see that $f_{1}, f_{2}$ are non-rational meromorphic functions while the $q$-wronskian of $f_{1}, f_{2}$ is equal to 1 .

Theorem 3. Let $P_{0}, \cdots, P_{s}, s \geq 1$, be elements of $K K[x]$ such that $P_{s} \neq 0$. Suppose that the equation: $(E) \quad P_{s} D_{q}^{s} y+\cdots+P_{1} D_{q} y+P_{0} y=0$ has a complete system of solutions in $\mathcal{A}(\mathbb{K})$. Then every entire solution of $(E)$ is a polynomial.

Proof: Let $f_{1}, \cdots, f_{s}$ be entire functions in $\mathbb{K}$, making a basis of the $\mathbb{K}$-vector space of solutions of Equation $(E)$. Then the $q$-wronskian $W=W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$ of $f_{1}, \cdots, f_{s}$ is a nonzero entire function. An immediate calculation gives:
(1) $\quad P_{s} D_{q} W_{q}\left(\underline{f} ; \underline{k}_{s}\right)+\left(\sum_{i=0}^{s-1}[(1-q) x]^{s-1-i} P_{i}\right) W_{q}\left(\underline{f} ; \underline{k}_{s}\right)=0$.

If $\sum_{i=0}^{s-1}[(1-q) x]^{s-1-i} P_{i}=0$, then $W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$ is a nonzero constant. It follows, by Theorem 2 , that $f_{1}, \cdots, f_{s}$ are polynomials. We therefore assume in the following that $\sum_{i=0}^{s-1}[(1-$ q) $x]^{s-1-i} P_{i} \neq 0$. Let $R>0$ be such that all zeros of the polynomials $P_{s}$ and $\sum_{i=0}^{s-1}[(1-$ q) $x]^{s-1-i} P_{i}$ lie in the disk $d(0, R)$. Suppose that the function $W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$ admits a zero $\alpha$ such that $|\alpha|=\rho>R$. Then, by (1), we have $D_{q} W_{q}\left(f ; \underline{k}_{s}\right)(\alpha)=0$. By Lemma 1, we have $\sigma_{q} W_{q}\left(\underline{f} ; \underline{k}_{s}\right)=(q-1) x D_{q} W_{q}\left(\underline{f} ; \underline{k}_{s}\right)+W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$. It follows that $W_{q}\left(\underline{f} ; \underline{k}_{s}\right)(q \alpha)=$ $\sigma_{q} W_{q}\left(f ; \underline{k}_{s}\right)(\alpha)=0$. As $|q|=1$, an immediate induction then shows that the function $W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$ has infinitely many zeros in the disk $d(0, \rho)$, which is a contradiction. So $W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$ has all its zeros in the disk $d(0, R)$. This means that $W_{q}\left(\underline{f} ; \underline{k}_{s}\right)$ has only finitely many zeros and is consequently a polynomial. Theorem 2 then shows that $f_{1}, \cdots, f_{s}$ are polynomials, which ends the proof of the theorem.

We can now generalize the above result to $\mathcal{M}(\mathbb{K})$ :
Theorem 4. Let $P_{0}, \cdots, P_{s}, s \geq 1$, be elements of $K K[x]$ such that $P_{s} \neq 0$. Suppose that the equation: $(E) \quad P_{s} D_{q}^{s} y+\cdots+P_{1} D_{q} y+P_{0} y=0$ has a complete system of solutions in $\mathcal{M}(\mathbb{K})$. Then every solution of $(E)$ is a rational function.

Proof: Let $f_{1}, \cdots, f_{s}$ be elements of $\mathcal{M}(\mathbb{K})$, making a basis of the $\mathbb{K}$-vector space of solutions of Equation $(E)$. Using the formula $\sigma_{q} y=(q-1) x D_{q} y+y$ we deduce that Equation $(E)$ is equivalent to:
$\left(E^{\prime}\right) \quad Q_{s}(x) \sigma_{q}^{s} y(x)+\cdots+Q_{0}(x) y(x)=0$,
where $Q_{0}, \cdots, Q_{s}$ are elements of $K K[x]$ such that $Q_{s}=P_{s}$. We may assume, without loss of generality, that $Q_{0} \neq 0$. Let $y$ be a solution of $\left(E^{\prime}\right)$ in $\mathcal{M}(\mathbb{K})$ and let $\omega$ be a pole of $y$ which is not a zero of $Q_{0}$. It follows that there exists $\ell_{1} \geq 1$ such that $q^{\ell_{1}} \omega$ is a pole of $y$. We can not continue this process indefinitely. So there exists an integer $\ell_{\omega} \geq 0$ such that for every $j \geq 1$, $q^{\ell_{\omega}+j} \omega$ is not a pole of $y$. It follows, from Equation $\left(E^{\prime}\right)$, that the function $Q_{0}\left(q^{\ell_{\omega}} x\right) y\left(q^{\ell_{\omega}} x\right)$ has no longer $\omega$ as a pole. Therefore, $q^{\ell_{\omega}} \omega$ is a zero of $Q_{0}(x)$. Let $R>0$ be such that all zeros of the polynomial $Q_{0}(x)$ are contained in the disk $d(0, R)$. It follows that all poles of $y$ are in the disk $d(0, R)$. Consequently, $y$ only has finitely many poles. Applying this to $f_{1}, \cdots, f_{s}$, we see that there exists a polynomial $H(x)$, such that $g_{1}(x)=H(x) f_{1}(x), \cdots, g_{s}(x)=H(x) f_{s}(x)$ are entire functions in $\mathbb{K}$. Moreover, these functions are linearly independent and satisfy a $q$ difference equation of order $s$ with polynomial coefficients. We conclude by using Theorem 3.

## References

[1] Y. Amice, Les nombres p-adiques, P.U.F., 1975.
[2] J.-P. BÉzivin, Wronskien et équations différentielles p-adiques, Acta Arithmetica 158 no 1 (2013), pp.61-pp. 78
[3] A. Boutabaa, On some p-adic functional equations, Lecture Notes in Pure and Applied Mathematics no 192 (1997), pp.61-pp. 78
[4] A. Boutabaa, A note on p-adic linear differential equations, J. of Number theory no 87 (2001), pp.301-pp. 305
[5] A. Escassut, Analytic elements in p-adic analysis,W.S.P.C. Singapore, 1995.

Received: 10.01.2014
Revised: 26.06.2014
Accepted: 20.07.2014
Laboratoire de Mathématiques Pures et Appliquées,
Université de Mostaganem B. P. 227, Mostaganem (Algérie). E-mail: ${ }^{1}$ belaidi @univ-mosta.dz
${ }^{2}$ bouabdelli.rabab @gmail.com

Laboratoire de Mathématiques UMR 6620, Université Blaise Pascal,
Les Cézeaux, 63171 AUBIERE CEDEX FRANCE.
E-mail: ${ }^{3}$ boutabaa @math.univ-bpclermont.fr

