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Abstract

In this note we introduce a new class of Henselian fields (called strongly Henselian
fields), which generalize the case of a complete rank 1 Krull valued field. We characterize
the class of closed subfields of a discrete complete rank 1 and of equal characteristic val-
ued field. We also make some considerations on the automorphisms group of a complet
nonalgebraically closed rank 1 valued field.
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1 Some introductory remarks

Let K be a commutative field of characteristic zero and let F = K((X)) be the field of Laurent
power series

∑∞
n>−∞ anX

n in the variable X, with coefficients an in K. In [6] the authors
were interested in the study of the group G = Aut(F/K) of all K-automorphisms of F, i.e. in
those field automorphism of F which fix the elements of K. They proved there that there is a
one-to-one and onto Galois type correspondence between the set of all closed (with respect to
the usual X-order topology) subfields L ⊂ F, K ( L, and the set of all cyclic subgroups of G.
Moreover, each finite subgroup of G is cyclic [6].

For f =
∑∞

n>−∞ anX
n, let us denote v(f) = min{n : an 6= 0} the common X-adic discrete

(Krull) valuation of F. For any subfield L of F, let vL be the restriction of v to L. In [6],
Theorem 1, the authors proved that if K 6= L, v is the unique extension of vL to F, i.e. if vL
does not split in F, or if (L, vL) ⊆ (F, v) is a Henselian extension, then L is closed in F and
[F : L] <∞.

Starting from this last result and by using our methods introduced in [9] and [1] for studying
Henselian extensions of valued fields (even in a more general frame), we consider in this note a
new class of Henselian fields, namely the strongly Henselian fields (Definition 1 bellow).
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This class of strongly Henselian fields seems to be very appropriate for studying a more
complicated problem: ”Find the structure of all finite codimensional subfields of a given non-
algebraically closed Henselian field”. This problem was stated in 2007 by the late Professor
Nicolae Popescu during our joint research work, partially finalized in the paper [6]. This pro-
blem is an analogue of the famous Artin Schreier theory for algebraically closed fields. Here, a
valued field (F, v) is said to be a Henselian field if v can be uniquely extended to any algebraic
extension T of F, i.e. if v does not split in any algebraic extension of F.

A motivation for introducing this new class of henselian fields is given in the following
remarks.

Remark 1. Let F = K((X)) be the Laurent power series with coefficients in a field K of
characteristic zero and let v be the usual X-order valuation on F. Let L0 = K(X) be the
rational function subfield of F. An important problem (with applications in other branches of
mathematics!) is to study the algebraic elements of F, i.e. the series of f which are algebraic
over L0, or the algebraic function subfields of L0. If one fixes a discrete valuation of rank 1 on
L0, trivial on K, say v0, the X-order valuation on L0 induced by v, could we make some remarks
on all discrete rank 1 valuations w on F which extends v0? For the moment, surely not, because
there are ”many” transcendental elements in F (over L0). For instance, the power series which
formally define expX, ln(1+X), sinX, cosX, etc., are in general transcendental elements over
L0. But the Henselian valued field (F, v) (it is complete!) has the following amazing property:
if K * L ⊂ F, with [F : L] < ∞, and if vL is the restriction of v to L, then v is the unique
extension of vL to F (see Theorem 1 bellow). In particular, if we study the above problem, it is
sufficient ”to diminish” F down to a finite codimension subfield L of F which contains L0 and
try to classify the discrete rank 1 valuations on L (instead of F ) which extend v0. This was my
main example to motivate the following study of this new class of strongly Henselian fields.

Definition 1. A nontrivial Krull valued field (F, v) of rank 1 is called a strongly Henselian field
if for any subfield L ⊆ F with [F : L] < ∞ and with vL, the restriction of v to L, nontrivial,
(L, vL) is a Henselian field.

In Theorem 1 and in Example 1 we give important cases of strongly Henselian valued fields.
In Example 2 we also give a very known situation of a Henselian field which is not strongly
Henselian. This last particular example can be easily extended to some more general valued
fields.

The next theorem gives an important class of strongly Henselian fields. We shall see a proof
for this theorem and some particular examples in Section 2.

Theorem 1. Let (F, v) be a nontrivial complete nonalgebraically closed valued field of rank 1.
Then (F, v) is a strongly Henselian field.

Corollary 1 says that if (F, v) is a strongly Henselian field and if L ⊂ F is a finite separable
extension, then L is closed in F. This result is a generalization of Theorem 1 from [6].

In Proposition 1 we prove that for any subfield K of (F, v), a complete nonalgebraically
closed valued field of rank 1, any element σ ∈ G = Aut(F/K) is continuous with respect to
v. This is a generalization of an old result of O.F.G. Schilling [10] (see also [6] for a similar
discussion in a particular situation).

Another basic result of this note is the following theorem.
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Theorem 2. Let (F, v) be a discrete complete rank 1 valued field of equal characteristic and
let (L, vL) be a nontrivial valued subfield of (F, v) such that the extension of fields F/L is

algebraically separable and, if L̂, F̂ are the residue fields of L, F respectively, then [F̂ : L̂] <∞.
Under these conditions the following statements are equivalent:

i) [F : L] <∞
ii) (L, vL) is a Henselian field
iii) (L, vL) is topologically closed in (F, v).

All proofs, examples and other remarks are given in section 2.

2 Proofs and other results

Proof of Theorem 1. Let L be a finite codimension subfield of F, i.e. [F : L] = n <∞ such that
vL is not a trivial one. In order to prove that (L, vL) is Henselian, it is sufficient to consider the
particular case in which the extension F/L is separable. Indeed, let L∗ ⊆ F be the inseparable
closure of L in F. Since vL can be uniquely extended to L∗, it will be sufficient to prove that
(L∗, vL∗) is Henselian. But F/L∗ is a finite separable extension. Thus we can assume that F/L
is a finite separable extension.

Let now L be the least (finite) normal and separable extension of L which contains F and
let v be the unique extension (as a valuation) of v to L (see [4], [7], or [2]). Let G = Gal(L/L)
be the Galois group of the Galois extension L/L. Since (F, v) is complete, it is a Henselian field
([4], [5], or [2]), it will be sufficient to prove that the unique valuation on L which extends vL
is v.

Let us assume that w is another extension of vL to L. Since L/L is a Galois extension, there
is an automorphism σ ∈ G such that w = v ◦ σ (see [5], or [2]). Let us prove that (L,w) is also
a complete valued field (with respect to w). Indeed, if {xn}n is a Cauchy sequence in (L,w),
then v(σ(xn+1)−σ(xn))→∞, when n→∞ [4]. Thus {σ(xn)}n is a Cauchy sequence in (L, v).
But this last valued field is complete, as a finite extension of the complete field (F, v) (see [4],
[7], [5], or [2]). Let y ∈ L, y = lim

n→∞
σ(xn), i.e. v(σ(xn)− y)→∞, when n→∞. Now, it is easy

to see that x = σ−1(y) ∈ L is the limit of {xn}n in (L,w), i.e. (L,w) is a complete valued field.
The next step is to see that L cannot be algebraically closed. If L were algebraically closed,

the Artin-Schreier theory of real closed fields (see [3]) would say that [L : L] = [L : F ][F : L] = 2.
Since F is not algebraically closed (see the hypotheses), one observes that [L : F ] = 2 and so,
F = L is this case. Since (F, v) is complete, it is Henselian (see [4], or [5]), thus (L, v) would
be Henselian in this last case and the statement is completely proved.

Assume now that L is not algebraically closed. Since (L, v) and (L,w) are complete valued
fields, using the famous F. K. Schmidt result (see [7], or [2]), we have to conclude that w and
v are equivalent as Krull valuations of rank 1, thus w = sv for a positive real number s (see
[7], or [2]). Now, since w and v are extensions of the same nontrivial valuation vL, s = 1 and
so, w = v. Let F be an algebraic closure of F (and also of L). Since vLdoes not split in L, it
does not also split in F. But (F, v) is complete, so Henselian, thus vL does not split in F , i.e.
(L, vL) is a Henselian field. Hence (F, v) is a strongly Henselian field (see definition 1).

Example 1. Let (F, v) = (K((X)), ord) be the common rational Laurent power series with
coefficients in a field K. Here, for f =

∑∞
n>−∞ anX

n, v(f) = min{n : an 6= 0} is the usual
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order valuation on F = K((X)). We know that (F, v) is a complete nonalgebraically closed field
(see [4]). Thus, Theorem 1 says that (F, v) is a strongly Henselian field (see also [6] for a
particular case).

Example 2. Let (Q, vp) be the rational number field with the p-adic valuation on it and let
(Qp, ṽp) be the completion of (Q, vp), i.e. the field of p-adic numbers. Let Qh be the algebraic
closure of Q in Qp, i.e. the ”henselianization” of (Q, vp), i.e the least Henselian field which
contains (Q, vp) (see [4]). It is clear enough that Q 6= Qh and that Qh is a Henselian field
(Hensel’s Lemma works in it) with respect to the restriction of the valuation ṽp on it. Thus,
for any subfield L ⊂ Qh, L 6= Qh, the valued field (L, ṽp,L) is not a Henselian field. Thus(
Qh, ṽp,Qh

)
is Henselian but not strongly Henselian. Here ṽp,L is the restriction of ṽp to L and

ṽp,Qh is the restriction of ṽp to Qh.

Corollary 1. Let (F, v) be a strongly Henselian field and let L ⊆ F be a finite separable
coextension of F, i.e. L is a subfield of F, F/L is separable and [F : L] = n < ∞. Then F is
topologically closed in F.

Proof: Let
(
L̃, ṽL

)
be the topological closure of L in (F, v) and let (L, v) be the least (finite)

Galois extension of (L, vL) which contains (F, v). Here v is the unique extension of v to L. Since
(L, vL) is Henselian, the restriction of v to F is equal to v.

Let us assume that L ( L̃ and take α ∈ L̃ \ L. Thus, the constant of Krasner

ω(α) = max
{
v(α− σ(α)) : σ ∈ Gal(L/L)

}
is not equal to zero. Since (L, v) is dense in

(
L̃, ṽL

)
, we can find an element β ∈ L with

v(β −α) > ω(α). Since (L, vL) is a Henselian valued field ((F, v) is strongly Henselian), we can
apply Krasner’s Lemma (see [7], [9], or [2]) and conclude that L[α] ⊂ L[β] = L, i.e. α ∈ L, a

contradiction. Thus L = L̃, i.e. L is closed in (F, v).

We give in the following a generalization of a result of Schilling (see [10] and also [6]).

Proposition 1. Let (F, v) be a complete nonalgebraically valued field of rank 1 and let K be an
arbitrary subfield of F. Then any automorphism σ ∈ Aut(F/K) is continuous with respect to v.
Moreover, if vK , the restriction of v to K is not trivial, then σ is an isometry, i.e. v ◦ σ = v.

Proof: The new valuation w = v ◦ σ on F makes F also complete with respect to it (see the
proof of Theorem 1). Since (F, v) and (F,w) are complete valued fields and F is not algebraically
closed, the F. K. Schmidt theorem on multivalued fields (see [7], or [2]) says that w and v are
equivalent as valuations, i.e. w = sv for a positive real number s, i.e. v ◦ σ = sv. Thus σ is
continuous relative to v. Moreover, if there exists z ∈ K with v(z) 6= 0, then s = 1 and so, σ is
an isometry with respect to v.

The following example says that sometimes in a strongly Henselian field (F, v) one can find
infinite algebraic coextensions L which are not closed.
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Example 3. Let again (F, v) be the Laurent power series field (K((X)), ord) from example 1,
where we assume that the characteristic of K is equal to zero. Let T be a transcendental basis in
F = K((X)) over K, which contains the variable X. Then, for L = K(T ), the rational function
field in variables elements of T, the extension F/L is algebraic and L is dense in F (because

X ∈ T ). Now, (1 + X)
1
2 ∈ F and (1 + X)

1
2 /∈ L (otherwise, (1 + X)

1
2 ∈ K(X)(T \ {X}) = L

and it is algebraic over K(X)!). Thus we see that (F, v) is an example of a strongly Henselian
field (see Theorem 1) with F/L algebraic and L is not closed in F. Hence [F : L] = ∞ (see
corollary 1).

Theorem 2 is a characterization of a class of closed subfields (L, vL) in a large class of valued
fields (F, v). Here is the proof of it (it was stated in Section 1).

Proof of Theorem 2. i)⇒ ii) directly comes from the proof of Theorem 1.
For ii) ⇒ iii) we can easily use the same idea as in the proof of Corollary 1, because

Krasner’s Lemma also works for Henselian fields, not only for the complete ones (see [1] and
[9] for even a more general frame).

iii) ⇒ i) Since (F, v) is complete and (L, vL) is closed in (F, v), we see that (L, vL) is also
complete. Now, both (F, v) and (L, vL) are discrete, complete and equal characteristic valued
fields, thus F and L are formal power series over their residual fields (see [8]). Hence L =

L̂((f)) ⊂ F̂ ((π)) = F. Since [F̂ : L̂] <∞, it remains to prove that F̂ ((f)) ⊂ F̂ ((π)) is finite. To
do this, let us firstly observe that for any series g = πa(a0+a1π+ ...), a0 6= 0, a ∈ N, there exists

a unique series h0 ∈ F̂ [[π]] and a unique polynomial P0(π) = b0 + b1π + ...+ bn−1π
n−1, where

n = ord(f), such that g = fh0+P0 (the division algorithm in F̂ [[π]]). We repeat this procedure

for h instead of g and obtain: g = P0 + P1f + h1f
2, h1 ∈ F̂ [[π]] and deg h0 = deg h1 ≤ n− 1.

Thus
g = P0 + P1f + ...+ Pkf

k + ...

and since ord(Pkf
k) ≥ kn→∞, whenever n→∞, g is a well defined series in the variable f,

with coefficients in the vector space of all polynomials of degree at most n − 1 over F̂ . Thus
F = F̂ ((π)) is a vector space of dimension n over F̂ ((f)) and the proof of the theorem is now
complete.

Remark 2. Theorem 2 can be viewed as a generalization of the main result of [6]. Namely, if

F̂ = L̂, if F̂ contains all the roots of unity and if the characteristic p of F does not divide any
t = [T : L] for L ⊂ T ⊂ F, T finite over L, then i), ii), iii) are also equivalent to the following
statement: ”F/L is a Galois finite extension”. To see this, it is sufficient to change the prime
element π of F with another one of the form n

√
fu, where u is a unit in L, etc. (see [6] for

details).
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Academiei Române, Bucharest, 2011.

[3] N. Jacobson, Lectures in Abstract Algebra, Vol. III, Theory of fields and Galois theory,
D. van Nostrand company, Inc; 1964.

[4] M. Nagata, Field Theory, Marcel Dekker, Inc; 1977.

[5] J. Neukirch, Algebraic number theory, translated from the 1992 German original and
with a note by Norbert Schappacher, Grundlehren der Mathematischen Wissenschaften,
332, Springer, Berlin, 1999.

[6] S. A. Popescu, N. Popescu, A. Naseem, A Galois theory for the field extension
K((X))/K, Glasgow Math. J. 52 (2010) 1-5.

[7] P.Ribenboim, The Theory of Classical Valuations, Springer Verlag, 1999.

[8] J. P. Serre, Local Fields, Translated from the French by Marvin Jay Greenberg, Springer
Verlag, 1979.

[9] S. A. Popescu, Absorbant property, Krasner type lemmas and spectral norms for a class
of valued fields, Proc. J. Acad. 89, Ser. A, no. 10 (2013) 138-143.

[10] O. F. G. Schilling, Automorphism of the fields of power series, Bull. Amer. Math. Soc.,
vol. 50, no. 12 (1944) 892-901.

Received: 25.03.2014

Revised: 15.05.2014

Accepted: 22.06.2014

Technical University of Civil Engineering Bucharest,
Department of Mathematics and Computer Science,

B-ul Lacul Tei 122, sector 2, Bucharest 020396, OP 38,
Bucharest, Romania

E-mail: angel.popescu@gmail.com


