
Bull. Math. Soc. Sci. Math. Roumanie
Tome 58(106) No. 2, 2015, 211–220

Laguerre isoparametric hypersurfaces in R5
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Abstract

Let x : M → Rn be an (n− 1)-dimensional hypersurface in Rn and B be the Laguerre
second fundamental form of the immersion x. An eigenvalue of the Laguerre second fun-
damental form is called a Laguerre principal curvature of x. An umbilic free hypersurface
x : M → Rn with non-zero principal curvatures and vanishing Laguerre form C ≡ 0
is called a Laguerre isoparametric hypersurface if the Laguerre principal curvatures of x
are constants. The aim of this article is to classify all oriented Laguerre isoparametric
hypersurfaces in R5.
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1 Introduction

Li and Wang [7] studied invariants of hypersurfaces in Euclidean space Rn under the Laguerre
transformation group. An oriented hypersurface x : M → Rn can be identified as the subman-
ifold (x, ξ) : M → URn, where ξ is the unit normal of x. Two hypersurfaces x, x∗ : M → Rn
are called Laguerre equivalent, if there is a Laguerre transformation φ : URn → URn such that
(x∗, ξ∗) = φ ◦ (x, ξ) (see [8]). In [7], Li and Wang gave a complete Laguerre invariant system
for hypersurfaces in Rn. They proved the following:

Theorem 1. Two umbilical free oriented hypersurfaces in Rn with non-zero principal curvatures
are Laguerre equivalent if and only if they have the same Laguerre metric g and Laguerre second
fundamental form B.

We notice that the Laguerre geometry of surfaces in R3 has been studied by Blaschke in [1]
and other authors in [2], [3]. From [7], we know that the Laguerre metric g of the immersion
x can be defined by g = 〈dY, dY 〉. Let {E1, E2, . . . , En−1} be an orthonormal basis for g with
dual basis {ω1, ω2, . . ., ωn−1}. The Laguerre tensor L, the Laguerre second fundamental form
B and the Laguerre form C of the immersion x are defined by

L =

n−1∑
i,j=1

Lijωi ⊗ ωj , B =

n−1∑
i,j=1

Bijωi ⊗ ωj , C =

n−1∑
i=1

Ciωi, (1.1)



212 Shichang Shu

respectively, where Lij , Bij and Ci are defined by

Lij = ρ−2
{

Hessij(log ρ)− Ẽi(log ρ)Ẽj(log ρ) +
1

2

(
|∇ log ρ|2 − 1

)
δij
}
, (1.2)

Bij = ρ−1(ri − r)δij , (1.3)

Ci = −ρ−2
{
Ẽi(r)− Ẽi(log ρ)(ri − r)

}
, (1.4)

where g =
∑
i(ri− r)2III = ρ2III, ri and r are the curvature radii and mean curvature radius

of x respectively, Hessij and ∇ are the Hessian matrix and the gradient with respect to the
third fundamental form III = dξ · dξ of x (see [7]).

If ∇B = 0, we call that x is of parallel Laguerre second fundamental form, where ∇ is
the Levi-Civita connection of the Laguerre metric g. We call an eigenvalue of the Laguerre
second fundamental form a Laguerre principal curvature, an eigenvalue of the Laguerre tensor
a Laguerre eigenvalue of x. An umbilic free hypersurface x : M → Rn with non-zero principal
curvatures and vanishing Laguerre form C ≡ 0 is called a Laguerre isoparametric hypersurface
if the Laguerre principal curvatures of x are constants. A hypersurface with vanishing Laguerre
form is called a Laguerre isotropic hypersurface, if the Laguerre eigenvalues of x are equal.

Let σ be the Laguerre embedding σ : URn1 → URn defined by σ(x, ξ) = (x′, ξ′) ∈ URn,

x = (x0, x1) ∈ Rn−1 × R, ξ = (ξ0, ξ1) ∈ Rn−1 × R and x′ =
(
−x1

ξ1
, x0 − x1

ξ1
ξ0

)
, ξ′ =

(
1
ξ1
, ξ0ξ1

)
and let τ be the Laguerre embedding τ : URn0 → URn defined by τ(x, ξ) = (x′, ξ′) ∈ URn, x =

(x1, x0, x1) ∈ R×Rn−1×R, ξ = (ξ1+1, ξ0, ξ1) ∈ R×Rn−1×R and x′ =
(
−x1

ξ1
, x0 − x1

ξ1
ξ0

)
, ξ′ =(

1 + 1
ξ1
, ξ0ξ1

)
(see [9]). Recently, Li, H. Li and Wang [8] classified the umbilic free hypersurfaces

with parallel Laguerre second fundamental form (see Theorem in [8]). Very recently, we notice
that Li and Sun [10] proved the following:

Theorem 2. Let x : M → R4 be a Laguerre isoparametric hypersurface in R4. Then x is
Laguerre equivalent to an open part of one of the following hypersurfaces:

(1) the oriented hypersurface x : Sk−1 ×H4−k → R4 given by Example 1, or
(2) the image of τ of the oriented hypersurface x : R3 → R4

0 given by Example 2.

The aim of this article is to classify all oriented Laguerre isoparametric hypersurfaces in R5.
We obtain the following:

Theorem 3 (Main Theorem). Let x : M → R5 be a Laguerre isoparametric hypersurface in
R5. Then x is Laguerre equivalent to an open part of one of the following hypersurfaces:

(1) the oriented hypersurface x : Sk−1 ×H5−k → R5 given by Example 1, or
(2) the image of τ of the oriented hypersurface x : R4 → R5

0 given by Example 2, or
(3) the image of σ of hypersurface x̃ in R5

1 with mean curvature radius r = 0 and ρ =
constant, or

(4) the image of τ of hypersurface x̃ in R5
0 with mean curvature radius r = 0 and ρ =

constant.

Remark 1. From Theorem 1, we see that the examples of case (3) and case (4) in Theorem 3
(Main Theorem) have the same Laguerre second fundamental form B with the Laguerre isopara-
metric hypersurfaces x : M → R5, thus they are also Laguerre isoparametric hypersurfaces. Li
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and Sun [10] pointed out that, like Laguerre isoparametric surfaces, the Laguerre isoparametric
hypersurfaces in R4 have parallel Laguerre second fundamental form, but for higher dimensional
hypersurfaces, the result may not hold. From the proof of our Theorem 3, we see that the La-
guerre isoparametric hypersurfaces in R5 have parallel Laguerre second fundamental form if
they are not the Laguerre isotropic hypersurfaces: case (3) and case (4) in Theorem 3. We
notice that Hu, H. Li and Wang classified the Möbius isoparametric hypersurfaces in the unit
spheres S4 and S5 (see [4] and [5]) and the first author and Su [11] classified the conformal
isoparametric spacelike hypersurfaces in conformal spaces Q4

1 and Q5
1.

2 Laguerre fundamental formulas

We recall the fundamental formulas on Laguerre geometry of hypersurfaces in Rn, for more
details, see [7]. Let x : M → Rn be an (n − 1)-dimensional umbilical free hypersurface with
vanishing Laguerre form in Rn. Defining the covariant derivative of Ci, Lij , Bij by∑

j

Ci,jωj = dCi +
∑
j

Cjωji, (2.1)

∑
k

Lij,kωk = dLij +
∑
k

Likωkj +
∑
k

Lkjωki, (2.2)∑
k

Bij,kωk = dBij +
∑
k

Bikωkj +
∑
k

Bkjωki, (2.3)

we have from [7] that

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, Rijkl = −Rjikl, (2.4)

∑
i

Bii = 0,
∑
i,j

B2
ij = 1,

∑
i

Bij,i = (n− 2)Cj , trL = − R

2(n− 2)
, (2.5)

Lij,k = Lik,j , Ci,j − Cj,i =
∑
k

(BikLkj −BjkLki), (2.6)

Bij,k −Bik,j = Cjδik − Ckδij , (2.7)

Rijkl = Ljkδil + Lilδjk − Likδjl − Ljlδik. (2.8)

Since the Laguerre form C ≡ 0, we have for all indices i, j, k

Bij,k = Bik,j ,
∑
k

BikLkj =
∑
k

BkjLki. (2.9)

Defining the second covariant derivative of Bij by∑
l

Bij,klωl = dBij,k +
∑
l

Blj,kωli +
∑
l

Bil,kωlj +
∑
l

Bij,lωlk, (2.10)
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we have the Ricci identity

Bij,kl −Bij,lk =
∑
m

BmjRmikl +
∑
m

BimRmjkl. (2.11)

3 Examples

We review some examples of hypersurfaces in Rn and calculate their Laguerre invariants, for
more details, see [8] and [9] .

Example 1. Let x : Sk−1 × Hn−k → Rn be an umbilic free hypersurface in Rn defined by
x(u, v, w) =

(
u
w (1 + w), vw

)
, where Hn−k = {(v, w) ∈ Rn−k+1

1 |v · v − w2 = −1, w > 0} denotes

the hyperbolic space embedded in the Minkowski space Rn−k+1
1 . From [8], we know that x has two

distinct Laguerre principal curvatures B1 = −
√

n−k
(k−1)(n−1) , B2 =

√
k−1

(n−k)(n−1) , the Laguerre

form is vanishing and the Laguerre second fundamental form of x is parallel.

Example 2. For any positive integers m1, . . . ,ms with m1 + · · ·+ms = n−1 and any non-zero
constants λ1, . . . , λs, we define x : Rn−1 → Rn0 to be a spacelike oriented hypersurface in Rn0
given by

x =
{λ1|u1|2 + · · ·+ λs|us|2

2
, u1, u2, . . . , us,

λ1|u1|2 + · · ·+ λs|us|2

2

}
,

where (u1, . . . , us) ∈ Rm1 × · · · ×Rms = Rn−1 and |ui|2 = ui · ui, i = 1, . . . , s. Then τ ◦ (x, ξ) =
(x′, ξ′) : Rn−1 → URn, and we obtain the hypersurfaces x′ : Rn−1 → Rn. From [8], we know
that x has s(s ≥ 3) distinct Laguerre principal curvatures Bi = ri−r√∑

i(ri−r)2
, 1 ≤ i ≤ s, where

ri = 1
λi

, r = λ1r1+λ2r2+···+λsrs
n−1 and λi 6= 0 is the constant principal curvature corresponding to

ei. Also from [8], we know that the Laguerre form is vanishing, Lij = 0 for 1 ≤ i, j ≤ n − 1
and the Laguerre second fundamental form of x is parallel.

Example 3. Let y = (v, w) : Mn−m−1 → Rn−m1 be an umbilic free space-like hypersurface with
non-zero principal curvatures in the semi-Euclidean space Rn−m1 and ξ = (ξ0, ξ1) : Mn−m−1 →
Rn−m1 be its unit normal field, where v, ξ0 ∈ Rn−m−1, w, ξ1 ∈ R and ξ0 · ξ0 − ξ21 = −1. Let
f : Sm → Rm+1 be the canonical embedding. Defining hypersurface x : Sm ×Mn−m−1 → Rn

by x =
(
− w
ξ1
f, v − w

ξ1
ξ0

)
, from [9], by a direct calculation, we know that the Laguerre form is

vanishing, x has distinct constant Laguerre principal curvatures

Bi =
H1

(n− 1)
√
H2 − H2

1

n−1

, 1 ≤ i ≤ m,

Bi =
1√

H2 − H2
1

n−1

( H1

n− 1
− 1

ki

)
, m+ 1 ≤ i ≤ n− 1,

ki 6= 0 are the constant principal curvatures of y and the Laguerre second fundamental form of
x is not parallel.
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4 Proof of Theorem 3 (Main Theorem)

Proof: From (2.5), we know that the number γ of distinct Laguerre principal curvatures
can only take the values γ = 2, 3, 4. From (2.9), we can choose the local orthonormal basis
E1, E2, E3, E4 to diagonalize the matrix (Bij) and (Aij), that is, Bij = Biδij and Lij = Liδij .

Let B1, B2, B3, B4 be the constant Laguerre principal curvatures of x. From (2.3), we have∑
k

Bij,kωk = (Bi −Bj)ωij . (4.1)

We consider three cases:
(1) If γ = 2, that is, x has two distinct constant Laguerre principal curvatures B1 and B2

with multiplicities m1 and m2. From (4.1), we have Bij,k = (Bi − Bj)Γjik, where Γjik is the

Levi-Civita connection for the Laguerre metric g given by ωij =
∑
k

Γjikωk, Γjik = −Γijk. Thus

Bij,k = 0, if 1 ≤ i, j ≤ m1 or m1 + 1 ≤ i, j ≤ m1 +m2 = 4. From the symmetry of Bij,k, we see
that Bij,k = 0 for all i, j, k, that is, x has parallel Laguerre second fundamental form. By the
Theorem in [8], Example 1 and Example 2, we know that Theorem 3 (Main Theorem) is true.

(2) If γ = 3, when the Laguerre second fundamental form is parallel, from the Theorem in
[8], Example 1 and Example 2, we know that Theorem 3 (Main Theorem) is true.

When the Laguerre second fundamental form is not parallel, we can prove that this case
does not occur. In fact, without loss of generality, we may assume that B1 6= B2 6= B3 = B4.
From (4.1), we have

Bii,k = 0, B34,k = 0, for all i, k, (4.2)

ωij =
∑
k

Bij,k
Bi −Bj

ωk, for Bi 6= Bj . (4.3)

From (4.2), (4.3) and (2.10), we have∑
l

B13,4lωl = B12,4ω23 +B12,3ω24 =
2B12,3B12,4

B2 −B3
ω1, (4.4)

∑
l

B11,3lωl = 2B12,3ω21 =
2B2

12,3

B2 −B1
ω3 +

2B12,3B12,4

B2 −B1
ω4. (4.5)

Comparing two sides of (4.4) and (4.5), we have

B13,41 =
2B12,3B12,4

B2 −B3
, B13,42 = B13,43 = B13,44 = 0, (4.6)

B11,33 =
2B2

12,3

B2 −B1
, B11,34 =

2B12,3B12,4

B2 −B1
, B11,32 = 0. (4.7)

From (2.11), we have Bij,kl − Bij,lk = (Bi − Bj)Rijkl. From (2.8), we know that if three of
{i, j, k, l} are either the same or distinct, then Rijkl = 0. Thus, if three of {i, j, k, l} are either
the same or distinct, then

Bij,kl = Bij,lk. (4.8)
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From (4.8), (2.9), (4.6) and (4.7), we have B12,3B12,4 = 0. Since the Laguerre second fun-
damental form is not parallel, without loss of generality, we may assume that B12,3 6= 0 and
B12,4 = 0. We may also prove that B12,3 is constant. In fact, from (2.10), (4.2) and (4.3), we
have ∑

k

B12,3kωk = dB12,3, (4.9)

∑
k

Bii,jkωk = 2
∑
l 6=i,j

Bli,jωli = 2
∑
k

∑
l 6=i,j

Bli,jBli,k
Bl −Bi

ωk, for Bl 6= Bi. (4.10)

Thus

Bii,jk = 2
∑
l 6=i,j

Bli,jBli,k
Bl −Bi

, for Bl 6= Bi. (4.11)

From (4.2) and (4.11), we know that

Bii,ji = Bii,jl = 0, for distinct i, j, l. (4.12)

From (4.12), (4.8) and (2.9), we have

B12,31 = B11,23 = 0, B12,32 = B22,13 = 0, B12,33 = B33,12 = 0. (4.13)

On the other hand, from (4.2), (4.3) and B12,4 = 0, we have
∑
k

B34,1kωk = B12,3ω24 =∑
k

B12,3B24,k

B2−B4
ωk. Thus B34,1k =

B12,3B24,k

B2−B4
and we have B34,12 = 0. From (4.8) and (2.9),

we have
B12,34 = B34,12 = 0. (4.14)

From (4.9), (4.13) and (4.14), we see that dB12,3 = 0. Therefore, we know that B12,3 is constant.
From (4.2) and (4.3), we have

ω12 =
B12,3

B1 −B2
ω3, ω13 =

B12,3

B1 −B3
ω2, ω23 =

B12,3

B2 −B3
ω1, ω14 = ω24 = 0. (4.15)

From (4.15), (2.4), and by a simple calculation, we have

1

2

∑
k,l

R12klωk ∧ ωl =
2B2

12,3

(B1 −B3)(B2 −B3)
ω1 ∧ ω2 +

B12,3

B1 −B2
ω4 ∧ ω34, (4.16)

1

2

∑
k,l

R13klωk ∧ ωl = ω12 ∧ ω23 − dω13 =
2B2

12,3

(B1 −B2)(B3 −B2)
ω1 ∧ ω3, (4.17)

1

2

∑
k,l

R14klωk ∧ ωl = ω13 ∧ ω34 =
B12,3

B1 −B3
ω2 ∧ ω34, (4.18)

1

2

∑
k,l

R23klωk ∧ ωl = ω21 ∧ ω13 − dω23 =
2B2

12,3

(B2 −B1)(B3 −B1)
ω2 ∧ ω3, (4.19)

1

2

∑
k,l

R24klωk ∧ ωl = ω23 ∧ ω34 − dω24 =
B12,3

B2 −B3
ω1 ∧ ω34. (4.20)
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Let ω34 =
∑
k

Γ3
k4ωk, Γ3

k4 = −Γ4
k3. Comparing two sides of (4.16)– (4.20), we have

R1212 =
2B2

12,3

(B1 −B3)(B2 −B3)
, R1313 =

2B2
12,3

(B1 −B2)(B3 −B2)
, (4.21)

R2323 =
2B2

12,3

(B2 −B1)(B3 −B1)
, R1414 = R2424 = 0. (4.22)

From (4.16), (4.18) and (4.20), we know that

1

2
R12k4 =

B12,3

B2 −B1
Γ3
k4,

1

2
R142k =

B12,3

B1 −B3
Γ3
k4,

1

2
R24k1 =

B12,3

B3 −B2
Γ3
k4. (4.23)

Since we know that the Bianchi identities of curvature tensors Rijkl are Rijkl+Riklj+Riljk = 0
and Rijkl = Rklij , Rijlk = Rjikl, we have R142k + R12k4 + R24k1 = 0. Thus, from (4.23), we
have Γ3

k4 = 0 for all k. Thus ω34 = 0. From (4.15) and (2.4), we have − 1
2

∑
k,l

R34klωk ∧ ωl =

dω34 −
∑
k

ω3k ∧ ωk4 = 0, this implies that

R3434 = 0. (4.24)

From (2.8), (4.21), (4.22) and (4.24), we have

− L1 − L2 =
2B2

12,3

(B1 −B3)(B2 −B3)
, −L1 − L3 =

2B2
12,3

(B1 −B2)(B3 −B2)
, (4.25)

− L2 − L3 =
2B2

12,3

(B2 −B1)(B3 −B1)
, L1 + L4 = L2 + L4 = L3 + L4 = 0, (4.26)

this implies that L1 = L2 = L3 and L1 =
2B2

12,3

(B2−B1)(B3−B1)
, L2 =

2B2
12,3

(B1−B2)(B3−B2)
, L3 =

2B2
12,3

(B1−B3)(B2−B3)
. By a simple calculation, we must have B1 = B2 = B3, a contradiction. Thus,

the case that the Laguerre second fundamental form is not parallel does not occur.
(3) If γ = 4, when the Laguerre second fundamental form is parallel, from the Theorem in

[8], Example 1 and Example 2, we know that Theorem 3 (Main Theorem) is true.
When the Laguerre second fundamental form is not parallel, since B1 6= B2 6= B3 6= B4,

from (4.1), we have Bii,k = 0, for all i, k. We denote by i, j, k, l the four distinct elements of
{1, 2, 3, 4} with order arbitrarily given, from (2.3), we have

ωij =
Bij,kωk +Bij,lωl

Bi −Bj
, for i 6= j. (4.27)

From (4.27) and (2.4), by a simple and similar calculation (see [5]), we have

−1

2

∑
s,t

Rijstωs ∧ ωt =dωij − ωik ∧ ωkj − ωil ∧ ωlj

≡−

(
2B2

ij,k

(Bi −Bk)(Bj −Bk)
+

2B2
ij,l

(Bi −Bl)(Bj −Bl)

)
ωi ∧ ωj

mod (ωs ∧ ωt, (s, t) 6= (i, j), (j, i)) .
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Comparing two sides of the above equation, we have

Rijij =
2B2

ij,k

(Bi −Bk)(Bj −Bk)
+

2B2
ij,l

(Bi −Bl)(Bj −Bl)
. (4.28)

Since the Laguerre second fundamental form is not parallel, by the symmetry of Bij,k, we may
consider two cases:

Case(i) If at least two of {B12,3, B12,4, B13,4, B23,4} are nonzero, without loss of generality,
we may assume that B12,3 6= 0 and B12,4 6= 0. From (2.2) and (2.3), we have

Lij,k = Ek(Li)δij + Γjik(Li − Lj),

Bij,k = Ek(Bi)δij + Γjik(Bi −Bj).

Thus, we see that

L12,3 = Γ1
32(L1 − L2) = Γ1

23(L1 − L3) = Γ2
13(L2 − L3), (4.29)

B12,3 = Γ1
32(B1 −B2) = Γ1

23(B1 −B3) = Γ2
13(B2 −B3) 6= 0, (4.30)

L12,4 = Γ1
42(L1 − L2) = Γ1

24(L1 − L4) = Γ2
14(L2 − L4), (4.31)

B12,4 = Γ1
42(B1 −B2) = Γ1

24(B1 −B4) = Γ2
14(B2 −B4) 6= 0, (4.32)

and therefore

L12,3

B12,3
=
L1 − L2

B1 −B2
=
L1 − L3

B1 −B3
=
L2 − L3

B2 −B3
,

L12,4

B12,4
=
L1 − L2

B1 −B2
=
L1 − L4

B1 −B4
=
L2 − L4

B2 −B4
.

Thus, there is a function λ such that

L1 − L2

B1 −B2
=
L1 − L3

B1 −B3
=
L2 − L3

B2 −B3
=
L1 − L4

B1 −B4
=
L2 − L4

B2 −B4
= −λ, (4.33)

and there is another function µ such that

L1 + λB1 = L2 + λB2 = L3 + λB3 = L4 + λB4 = µ, (4.34)

that is, we have

Lij + λBij = µδij , for any 1 ≤ i, j ≤ 4. (4.35)

By the similar method in [6] (see page 8 of [6]), we can prove that λ and µ are constants.
From (4.34), we see that L1, L2, L3, L4 are constants. If L1 = L2 = L3 = L4, then x is a
Laguerre isotropic hypersurface in R5. From the Theorem 1.1 in [9], we see that Theorem 3
(Main Theorem) is true. From Remark 1, we know that these two isotropic hypersurfaces are
also Laguerre isoparametric.
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If at least two of {L1, L2, L3, L4} are not equal, that is, x is non-Laguerre isotropic hyper-
surface, by the Proposition 6.1 in [9], we know that ∇L = 0, that is, the Laguerre tensor of x
is parallel. From (4.29)–(4.32), we see that L1 = L2 = L3 = L4, a contradiction.

Case(ii) If exactly one of {B12,3, B12,4, B13,4, B23,4} is nonzero, without loss of generality,
we may assume that B12,3 6= 0. From (2.8) and (4.28), we see that

− L1 − L2 =
2B2

12,3

(B1 −B3)(B2 −B3)
, −L1 − L3 =

2B2
12,3

(B1 −B2)(B3 −B2)
,

− L2 − L3 =
2B2

12,3

(B2 −B1)(B3 −B1)
, −L1 − L4 = −L2 − L4 = −L3 − L4 = 0,

this implies that L1 = L2 = L3. By a simple calculation, we must have B1 = B2 = B3, a
contradiction. Thus, Case(ii) does not occur. This completes the proof of Theorem 3 (Main
Theorem).
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[1] W. Blaschke, Vorlesungenüber Differential geometrie, Springer, Berlin Heidelberg New
York, Vol.3, (1929).

[2] E. Musso and L. Nicolodi, A variational problem for surfaces in Laguerre geometry,
Trans. Amer. Math. soc., 348 (1996), 4321–4337.

[3] E. Musso and L. Nicolodi, Laguerre geometry of surfaces with plane lines of curvature,
Abh. Math. sem. Univ. Hamburg, 69 (1999), 123–138.

[4] Z.J. Hu and H. Li, Classification of Moebius isoparametric hypersurfaces in S4, Nagoya
Math. J., 179 (2005), 147–162.

[5] Z.J. Hu, H. Li and C.P. Wang, Classification of Moebius isoparametric hypersurfaces in
S5, Monatsh. Math., 151 (2007), 201–222.
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