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Abstract

It is shown that the space of finite-to-finite holomorphic correspondences on an OT-
manifold is discrete. When the OT-manifold has no proper infinite complex-analytic sub-
sets, it then follows by known model-theoretic results that its cartesian powers have no
interesting complex-analytic families of subvarieties. The methods of proof, which are
similar to [Moosa, Moraru, and Toma “An essentially saturated surface not of Kähler-
type”, Bull. of the LMS, 40(5):845–854, 2008], require studying finite unramified covers of
OT-manifolds.
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1 Introduction

This note is concerned with complex-analytic families of subvarieties in cartesian powers of the
compact complex manifolds introduced by Oeljeklaus and the second author in [7], here referred
to as OT-manifolds. These manifolds are higher dimensional analogues of Inoue surfaces of type
SM . In [4], we, along with Ruxandra Moraru, showed that if X is an Inoue surface of type SM
then Xn contains no infinite complex-analytic families of subvarieties, except for the obvious
ones such as

(
{a}×V : a ∈ Xm

)
where V is a fixed subvariety of Xn−m. Using model-theoretic

techniques we were able to reduce the problem to considering only the case of n = 2. That
case amounted to showing that the set of finite-to-finite holomorphic correspondences on X,
viewed as subvarieties of X2, is discrete. Here we extend this result to OT-manifolds in general.
Actually, it is useful to consider the following higher arity version of correspondences: for any
compact complex manifold X, let Corrn(X) denote the set of irreducible complex-analytic
S ⊂ Xn such that the co-ordinate projections pri : S → X are surjective and finite for all
i = 1, . . . , n. So Corr2(X) is the set of finite-to-finite holomorphic correspondences.1

∗R. Moosa was partially supported by an NSERC Discovery Grant. M. Toma was partially supported by the
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1It may be worth pointing out that the elements of Corrn(X) are simply components of intersections of pull-
backs of finite-to-finite holomorphic correspondences. That is, for n > 1, if S ∈ Corrn(X) and πi : Xn → X2 is
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Theorem 1. If X is an OT-manifold then Corrn(X) is discrete for all n > 0.

The proof, which we will give in Section 3, follows to some extent what was done for Inoue
surfaces of type SM in [4]. But this approach leads naturally to the consideration of finite
unramified coverings of OT-manifolds, and the latter are not formally instances of the original
construction in [7]. However, we show in Section 2 that a mild generalisation of that construction
leads to a class of manifolds which is closed under finite unramified coverings. We call these
manifolds also OT-manifolds and the theorem is valid for this larger class.

The theorem is particularly significant when X has no proper positive dimensional subvari-
eties, because of the following fact coming from model theory.

Fact 2. Suppose X is a compact complex manifold that is not an algebraic curve, is not a
complex torus, and has no proper infinite complex-analytic subsets. Then every irreducible
complex-analytic subset of a cartesian power of X is a cartesian product of points and elements
of Corrn(X) for various n > 0.

Proof: This is Proposition 5.1 of [9] together with Lemma 3.3(b) of [5].

That OT-manifolds without proper positive dimensional subvarieties are ubiquitous in all
dimensions follows from work of Ornea and Verbitsky [8] showing that we get examples when-
ever X is the OT-manifold corresponding to a number field that has precisely two complex
embeddings which are not real.

Putting together the Theorem and the Fact, we conclude:

Corollary 3. Suppose X is an OT-manifold that has no proper infinite complex-analytic sub-
sets. Then, for all n > 0, Xn has no infinite complex-analytic families of subvarieties that
project onto each co-ordinate.

Remark 4. The model theorist should note that for X to have no proper infinite complex-
analytic subsets is exactly strong minimality of X as a first-order structure in the language
of complex-analytic sets. Strongly minimal OT-manifolds are of trivial acl-geometry by the
manifestation of the Zilber trichotomy in this context. By [5, Proposition 3.5], the discreteness
of Corr2(X) implies that strongly minimal OT-manifolds are essentially saturated in the sense
of [3]. In particular, we obtain in every dimension examples of essentially saturated manifolds
that are not of Kähler-type. This was the original motivation for both [4] and the current note.

2 Finite covers of OT-manifolds

We will quickly review the original construction of OT-manifolds from [7] and then describe
how to generalise it.

the co-ordinate projection (x1, . . . , xn) 7→ (x1, xi), for i = 2, . . . , n, then each πi(S) ⊂ X2 is a correspondence

and S is an irreducible component of

n⋂
i=2

π−1
i (πi(S)). This is an easy dimension calculation, see [5, Lemma 3.2].
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Fix a number field K admitting n = s+2t distinct embeddings into C, which we will denote
by σ1, . . . , σn where σ1, . . . , σs are real and each σs+i is complex conjugate to σs+i+t. Assume
that s and t are positive. By Dirichlet’s Theorem the multiplicative group of units O∗K of the
ring of integers OK of K has rank s+ t− 1. The subgroup

O∗,+K := {a ∈ O∗K : σi(a) > 0 for all 1 ≤ i ≤ s}

of “positive” units is free abelian of finite index in O∗K . Let U be a rank s subgroup of O∗,+K
that is admissible for K in the sense of [7]. With respect to the natural action of U on the
additive group OK , consider the semidirect product Γ = U nOK . Let m = s+ t and consider
the action of Γ on Cm given by,

(a, x)(z1, . . . , zm) :=
(
σ1(ax) + σ1(a)z1, . . . , σm(ax) + σm(a)zm

)
.

As U < O∗,+K , this action leaves Hs×Ct invariant, and the admissibility condition is equivalent
to the action being proper and discontinuous. The original OT-manifold, denoted by X(K,U),
is the quotient of Hs × Ct by this action. In the sequel we will denote these manifolds by
X(OK , U) in order to distinguish them from their generalisations.

The above construction is generalised by replacing the role of OK in Γ by any rank n additive
subgroup M ≤ OK that is stable under the action of U . We say then that U is admissible for
M . Taking Γ = U nM , we again get a proper and discontinuous action on Hs × Ct, and the
quotient is denoted by X(M,U). We will continue to call these compact complex manifolds
OT-manifolds. To avoid confusing them with the previous construction we will occasionally
say that they are of type X(M,U) (otherwise of type X(OK , U)). Note that the possibility of
generalising the original construction by replacing OK with an order of K is already mentioned
in [7]. However only the Z-submodule structure of M and the stability under the U -action are
necessary to make the construction work.

The universal cover of X(M,U) is Hs × Ct and the fundamental group is U nM . As the
latter is of finite index in U n OK , we see that X(M,U) is a finite unramified covering of
X(OK , U). In fact, all finite unramified covers are of this form:

Lemma 5. The class of OT-manifolds of type X(M,U) is closed under finite unramified cov-
erings.

Proof: Given X(M,U), such a covering would correspond to a finite index subgroup Γ1 ≤
U n M . Taking U1 to be the image of Γ1 in U , and setting M1 := Γ1 ∩M , it is not hard
to check that U1 is admissible for M1 and that the covering is nothing other than X(M1, U1).

Much of the theory of OT-manifolds developed in [7] goes through in this more general
setting. In particular,

Lemma 6. If X = X(M,U) is an OT-manifold then H0(X,TX) = 0.
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Proof: For OT-manifolds of type X(OK , U) this is Proposition 2.5 of [7]. Imitating that
argument, it suffices to prove for M a rank n additive subgroup of OK , that the image of M in
Rs under (σ1, . . . , σs) is dense. But this is the case because M has finite index in OK and the
latter does have dense image (see the proof of Lemma 2.4 of [7]).

The following remarks serve as further evidence that the above extension of the definition
of OT-manifolds is natural.

Remark 7. Any OT-manifold of type X(M,U) admits a finite unramified cover of type X(OK , U).

Proof: Indeed, since M is of maximal rank in OK , there exists a positive integer l such that
lOK ⊂M . Thus X(lOK , U) is a finite unramified cover of X(M,U). But the multiplication by
l at the level of Hs×Ct conjugates the actions of U nOK and of U n lOK and thus induces an
isomorphism between X(OK , U) and X(lOK , U).

Remark 8. When s = t = 1 the class OT-manifolds of type X(M,U) coincides with the class
of Inoue surfaces of type SM defined in [2].

Proof: Indeed, if one starts with the manifold X(M,U), then choosing a generator a of U
with σ1(a) > 1 and a base (α1, α2, α3) of M over Z one obtains a matrix A(a) ∈ GL(3,Z)
which represents the action of a on M with respect to this basis. Applying the embedding
σk to the relation a(α1, α2, α3)> = A(a)(α1, α2, α3)> shows that (σk(α1), σk(α2), σk(α3))> is
an eigenvector of A(a) associated to the eigenvalue σk(a). In particular this implies A(a) ∈
SL(3,Z) since σ1(a) > 0. At this point one sees that X(M,U) coincides with the surface SA(a)

as defined in [2].
Conversely, starting with any matrix A ∈ SL(3,Z), with one real eigenvalue larger than 1

and two complex non-real eigenvalues, we denote by K the splitting field of the characteristic
polynomial χA of A over Q. Then there exists an element a ∈ O∗,+K such that the eigenvalues of
A (i.e the roots of χA) are precisely σ1(a), σ2(a), σ3(a). We find now an eigenvector v ∈ Z[σ1(a)]3

associated to σ1(A) by solving the system (A − σ1(a)I3)v> = 0 over K. There exist now
elements α1, α2, α3 ∈ OK such that v = (σ1(α1), σ1(α2), σ1(α3)). Moreover α1, α2, α3 are
linearly independent over Q since a linear relation would entail a linear relation between the
components v1, v2, v3 of v over Q, which combined with the equations (A−σ1(a)I3)v> = 0 would
show that σ1(a) is quadratic over Q. Now choosing M to be the Z-sumbodule of K generated by
α1, α2, α3 and U the multiplicative group generated by a we get againX(M,U) = SA(a).

3 The Proof

As in the case of Inoue surfaces of type SM studied in [4], we will make use of some deformation
theory to prove the main theorem. But we will need a bit more than was used in [4]. We
say that a holomorphic map f : V → W between compact complex manifolds is rigid over
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W if there are no nontrivial deformations of f that keep W fixed. More precisely: Whenever
V → D is a proper and flat holomorphic map of compact complex varieties with V = Vd for
some d ∈ D, and F : V → D ×W is a holomorphic map over D with Fd = f , then there is an
open neighbourhood U of d in D and a diagram

VU

""

FU

**
φ

��

U U ×Woo

U × V

<<

idU ×f

44

where φ is a biholomorphism. In particular Fs(Vs) = f(V ) for all s ∈ U .

Fact 9 (Section 3.6 of [6]). Suppose f : V →W is a holomorphic map between compact complex
manifolds such that

• H0(V, f∗TW ) = 0, and

• f∗ : H1(V, TV )→ H1(V, f∗TW ) is injective.

Then f is rigid over W .

Lemma 10. Suppose X and Y are compact complex manifolds, H0(Y, TY ) = 0, and f : Y →
Xn is a holomorphic map such that pri ◦f : Y → X is a finite unramified cover for each
i = 1, . . . , n. Then f is rigid over Xn.

Proof: Note that here pri : Xn → X is the projection onto the ith co-ordinate. Let fi :=
pri ◦f : Y → X. As each fi is unramified, we have that

f∗TXn = f∗

(
n⊕
i=1

pr∗i TX

)
=

n⊕
i=1

f∗i TX =

n⊕
i=1

TY

Hence, H0(Y, f∗TXn) =

n⊕
i=1

H0(Y, TY ) = 0. On the other hand, the isomorphism (f1)∗ :

H1(Y, TY ) → H1(Y, f∗1TX) factors through f∗ : H1(Y, TY ) → H1(Y, f∗TXn), and hence the
latter is injective. So f : Y → Xn is rigid over Xn by Fact 9.

We can now prove the main theorem.
[Proof of Theorem 1] Suppose X is an OT-manifold of type X(M,U). As in [4], in order
to show that Corrn(X) is discrete we let S ∈ Corrn(X) be arbitrary, consider the irreducible
component D of the Douady space of Xn in which S lives, and show that D is zero-dimensional.
This suffices as it proves that each element of Corrn(X) is isolated in the Douady space.
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Let Z ⊂ D×Xn be the restriction of the universal family to D. By the flatness of Z → D,
for general d ∈ D, Zd ∈ Corrn(X) also. Let Z̃ → Z be a normalisation and denote by

f : Z̃ → D×Xn the composition of the normalisation with the inclusion of Z in D×Xn. Then
for general d ∈ D we have that fd : Z̃d → Xn is such that each projection pri ◦fd : Z̃d → X is
a finite surjective map. In [1] it is shown that OT-manifolds of type X(OK , U), and hence also
OT-manifolds of type X(M,U), have no divisors. So the purity of branch locus theorem (which

applies as Z̃d is normal and X is smooth) implies that pri ◦fd is a finite unramified covering. In

particular, Z̃d is a generalised OT-manifold by Lemma 5, and so H0(Z̃d, TZ̃d
) = 0 by Lemma 6.

But moreover, by Lemma 10, fd is rigid over Xn. It follows that for some open neighbourhood
U of d in D, fU : Z̃U → U×Xn is biholomorphic over U×Xn with idU ×fd : U×Z̃d → U×Xn.
In particular, for all s ∈ U , Zs = fs(Z̃s) = fd(Z̃d) = Zd. The universality of the Douady space
now implies that U = {d}, so that in fact D = {d}, as desired.
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