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Abstract

In this paper, a new heuristic symbolic-numerical method to derive exact form of the
generators of the ideals in minimal prime decomposition of the radical of an ideal is pre-
sented. We set up the method without monodromy grouping. Application of the method
on cyclic 9-roots polynomial system is given. A proof of the primality of the ideals is
presented. Among many proved results, we also consider the residue class field of a typ-
ical prime ideal as the collection of well defined quotient of the elements in the direct

sum

9⊕
i=7

xiC[xi]⊕ ηC[x7, x8]⊕ δC[x8, x9]⊕ σC[x7, x9]⊕ C, where η = x7x8, δ = x8x9 and

σ = x7x9.
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1 Introduction

Suppose n ≥ 3 is an integer and R = C[x1, · · · , xn] be the ring of polynomials in n variables
x1, · · · , xn with complex coefficients. For a set F ⊂ R, we denote by I(F ), the ideal generated
by the set F . In this paper, we fix a lexicographic (lex) monomial order >

lex
or <

lex
with

x1 >lex
· · · >

lex
xn. Given a polynomial system

P (x) = (p1(x), · · · , pn(x)) = 0 x = (x1, · · · , xn) ∈ Cn (1)

where pi ∈ C[x1, · · · , xn], i = 1, · · · , n. It is well-known (see [8] page 5) that, the affine
algebraic variety VP of the solution set of (1), which is defined by

VP = V (P ) = P−1(0) = {(x1, · · · , xn) ∈ Cn|P (x1, · · · , xn) = 0}

has a unique decomposition VP = Vd0 ∪ · · · ∪ Vdδ into algebraic varieties Vdj , Vdi 6⊂ Vdj , i 6= j
and dim(Vdj ) = dj , j = 0, · · · , δ where 0 ≤ δ ≤ n − 1. Note that for j = 0, · · · , δ, Vdj is the
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union of dj-dimensional components Vdj = V 1
dj
∪ · · · ∪ V ijdj , where V kdj 6⊂

⋃
l 6=k

V ldj , k = 1, · · · , ij .

Therefore, we may write

VP =

δ⋃
j=0

Vdj =

δ⋃
j=0

V 1
dj ∪ · · · ∪ V

ij
dj
, 0 ≤ δ ≤ n− 1, ij ≥ 1, (2)

where V kdj ’s are called irreducible components of VP . (2) is called irreducible decomposition of

the variety VP . In the field of numerical analysis of algebraic (polynomial) systems, we input
(1) into a solver and we present a collection of points in (Q[i])n within precision of a machine
(see [12]) as a solution set of (1). Unlike numerical solvers, the symbolic methods which are
mostly based on Gröbner basis give rise to exact solutions. In terms of the size of the systems,
symbolic methods are less efficient than numerical solvers. The exact identification of VP is
the main advantages of symbolic methods. However, the computation time and the amount
of memory needed is much bigger than numerical approach. As a comparison between these
two approaches, the results in this paper and the one given in [7] are similar. But the time
of calculation and the size of memory needed in [7] is much bigger than our approach in this
paper.

For 0 ≤ i ≤ n and x ∈ Cn, by solving the overdetermined system {P (x) = 0,Li(x) = 0} with
i cutting hyperplanes in Cn with random coefficients, we may get approximate generic points,
known as witness points on irreducible components of VP . The totality of witness points is
called witness point superset. See [12] for the term. Then we consider approximate version of
(2) as numerical irreducible decomposition of VP and we write

WP =

δ⋃
j=0

(
W 1
dj ∪ · · · ∪W

ij
dj

)
, 0 ≤ δ ≤ n− 1, ij ≥ 1. (3)

The largest positive integer δ for which the solution set of the above overdetermined system
is non-empty is called the top dimension of VP . Practically, we solve many overdetermined
systems from i = n− 1 to lower values, until the first non-empty solution set achieved and we
set the top dimension of VP as δ = i. This method seems efficient and doable for small systems.
But for the large systems, this is still a very challenging problem. See [11] for more details.
For the algebraic version of the above discussion (see [9] section 2.4) that corresponds to (2), we
consider the following. Any proper ideal a (a ( R) is an (irredundant) intersection of a finite
number of primary ideals as

a = q1 ∩ · · · ∩ qr, (4)

where the qi’s are primary ideals and p1 =
√
q1, · · · , pr =

√
qr are distinct associated prime

ideals. Irredundancy means, none of the qi’s contains the intersection of the others. If there is
no other prime ideal between a prime ideal p and a with p ⊃ a, except p itself, we say p is a
minimal prime ideal of a. (4) is called irredundant (reduced or minimal) primary decomposition
of a. Corresponding to (4), we may set up the following

I(V (a)) =
√
a = p1 ∩ · · · ∩ pr. (5)
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Clearly, pi’s are minimal prime ideals of a. Any other prime ideal of a is called embedded prime
ideal associated with a. Let a = I(p1, · · · , pn), then (4) expresses the minimal primary decompo-
sition of I(p1, · · · , pn). Also (5) is the minimal prime decomposition of

√
I(p1, · · · , pn) = I(VP ).

Let (x1, · · · , xn) ∈ Cn and for positive integer i, define rn(i) as the positive remainder of i
on division by n (identify rn(qn) = n for q ∈ N). In majority of the works in the literature, the
solution set of the polynomial equations h1 = 0, · · · , hn−1 = 0, hn = n given by

hi =

n∑
j=1

j+i−1∏
k=j

xrn(k); 1 ≤ i ≤ n, (6)

is called cyclic n-roots. For some history of this system see [2, 3, 11] and references therein.
Recently, an extended application of cyclic n-roots system has been analyzed in a study of
Toeplitz matrices (see [10]).
Throughout, we interchangeably use a simplified notation as Hi = hi, for i = 1, · · · , n − 1
and Hn = 1

nhn. Let ICn = I(H1, · · · , Hn) be the ideal generated by the defining polynomials
H1, · · · , Hn of cyclic n-roots. Denote by VCn , the affine algebraic variety of the solution set of
{H1 = 0, · · · , Hn = 0}. For positive integers δ, i0, i1, · · · , iδ and 0 = d0 < d1 < · · · < dδ−1 <
dδ < n− 2 suppose

I(VCn) =
√
ICn =

δ⋂
j=0

(
Cn,1dj

∩ · · · ∩ Cn,ijdj

)
, (7)

be the minimal prime decomposition of I(VCn), where dim(C
n,kj
dj

) = dj , j = 0, 1, · · · , δ;
kj = 1, · · · , ij . Since VCn ⊂ V (H1, Hn), then dδ < n− 2.

Example 1. Set n = 4 in (6). For the first time, cyclic 4-roots has been studied in [6]. Direct
expansion shows that,

H1 = (x1 + x3) + (x2 + x4),
H2 = x1x2 + x2x3 + x3x4 + x4x1 = (x1 + x3)(x2 + x4)
H3 = x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = x1x3(x2 + x4) + x2x4(x1 + x3),
H4 = x1x2x3x4 − 1 = x1x2x4(x1 + x3)− x21x2(x2 + x4) + (x1x2 + 1)(x1x2 − 1).

(8)

Suppose

C
4,1

1 = I(x1 + x3, x2 + x4, x1x2 + 1),

C
4,2

1 = I(x1 + x3, x2 + x4, x1x2 − 1).

First, we verify that V (IC4) = V (C
4,1

1 ) ∪ V (C
4,2

1 ). Using (8), if we set H2 = 0, then (x1 +
x3)(x2 + x4) = 0 and in turn x1 + x3 = 0 or x2 + x4 = 0. This fact with H1 = H3 = H4 = 0

imply V (IC4) ⊂ V (C
4,1

1 ) ∪ V (C
4,2

1 ). For the other inclusion, notice that according to (8), by

vanishing the set of generators of C
4,1

1 or C
4,2

1 , we get H1 = H2 = H3 = H4 = 0. In order to

prove that C
4,1

1 and C
4,2

1 are prime ideals of dimension one in C[x1, x2, x3, x4], we may present
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an argument quite similar to the one given for Lemma 3. Since C
4,1

1 and C
4,2

1 are prime and
hence radical, we write

C
4,1

1 ∩ C
4,2

1 =
√
C

4,1

1 ∩
√
C

4,2

1 =
√
C

4,1

1 ∩ C
4,2

1 . (9)

On the other hand, (8) shows that IC4 ⊂ C
4,1

1 ∩ C
4,2

1 . Thus, by (9),√
IC4 ⊂

√
C

4,1

1 ∩ C
4,2

1 = C
4,1

1 ∩ C
4,2

1 . (10)

For the other side, we write C
4,1

1 =
√
C

4,1

1 = I(V (C
4,1

1 )), C
4,2

1 =
√
C

4,2

1 = I(V (C
4,2

1 )) and we

have (by Nullstellensatz)

C
4,1

1 ∩ C
4,2

1 ⊂ I(V (C
4,1

1 )) ∩ I(V (C
4,2

1 ))

= I(V (C
4,1

1 ) ∪ V (C
4,2

1 ))
= I(V (IC4)) =

√
IC4.

(11)

Two relationships (10) and (11) imply that
√
IC4 = C

4,1

1 ∩ C4,2

1 , which is the minimal prime
decomposition of

√
IC4 = I(VC4

). As a result, I(VC4
) does not have any prime component on

dimension zero. So, we may state that for I(VC4
) the data in (7) are δ = 1, i1 = 1, d1 = 1 and

i0 = 0.

In section 2, we discuss our new method in this paper and its distinction with a previously
documented method in [11]. After presentation of the main algorithm 1 as a major difference
between the method in this paper and the one given in [11], we give a typical numerical data.
At last we discuss some facts about scheme of cyclic 9-roots in section 3 which includes proofs
of primality and dimensionality of the calculated ideals in (13). Last section describes an open
problem.

2 A heuristic Numerical-Symbolic algorithm

In many aspects the method in this paper is similar to the one given in [11]. A diagram of the
method in this paper is depicted below.

1: Input: (i) P (x) = 0 (ii) top dim. δ
of VP

2: Solve embedded systems. Find generic
points on VP and call it ŴP .

3: After removal of the Junk points, from
ŴP , find WP .

4: For w ∈ WP , find the generators of

I(V
kj
dj

) with w ∈W kj
dj

.

5: Filter out zeros of the generators from

W
kj
dj

.

6: Proof of primality and dimesionality

for each I(V
kj
dj

). See Remark 1.



Scheme of cyclic 9-roots 203

In section 1, we discussed how to find the top dimension δ of VP . Here, we consider the
embedded system number (8) in [11]. It is the main part of cascade of homotopies. Then
we follow the same procedure as in [11]. Since numerical analysis of monodromy is not well
theorized, therefore the need for an algorithm that avoids the monodromy step is evident.
So, as a major exception in our approach in this paper with the one given in [11] is that
we do not use monodromy grouping. See [12] for more details and the origin of the
theory. Here, we actually use three major softwares. They are all at the research level and
written in FORTRAN90. The author’s developed numerical software HHom4PsA which is an
improved version of Hom4PS-2.0 (see [11] for details about the added components) and works
for identification of higher dimensional components and is equipped with correction of algebraic
numbers and is powered by JunkRemove (another package to remove extra generic points on a
specific dimension).

Basically, in [11] two algorithms have been presented. In section 2.1 in [11], we described
the role of monodromy grouping. This part constitutes step 2 in the main algorithm in [11] (i.e;
algorithm 2 in [11]). To replace this part with the new idea, we propose the following algorithm
that shows a major improvement in the process. We also consider the theory of deficiency
pattern of rank deficient matrices proposed and developed in [11]. This theory is the core part
of the procedure to find the exact form of the generators. In the following algorithm 1, we
denote it by Exact-generator. Also in order to calculate more sample points on an numerical
irreducible component we use the same routine Sample as in [11].

Algorithm 1. Main Generator

Input: A set WP =
⋃δ
j=0Wdj =

⋃δ
j=0(W 1

dj
∪ · · · ∪W ij

dj
)

of pure generic (witness) points on VP
Output: The exact generators for ideals I(V kdj )

where j = 1, · · · , δ and k = 1, · · · , ij .
Step 0: (Notation) For w ∈W, denote by Vw, an irreducible

component of VP with w ∈ Vw.
Step 1: For j from 1 to δ

Step 1.1: Set ij = 0.
REPEAT

Step 1.2: Pick w ∈Wdj . Update Wdj = Wdj − {w}.
Step 1.3: Call Sample to generate enough sample

points on Vw. We collect them in the set C.
Step 1.4: Call Exact-generator to find the generators

of I(Vw). Denote the generators by qw1 , · · · , qwr .
Step 1.5: Use the polynomials qw1 , · · · , qwr to filter out

all w0 ∈W such that w0 ∈ Vw and update Wdj .

Step 1.6: Set ij = ij + 1 and I(V
ij
dj

) = I(Vw).
UNTIL Wdj = ∅.

End For Loopj

Remark 1. The calculation of linear generators is via deficiency pattern of rank deficient
generic matrices. Actually the coefficients are approximate zero vectors of the generic matrices.
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Therefore, if we approximate the coefficients to the nearest algebraic number (of a specific
degree, see below), then we may consider approximate linear generators as exact ones of the
corresponding ideal.

Actually, in algorithm 1, the outputs have already been identified by I(V kdj ); j = 1, · · · , δ; k =
1, · · · , ij . More precisely, we start off from a chosen witness point w in WP . This w is an
approximation of a generic point v on some V kdj for an appropriate j and k. Using the chosen

w, we find the exact generators of an ideal Ĩkdj . These generators would eliminate some other

w’s in WP . The number of the eliminated w’s is equal to the degree of Ĩkdj . After all w’s in WP

are used, we reach the following set of ideals

Ĩkdj ; j = 1, · · · , δ; k = 1, · · · , ij ,

with calculated exact generators. The theoretical analysis must be done to prove that they are
prime ideals and dim(Ĩkdj ) = dj for a given j and k. For dimension zero, suppose we have i0

isolated roots (zk1 , · · · , zkn) ∈ Cn; k = 1, · · · , i0. Equivalently, we have i0 prime ideals

Ĩkd0 = Ĩk0 = I(x1 − zk1 , · · · , xn − zkn) ∈ Cn; k = 1, · · · , i0.

Our goal is to conclude that

I(V kdj ) = Ĩkdj ; j = 0, · · · , δ; k = 1, · · · , ij ,

so that we can write

I(VP ) =

δ⋂
j=0

(I(V 1
dj ) ∩ · · · ∩ I(V

ij
dj

)).

To this end, suppose we prove that

I(p1, · · · , pn) ⊂ J =

δ⋂
j=0

(Ĩ1dj ∩ · · · ∩ Ĩ
ij
dj

). (12)

Then
√
I(p1, · · · , pn) ⊂

√
J = J . This implies I(VP ) ⊂ J and in turn V (J) ⊂ VP . As we

discussed above, J and V (J) have been constructed using witness points on WP and these
witness points have their own corresponding exact generic points on VP . In construction of J ,
we used all witness points in WP . Therefore, in exact calculation, we heuristically imply that,
there is no point left in VP − V (J). As a final step, we make a heuristic conclusion

√
I(p1, · · · , pn) = I(VP ) =

δ⋂
j=0

(I(V 1
dj ) ∩ · · · ∩ I(V

ij
dj

)).

Verification of the inclusion in (12), depends on the system involved. We refer the reader to
the appendix for the expressions that result (12) for cyclic 9-roots.

Let ω = 1
2 − i

√
3
2 . In what follows we give some data of a typical application of the method

presented in this paper for cyclic 9-roots. After the first work of the author on this issue in
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[11], this example shows another successful application of our method. With δ = 2 in (7), we
consider the following generic cutting hyperplanes

L1(x1, · · · , x9) = (0.09 + 0.313i)x1 + (0.093 + 0.49i)x2 + · · · ,
L2(x1, · · · , x9) = (0.032 + 0.29i)x1 + (0.056 + 0.22i)x2 + · · · ,

and the following set of random coefficients

λ1,1 = 0.929 + 0.31i,
λ1,2 = 0.104 + 0.02i.

...
...

...

With the above setting, a calculated set of generic (witness) points Ŵ2 = {w1, · · · , w18} ⊂
C11 consist of 18 points on dimension 2 or higher is given. On this dimension the output of
JunkRemove is J2 = ∅. So the 18 points are pure generic points. As an example, w1 is given
below

w1 = (−0.539 + 1.477i, 1.586− 0.0308i,−0.130− 0.378i,−1.01− 1.206i,
−0.767 + 1.389i, 0.393 + 0.077i, 1.548− 0.27i,−0.819− 1.358i,
−0.263 + 0.302i, 0 + 0i, 0 + 0i).

The next step is to cut the original system (6) by one hyperplane. No generic point found
on dimension one which means W1 = ∅. And finally, the set of numerical solutions of (6)
on dimension zero (certified by JunkRemove) consist of 6642 isolated solutions. We enter
algorithm 1 with W = W0 ∪W2. Now the loop in algorithm 1 just applies on W2 and will
result the exact form of the generators of the ideals given in equations (13). So we enter the
For Loop in algorithm 1 by picking up an element of W2, say w1 (Step 1.2). Out of this
choice the routine Sample generates generic points on Vw1 (see Step 1.3 in algorithm 1 for the
notation). In algorithm 1, we (via Exact-generator) calculate the generators of I1 = I(Vw1)
as x1 + ωx7, x2 + ωx8, x3 + ωx9, · · · and we use these polynomials to filter all generic points in
W2 that satisfy them. Only three generic points satisfy and we continue the process with the
rest of 15 points in W2, until we find all of the ideals in (13). A typical approximate coefficients
of linear generators follows:

a1 = (1.00000000, 0.00000000) → x1
a7 = (0.50000000,−0.86602540) → ωx7
a2 = (1.00000000, 0.00000000) → x2
a8 = (0.50000000,−0.86602540) → ωx8
a3 = (1.00000000, 0.00000000) → x3
a9 = (0.50000000,−0.86602540) → ωx9.

We justify our approximation of (0.50000000,−0.86602540) ≈ ω based on Backelin’s result in
[1] which states infinite solution for cyclic n-roots when n has a square prime factor. In our
case of cyclic 9-roots, the existence of an infinite solution set is established with coefficients of
the linear forms as primitive 3rd root of unity. The following set of six ideals are the prime
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ideals in the minimal prime decomposition of I(VC9
) =
√
IC9,

C9,1
2 = I(x1 + ω̄x7, x1 + ωx4, x2 + ω̄x8, x2 + ωx5, x3 + ω̄x9, x3 + ωx6, x1x2x3 + ω)

C9,2
2 = I(x1 + ω̄x7, x1 + ωx4, x2 + ω̄x8, x2 + ωx5, x3 + ω̄x9, x3 + ωx6, x1x2x3 + ω̄)

C9,3
2 = I(x1 + ω̄x7, x1 + ωx4, x2 + ω̄x8, x2 + ωx5, x3 + ω̄x9, x3 + ωx6, x1x2x3 − 1)

C9,4
2 = I(x1 + ωx7, x1 + ω̄x4, x2 + ωx8, x2 + ω̄x5, x3 + ωx9, x3 + ω̄x6, x1x2x3 + ω)

C9,5
2 = I(x1 + ωx7, x1 + ω̄x4, x2 + ωx8, x2 + ω̄x5, x3 + ωx9, x3 + ω̄x6, x1x2x3 + ω̄)

C9,6
2 = I(x1 + ωx7, x1 + ω̄x4, x2 + ωx8, x2 + ω̄x5, x3 + ωx9, x3 + ω̄x6, x1x2x3 − 1).

(13)

The symbolic method used in [7] took 15 days and the amount of memory needed was 1.7
gigabyte. In comparison with the method in [7], our method just took less than 3 hours and the
amount of memory needed was negligible. The expressions given in the appendix certify that
IC9 ⊂ C9,i

2 ; i = 1, · · · , 6. In Lemma 3, we prove that C9,i
2 ’s are all prime ideals. The number of

isolated roots of cyclic 9-roots has been counted to 6642 in C9. We summarize the data in (7)
for cyclic 9-roots as δ = 2, i2 = 6, i1 = 0 and i0 = 6642.

3 Results on scheme of Cyclic 9-roots

Consider a typical ideal in the above prime decomposition of cyclic 9-roots C9,1
2 . With respect

to lex-order x1 >lex
· · · >

lex
x9, the reduced Gröbner basis of C9,1

2 is p = I(g1 = x1 + ωx7, g2 =
x2 + ωx8, g3 = x3 + ωx9, g4 = x4 + ω̄x7, g5 = x5 + ω̄x8, g6 = x6 + ω̄x9, h = x7x8x9 + ω). Let
R = C[x1, · · · , x9]. To the rest of the discussion, we consider the following monomials: η =

x7x8, δ = x8x9, σ = x7x9. Also, for f ∈ R, denote by f
p

the remainder of f on division by p.

Also define Rem(p) = {fp : f ∈ A}.

Lemma 1. Rem(p) =

9⊕
i=7

xiC[xi]⊕ ηC[x7, x8]⊕ δC[x8, x9]⊕ σC[x7, x9]⊕ C.

Proof: Since p is a reduced Gröbner basis, then for f ∈ A, none of the monomials in supp(f
p
)

is divisible by any of the initial monomials in
lex

(gi) = xi (i = 1, · · · , 6) or in
lex

(h) = x7x8x9.

Therefore, the form of monomials in supp(f
p
) are as follows:

1, xi, x
2
i , · · · for i = 7, 8, 9

xk7x
l
8, x

k
7x

l
9, x

k
8x

l
9 for integers k, l > 0,

and these result the claim.

For the primality of p, we mimic the proof given in proposition 6 page 197 of [4], with
different exposition.

Lemma 2. Let Z = V (rs) ⊂ C2. Consider the rational parametrization of V (p) as F : C2\Z →
C9 with F (r, s) = ( ωrs ,−r,−s,

1
rs ,−ω̄r,−ω̄s,

−ω
rs , r, s). Then

p = {φ ∈ R : φ ◦ F = 0}.
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Proof: Simple calculations show that gi ◦ F = 0 for i = 1, · · · , 6 and h ◦ F = 0. Therefore,

p ⊂ {φ ∈ R : φ ◦ F = 0}. Let φ ∈ R with φ ◦ F = 0. Write φ = φp + φ
p
, where φp ∈ p and

φ
p ∈ Rem(p). Now 0 = φ ◦F = φp ◦F + φ

p ◦F = φ
p ◦F. Since φ̂(r, s) = φ

p
(F (r, s)) = 0 for all

(r, s) ∈ C2\Z, then we may take an integer N large enough such that (rs)N φ̂ (this clears the
denominators) can be considered as a polynomial that vanishes on C (an infinite ring). Thus

φ̂ = 0 which in turn implies φ
p

= 0. The result follows.

Lemma 3. p is a prime ideal in R of dimension 2.

Proof: By Lemma 2, p = {φ ∈ R : φ ◦ F = 0}. Let φ1, φ2 ∈ R with φ1 · φ2 ∈ p, deg φ1 = M
and deg φ2 = N . Then deg (φ1 · φ2) = M +N and (rs)M+N (φ1 ◦F ) · (φ2 ◦F ) = 0. Notice that
this implies the product of polynomials (rs)M (φ1 ◦ F ) and (rs)N (φ2 ◦ F ) is zero in R. Since R
is an integral domain (if the ring K is an integral domain then so is K[x1, · · · , xn]), then one of
them must be zero. We deduce that, φ1 ∈ p or φ2 ∈ p. The above parametrization shows that
V (p) is parametrized by two parameters r and s and hence dim(V ) = dim(p) = 2.

The following is a detailed form of the facts given in page 35 of [5].

Lemma 4. For f, g ∈ R, we have f
p · gp

p

= f · gp.

Proof: f, g ∈ R can be written as f = fp+f
p

and g = gp+gp, where fp, gp ∈ p and f
p

and gp are

the remainders. Since fp · gp, fp
p · gp, gpp · fp ∈ p, we have fp · gp

p
= fp

p · gp
p

= gp
p · fp

p
= 0.

Thus,

f · gp = fp · gp + fp
p · gp + gp

p · fp + fp
p · gpp

p

= fp · gp
p

+ fp
p · gp

p

+ gp
p · fp

p
+ fp

p · gpp
p

= fp
p · gpp

p

.

The algebraic structure on R/p (that makes it a C-algebra) is given by the operations: f, g ∈
R; [f ] + [g] = f

p
+ gp and [f ] · [g] = f

p · gp
p

. We state the following facts without proof. The
proofs are straightforward verifications.

Lemma 5. (Rem(p),⊕,�) is a C-algebra with the following operations:

f, g ∈ R; f
p ⊕ gp = f + g

p
and f

p � gp = f
p · gp

p

.

Corollary 1. The following are C-subalgebra of Rem(p) :

Ri = xiC[xi], i = 7, 8, 9; Rη = ηC[x7, x8];Rδ = δC[x8, x9] and Rσ = σC[x7, x9].

Lemma 6. R/p is isomorphic to Rem(p) as C-algebras.
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The fact that (R\p)/p is a multiplicative subset of R/p is a clear one and we may well consider
the following:

Lemma 7. We have ((R\p)/p)−1(R/p) =
{
f
g : f, g ∈ Rem(p); g 6= 0

}
.

Proof: In light of previous lemmas, we may choose the elements of R/p from Rem(p). The
elements of ((R\p)/p) correspond to nonzero elements of Rem(p). We abuse notation and
denote the equivalence classes [f/g] in ((R\p)/p)−1(R/p) by f/g. The result follows.

4 Conclusion and future of the research

The future of the research tends to realizations of many facts in pure algebraic geometry. Among
these problems we pose the following question:

According to Theorem 3.2 (d), page 17 in [8], the rational function field on V (p) (K(V (p)))
is isomorphic to the field of fractions of A/p which is given by the Lemma 7. Since K(V (p))
is defined by the set of all equivalence classes of regular functions defined on a neighborhood
of V (p), we may well consider the restriction K(V (p))|V (p) of all functions that are defined on
the points on the variety V (p). The study of K(V (p))|V (p) is an interesting problem.

Remark 2. An abstract of this paper has been presented at AMS Joint Mathematical Meet-
ing (JMM), Baltimore MD, January 15-18 2014, AMS contributed paper session in Algebraic
Geometry.

5 Appendix

We choose C9,1
2 and we intend to present an expression for each H1, · · · , H9 in terms of the

generators of C9,1
2 . For convenience we consider the lexicographic monomial order with

x4 >lex
x5 >lex

x6 >lex
x7 >lex

x8 >lex
x9 >lex

x1 >lex
x2 >lex

x3.

With this order, G = C9,1
2 is the reduced Gröbner basis. Suppose

g1 = x1 + ω̄x7, g2 = x1 + ωx4, g3 = x2 + ω̄x8, g4 = x2 + ωx5,
g5 = x3 + ω̄x9, g6 = x3 + ωx6, h = x1x2x3 + ω̄.

So we write
H1 = ω(g1 + g3 + g5) + ω̄(g2 + g4 + g6)

= x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9.

We list two other expressions of the defining polynomials of cyclic 9-roots

H2 = ω(x6 + x8)g1 + ω̄(x3 + x5)g2 + ω̄(x1 − ω̄x9)g3 + ω(x1 − ωx6)g4
+ω(x1 − ωx2)g5 + (ωx2 − x1)g6

= x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7 + x7x8 + x8x9 + x9x1,

H3 = ω(x5x6 + x6x8 + x8x9)g1 + ω̄(x2x3 + x3x5 + x5x6)g2
+(x9 + ω̄x6)x1g3 + ω(x3 + ωx6)x1g4,

= x1x2x3 + x2x3x4 + x3x4x5 + x4x5x6 + x5x6x7 + x6x7x8 + x7x8x9
+x8x9x1 + x9x1x2.
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