Bull. Math. Soc. Sci. Math. Roumanie Tome 58(106) No. 2, 2015, 161–166

A Note On S¹-Equivariant Maps Between 3-Spheres

by

SEDA EREN¹ AND ALI ÖZKURT²

Abstract

In this paper, we study the non-existence of equivariant maps of 2-connected compact manifold with effective circle actions. It was given a necessary condition for a map between 3-spheres to be equivariant for an effective circle action.

Key Words: Inverse limit, Hilbert-Smith conjecture, effective group action, aquivariant map.

2010 Mathematics Subject Classification: Primary 54B25, Secondary 57S10, 57S25.

1 Introduction

This short note is motivated by the following statement known as the generalized Hilbert-Smith conjecture

Conjecture: If G is a compact group which acts effectively on a connected finite dimensional manifold, then G is a Lie group. A well known fact ([7]) states Hilbert-Smith conjecture is equivalent the following conjecture:

Conjecture: A *p*-adic group cannot act effectively on a connected finite dimensional manifold.

Therefore constructing effective p-adic space plays an important role in the study of the Hilbert-Smith conjecture.

We show that one way to obtain a compact space which an effective p-adic group action, is to take inverse limit of inverse systems of effective S^1 -spaces with bonding maps that satisfy certain equivariant properties.

2 Preliminaries and Background

In this section we give necessary definitions and facts that will be used in the note. Suppose that to every α in a set I directed by the relation \leq corresponds a topological space X_{α} , and that for any $\alpha, \beta \in I$ satisfying $\alpha \leq \beta$ a continuous mapping $f_{\alpha}^{\beta} : X_{\beta} \to X_{\alpha}$ is defined; suppose further that $f_{\gamma}^{\alpha} f_{\alpha}^{\beta} = f_{\gamma}^{\beta}$ for any $\alpha, \beta, \gamma \in I$ satisfying $\gamma \leq \alpha \leq \beta$ and that $f_{\alpha}^{\alpha} : X_{\alpha} \to X_{\alpha}$ is the

identity map for all $\alpha \in I$. In this case we say that the family $S = \{X_{\alpha}, f_{\alpha}^{\beta}, I\}$ is an inverse system of the spaces X_{α} ; the mappings f_{α}^{β} are called bonding mappings of the inverse system S.

Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, I\}$ be an inverse system; an element (x_{α}) of the cartesian product $\prod_{\alpha \in I} X_{\alpha}$ is called a *thread* of S if $f_{\alpha}^{\beta}(x_{\beta}) = x_{\alpha}$ for any $\alpha, \beta \in I$ satisfying $\alpha \leq \beta$, and the subspace of $\prod_{\alpha \in I} X_{\alpha}$ consisting of all threads of S is called the limit of the inverse system $S = \{X_{\alpha}, f_{\alpha}^{\beta}, I\}$ and is denoted by $\lim S$ or by $\lim X_{\alpha}$.

We denote by $\pi_{\beta} : \varprojlim X_{\alpha} \to X_{\beta}$ the restriction of the canonical projection $\prod_{\alpha \in I} X_{\alpha} \to X_{\beta}$. Clearly, for any $\alpha, \beta \in I$ such that $\alpha \leq \beta$, the projections π_{α} and π_{β} satisfy the equality $\pi_{\alpha} = f_{\alpha}^{\beta} \pi_{\beta}$. The following results are well known and we refer to [10] for more details.

Theorem 1. [10, pg. 99] The limit of inverse system of T_i -spaces is a T_i -space for $i \leq 3\frac{1}{2}$.

Theorem 2. [10, pg. 355] The inverse limit of inverse system $S = \{X_{\alpha}, f_{\alpha}^{\beta}, I\}$ of continua is a continuum.

If $S = \{G_{\alpha}, f_{\alpha}^{\beta}, I\}$ is an inverse system of topological groups $(f_{\alpha}^{\beta} \text{ are continuous group homomorphisms})$, then $\varprojlim G_{\alpha}$ is also a topological group with the subspace topology from $\prod_{\alpha \in I} G_{\alpha}$ and with the group operation $(g_{\alpha})(h_{\alpha}) \mapsto (g_{\alpha}h_{\alpha})$. Further, if all groups G_{α} in the inverse system are compact then inverse limit is compact group.

Given a prime number p. Set $G_n = S^1 = \{z \in \mathbb{C} : |z| = 1\}$ (the usual torus group) for all $n \in \mathbb{N}$ and define $f_n^{n+1} : G_{n+1} \to G_n$, $f_n^{n+1}(z) = z^p$ for all $n \in \mathbb{N}$ and $z \in S^1$. The inverse limit of this inverse system is called the *p*-adic solenoid T_p . This inverse limit has the *p*-adic integers as a totally disconnected closed normal subgroup. Solenoids are one of the prototypes of compact abelian groups that are connected but not arc-wise connected.

Let G be a group and X be a topological space. Then G acts on X if there is a continuous function $G \times X \to X$ denoted by $(g, x) \mapsto gx$, such that

$$1x = x$$
$$(gh)x = g(hx)$$

for all $x \in X$ and $g, h \in G$ (here 1 is the identity element of G). Call X a G-space if G acts on X. If X is a G-space and $x \in X$, then the subspace $G(x) = \{gx \in X : g \in G\}$ is called the orbit of x. We denote the set whose elements are the orbits by X/G. An action of G on X is said to be transitive if there is precisely one orbit, X itself and it is said to be effective if for any $g \neq 1$ in G there exists an x in X such that $gx \neq x$.

3 Main Result

Let X be a G-space, Y be an H-space and $\varphi: G \to H$ be continuous group homomorphism. A continuous map $f: X \to Y$ is called φ -equivariant if

$$f(gx) = \varphi(g)f(x)$$

for all $g \in G$ and $x \in X$.

162

A Note on S^1 -Equivariant Maps Between 3-Spheres

If $\{X_{\alpha}, f_{\alpha}^{\beta}, I\}$ is an inverse system of topological spaces and $\{G_{\alpha}, \varphi_{\alpha}^{\beta}, I\}$ is an inverse system of topological groups, where each X_{α} is a G_{α} -space and each bonding map f_{α}^{β} is φ_{α}^{β} -equivariant, then we get another inverse system of topological spaces $\{X_{\alpha}/G_{\alpha}, f_{\alpha}^{\beta}, I\}$ by passing to orbit spaces. Also, under above conditions $\lim X_{\alpha}$ is a $\lim G_{\alpha}$ -space with the action given by

$$(g_{\alpha})(x_{\alpha}) = (g_{\alpha}x_{\alpha})$$

for $(g_{\alpha}) \in \varprojlim G_{\alpha}$ and $(x_{\alpha}) \in \varprojlim X_{\alpha}$. Singh [9] has proved, for the inverse systems of spaces with bonding maps satisfy certain properties, that $(\varprojlim X_{\alpha})/(\varprojlim G_{\alpha})$ is homeomorphic to $\varprojlim (X_{\alpha}/G_{\alpha})$. As a consequence of this, under the above conditions, if each X_{α} is transitive G_{α} -space then $\varprojlim X_{\alpha}$ is a transitive $\varprojlim G_{\alpha}$ -space. Here we consider the following question.

Problem: In the above discussion, is it possible to replace "effective" by "transitive".

Before answer the problem, we recall some facts about ordered sets. If I is a set and \leq is an order relation on X, and if a < b (i.e. $a \leq b$ and $a \neq b$), we use the notation (a, b) to denote the set $\{x : a < x < b\}$; is called an open interval in X. If this set is empty, we call a the immediate predecessor of b, and we call b the immediate successor of a.

Lemma 1. Let $\{X_{\alpha}, f_{\alpha}^{\beta}, I\}$ be an inverse system of non-empty Hausdorff topological spaces with an linear order (\leq) on I and let $\{G_{\alpha}, \varphi_{\alpha}^{\beta}, I\}$ be an inverse system of topological groups, where each X_{α} is an effective G_{α} -space and each bonding map f_{α}^{β} is φ_{α}^{β} -equivariant and onto. Further, assume that each element of I has an immediate predecessor and immediate successor. Then $X = \varprojlim X_{\alpha}$ is an effective $G = \varprojlim G_{\alpha}$ -space.

Proof: Suppose that the induced G action on X is not effective. Then, there exists an element $g = (g_{\alpha}) \in G \setminus \{1\}$ such that gx = x for each $x = (x_{\alpha}) \in X$. Since $g = (g_{\alpha}) \in G \setminus \{1\}$, there exists at least an element $\alpha' \in I$ such that $p_{\alpha'}(g) = g_{\alpha'} \in G_{\alpha'} \setminus \{1\}$ where $p_{\alpha'}$ denotes the canonical projection $p_{\alpha'}$: $\lim G_{\alpha} \to G_{\alpha'}$.

Let y be an arbitrary point of $X_{\alpha'}$. Since each bonding map f_{α}^{β} is onto, we have an element $z = (x_{\alpha}) \in \pi_{\alpha'}^{-1}(y)$ ($\pi_{\alpha'}$ denotes the canonical projection $\pi_{\alpha'} : \lim_{\alpha \to \infty} X_{\alpha} \to X_{\alpha'}$) such that

(i)
$$f_{\lambda}^{\gamma}(\pi_{\gamma}(z)) = \pi_{\lambda}(z)$$

for $\alpha' \leq \lambda$ and immediate successor γ of λ

(*ii*)
$$f^{\theta}_{\beta}(\pi_{\theta}(z)) = \pi_{\beta}(z)$$

for $\theta \leq \alpha'$ and immediate predecessor β of θ

Since gz = z, we have $g_{\alpha'}y = y$. This implies that $X_{\alpha'}$ is not effective $G_{\alpha'}$ -space which is a contradiction.

Example 1. Let p be a prime number. Set $G_n = S^1 = \{z \in \mathbb{C} : |z| = 1\}$ and define $\varphi_n^{n+1} : G_{n+1} \to G_n, \varphi_n^{n+1}(z) = z^p$. Similarly set $X_n = \mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\}$ and define $f_n^{n+1} : X_{n+1} \to X_n, f_n^{n+1}(w) = w^p$ for all $n \in \mathbb{N}$. We consider the effective action of G_n on X_n given by multiplication. It is clear that each bonding map f_n^{n+1} is φ_n^{n+1} -equivariant. So inverse limit of the inverse system $\{X_n, f_n^{n+1}, \mathbb{N}\}$ is an effective compact $\lim_{n \to \infty} G_n = T_p$ -space. Since the p-adic group, Z_p , is a subgroup of T_p , $\lim_{n \to \infty} X_n$ is effective Z_p -space.

Let X be a compact and 2-connected (i.e. $\pi_i(X) = \{0\}$ for $i \leq 2$) manifold and $q: X \to Y$ be a finite sheeted covering map over a compact manifold Y. Consider a continuous map $f: X \to X$ such that qf = q. Let p be a prime number and $\varphi: S^1 \to S^1, \varphi(z) = z^p$.

Theorem 3. If there is an effective S^1 action on X which admits f as a φ -equivariant map, then the p-adic integers acts effectively on X.

Proof: Suppose there exists an effective S^1 -action on X such that f is φ -equivariant map (i.e. $f(zx) = z^p f(x)$ for all $z \in S^1$ and $x \in X$). Let $X_f = \varprojlim(X, f) = \{(x_i)_{i \in \mathbb{N}} : f(x_{i+1}) = x_i\}$ and $T_p = \varprojlim(S^1, \varphi) = \{(z_i)_{i \in \mathbb{N}} : \varphi(z_{i+1}) = z_{i+1}^p = z_i\}$ (i.e. p-adic solenoid). On the other hand Cohen [6] defined \varprojlim^1 functor and proved that there is a short exact sequence for the homotopy classes of maps from a space Z into the inverse limit of spaces X_{α} , namely

$$0 \to \underline{\lim}^{1}[SZ, X_{\alpha}] \to [Z, \underline{\lim} X_{\alpha}] \to \underline{\lim}[Z, X_{\alpha}] \to 0$$

where SZ be the suspension of Z and [Z, W] denotes the homotopy classes of maps from the space Z to W. It is clear that $[SZ, W] = [Z, \Omega W]$, where ΩW loop space of W. In our case, we consider the homotopy classes of maps from S^1 into the inverse limit, X_f , of the inverse system $\{X, f\}$. Since $\pi_1(X) = \{0\}$, we have $\pi_1(X_f) = \underline{\lim}^1 [SS^1, X]$.

In our case $\lim_{K \to 1} [SS^1, X] = coker\psi$ where $\psi : [SS^1, X]^{\mathbb{N}} \to [SS^1, X]^{\mathbb{N}}, \psi((x_n)) = (x_n - Sf(x_{n+1}) (Sf : [SS^1, X] \to [SS^1, X] \text{ induced by } f)$. Since $[SS^1, X] = [S^1, \Omega X] = \pi_2(X) = \{0\}$, we have $\pi_1(X_f) = 0$.

Now we identify Y with inverse limit of inverse system $\{Y, 1\}$. Since qf = q, it induces a continuous map $g: X_f \to Y$ given by $g((x_n)) = (q(x_n))$. Then, by [11] g will also be a finite sheeted (in fact has the same number of sheet as q) covering map over Y. However since X_f is simply connected, it is the universal cover of Y. Therefore $X_f = X$ by the uniqueness of the universal cover. According to Lemma 1. there is an effective T_p (therefore Z_p)-action on X.

We shift now our attention to 3-manifolds. It is well known fact that fundamental group is the most important invariant to distinguish 3-manifolds. In particular, if X is simply connected compact 3-manifold, then X has the homology of a 3-sphere by Poincare duality. In fact X is homotopy equivalent to S^3 by the Hurewicz theorem. But Poincare conjecture ([2,3,4]) asserts that S^3 is the only such manifold. If X is orientable compact manifold of odd dimension then the Euler characteristic is 0 by Poincare duality. If X is not orientable compact manifold then it has a two fold covering by a compact orientable manifold. And it is obvious that the Euler characteristic of this cover is twice the Euler characteristic of X. Therefore if X is a nonorientable 3-manifold, then the Euler characteristic of X is 0. This implies that $H_1(X, Z)$ is infinite. Therefore S^3 is the only 2-connected compact 3-manifold.

Remark 1. A 3-manifold X is called spherical if there exists a finite subgroup $,\Gamma$, of SO(4) acting freely by rotations on S^3 such that $X = S^3/\Gamma$. On the other hand if $q: S^3 \to Y$ is a finite covering, then the covering transformation group and hence $\pi_1(Y)$ is finite. Thurston's elliptization conjecture, which was proved in 2003 by G. Perelman ([3,4]), states that a closed

164

3-manifold with finite fundamental group is spherical. So Y must be a spherical 3-manifold. On the other hand Γ is either cyclic, or is a central extension of a dihedral, tetrahedral, octahedral, or icosahedral group by a cyclic group of even order. The most basic example for spherical 3manifolds are Lens spaces(cyclic case) and links of quotient (alias simple) surface singularities. (see[1] or [8], pp 59-60.)

Recently J. Pardon [5] has proved that there is no effective action of a p-adic group on any connected 3-manifold. So we have the following theorem.

Theorem 4. If Γ is one of the those classes of groups and acts freely by rotations on S^3 and θ is an effective S^1 action on S^3 such that it admits a φ -equivariant map $f: S^3 \to S^3$, then there exists $x \in S^3$ such that $f(x) \notin \Gamma(x)$.

Proof: Assume $f(x) \in \Gamma(x)$ for each $x \in S^3$. Then we have qf = q where $q: S^3 \to S^3/\Gamma$ is the canonical, finite sheeted covering map. In accordance with Theorem 3. there is an effective *p*-adic group action on S^3 which is a contradiction.

Corollary 1. There is no effective S^1 -action on S^3 which admits antipodal map as a φ -equivariant map.

Proof: The proof is trivial from Theorem 4.

References

- [1] A. DIMCA, Singularities and Topology of Hypersurfaces, Universitext, Springer-Verlag 1992.
- [2] G. PERELMAN, The entropy formula for the Ricci flow and its geometric applications, http://arxiv.org/pdf/math/0211159v1.pdf (2002).
- [3] G. PERELMAN, Ricci flow with surgery on three manifolds, http://arxiv.org/pdf/math/0303109.pdf (2003).
- G. PERELMAN, Finite extinction time for the solutions to the Ricci flow on certain threemanifolds, http://arxiv.org/pdf/math/0307245.pdf (2003).
- [5] J. PARDON, The Hilbert-Smith conjecture for three manifolds, J Amer Math Soc 26 (2013), 879–899.
- [6] J.M. COHEN, The homotopy groups of inverse limits, Proc London Math Soc 27 (1973), 159–177.
- [7] J.S. LEE, Totally disconnected groups, p-adic groups and the Hilbert-Smith conjecture, Comm Korean Math Soc 12 (1997), 691–699.
- [8] K. LAMOTKE, Regular Solids and Isolated Singularities, Vieweg, 1986.

- [9] M. SINGH, A Note on the commutativity of inverse limit and orbit map, Math Slovaca 61 (2011), 653–656.
- [10] R. ENGELKING, *General topology*, Berlin: Heldermann-Verlag 1989.
- [11] V. MATIJEVIĆ, Classifying finite-sheeted coverings of paracompact spaces, *Revista Mat Comput* 16 (2003), 311–327.

Received: 07.12.2013 Revised: 24.01.2014 Accepted: 10.02.2014

> Department of Mathematics, University of Cukurova E-mail: ¹kinaciseda@gmail.com ²aozkurt@cu.edu.tr