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Abstract

In this paper, we introduce the notion of weakly F -stationary map with
potential which is a critical point of the functional ΦF,H with respect to
variations in the domain. It is a generalization of F -stationary maps with
potential. We obtain some Liouville theorems for these maps under some
curvature conditions of the domain manifolds and some conditions on H.
We obtain similar theorems for maps obeying a class of integral equations
involving the stress-energy tensor.
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1 Introduction

Let F : [0,∞) → [0,∞) be a C2 function such that F (0) = 0 and F ′(t) > 0
on [0,∞). For a smooth map u : (Mm, g) → (Nn, h) between two Riemannian
manifolds (M, g) and (N,h), Asserda in [1] introduced the following functional

ΦF (u) =

∫
M

F (
||u∗h||2

4
)dvg,

(see[10, 11, 12, 6]) where u∗h is the symmetric 2-tensor defined by

(u∗h)(X,Y ) = h(du(X), du(Y ))

for any vector fields X, Y on M and ||u∗h|| is given by

||u∗h||2 =

m∑
i,j=1

[h(du(ei), du(ej))]
2
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with respect to a local orthonormal frame (e1, · · · , em) on (M, g). They derived
that first variation formula of ΦF , then, by using stress-energy tensor, they ob-
tained some monotonicity formulas and some Liouville theorems for stationary
maps for the functional ΦF . Following [1], Han and Feng in [5] introduced the
following functional ΦF,H by

ΦF,H(u) =

∫
M

[F (
||u∗h||2

4
)−H ◦ u]dvg,

where H is a smooth function on Nn. The map u is F -stationary with potential
H for ΦF,H if it is a critical point of ΦF,H with respect to any compact supported
variation of u. They obtained some Liouville theorems for F -stationary maps
with potential H and also investigated the stability for F -stationary maps with
potential H from or into the standard sphere.

Let ut : (Mm, g)→ (Nn, h) (−ε < t < ε) be a variation of u, i.e. ut = Ψ(t, .)
with u0 = u, where Ψ : (−ε, ε) ×M → N is a smooth map. Let ψ = dΨ

dt |t=0 ∈
Γ(u−1TN) be the variational field, where Γ(u−1TN) is the set of all smooth
cross sections of the bundle. Let Γ0(u−1TN) be a subset of Γ(u−1TN) consisting
of all elements with compact supports contained in the interior of M . For each
ψ ∈ Γ0(u−1TN), there exists a variation ut(x) = expu(x)(tψ) (for t small enough)
of u, which has the variational field ψ. Such a variation is said to have a compact

support. Let DψΦF,H(u) =
dΦF,H(ut)

dt |t=0.

Remark 1. From the definition of F -stationary map with potential H, we know
that a smooth map u from M to N is called F -stationary map with potential H

for the functional ΦF,H if DV ΦF,H(u) =
dΦF,H(ut)

dt |t=0 = 0 for V ∈ Γ0(u−1TN).

It is known that du(X) ∈ Γ(u−1TN) for any vector field X of M . If X
has a compact support which is contained in the interior of M , then du(X) ∈
Γ0(u−1TN).

Definition 1. A smooth map u : (Mm, g) → (Nn, h) is said to be a weakly F -
stationary map with potential H for the functional ΦF,H(u) if Ddu(X)ΦF,H(u) = 0
for all X ∈ Γ0(TM).

Remark 2. From Remark 1 and Definition 1, we know that F -stationary maps
with potential H must be weakly F -stationary maps with potential H, that is,
the weakly F -stationary maps with potential H are the generalization of the F -
stationary maps with potential H.

In this paper, we investigate weakly F -stationary maps with potential H and
obtain some Liouville theorems for these maps under some curvature conditions
of the domain manifolds and some conditions on H. We also investigate some
special maps, i.e. maps obeying the integral eqation (3.11) or (3.19) and obtain
the Liouville theorems for these maps.
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2 Preliminaries

Let ∇ and N∇ always denote the Levi-Civita connections of M and N respec-
tively. We choose a local orthonormal frame field {ei} on M . We define the
F -H-tension field τΦF,H

(u) of u by

τΦF,H
(u) = τΦF

(u) +N ∇H ◦ u,

where τΦF
(u) = F ′( ||u

∗h||2
4 )divg(σu)+σu(grad(F ′( ||u

∗h||2
4 ))) as defined in [1], and

σu =
∑
j h(du(.), du(ej))du(ej) as defined in [10].

Lemma 1. [5](The first variation formula) Let u : M → N be a smooth map.
Then

DψΦF,H(u) = −
∫
M

h(τΦF,H
(u), ψ)dvg, (2.1)

where ψ = Γ0(u−1TN).

Let u : M → N be a weakly F -stationary map with potential H and X ∈
Γ0(TM). Then by (2.1) and the definition of weakly F -stationary maps with
potential H, we have

Ddu(X)ΦF,H(u) = −
∫
M

h(τΦF,H
(u), du(X))dvg = 0. (2.2)

Recall that for a 2-tensor field T ∈ Γ(T ∗M ⊗ T ∗M), its divergence divT ∈
Γ(T ∗M) is defined by

(divT )(X) =
∑
i

(∇eiT )(ei, X), (2.3)

where X is any smooth vector field on M . For two 2-tensors T1, T2 ∈ Γ(T ∗M ⊗
T ∗M), their inner product is defined as follows;

< T1, T2 >=
∑
ij

T (ei, ej)T2(ei, ej), (2.4)

where {ei} is an orthonormal basis of with respect to g. For a vector field X ∈
Γ(TM), we denote by θX is dual one form i.e. θX(Y ) = g(X,Y ). The covariant
derivative of θX gives a 2-tensor field ∇θX :

(∇θX)(Y,Z) = (∇ZθX)(Y ) = g(∇ZX,Y ). (2.5)

If X = ∇ϕ is the gradient of some function ϕ on M , then θX = dϕ and ∇θX =
Hessϕ.
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Lemma 2. (cf.[2, 3]). Let T be a symmetric (0, 2)-type tensor field and let X be
a vector field, then

div(iXT ) = (divT )(X)+ < T,∇θX >= (divT )(X) +
1

2
< T,LXg > . (2.6)

where LX is the Lie derivative of the metric g in the direction of X. Indeed, let
{e1, · · · , em} be a local orthonormal frame field on M . Then

1

2
< T,LXg >=

m∑
i,j=1

1

2
< T (ei, ej), LXg(ei, ej) >

=

m∑
i,j=1

T (ei, ej)g(∇eiX, ej) =< T,∇θX > .

Let D be any bounded domain of M with C1 boundary. By using the stokes’
theorem, we immediately have the following integral formula:∫

∂D

T (X, ν)dsg =

∫
D

[< T,
1

2
LXg > +div(T )(X)]dvg, (2.7)

where ν is the unit outward normal vector field along ∂D.
From the equation (2.7), we have

Corollary 1. If X is a smooth vector field with a compact contained in the
interior of M , then ∫

M

[< T,
1

2
LXg > +div(T )(X)]dvg = 0. (2.8)

Asserda in [1] introduced a symmetric 2-tensor SΦF,u
to the functional ΦF (u)

by

SΦF,u
= F (

||u∗h||2

4
)g − F ′( ||u

∗h||2

4
)h(σu(.), du(.)). (2.9)

which is called the stress-energy tensor.

Lemma 3. [1] For any smooth vector field X of M , we have

(divSΦF,u
)(X) = −h(τΦF

(u), du(X)). (2.10)

By using the equations (2.2), (2.8) and (2.10), we know that if u : M → N is
a weakly F -stationary map with potential H, then we have

0 =

∫
M

< SΦF,u
,

1

2
LXg > dvg −

∫
M

h(τΦF
(u) +N ∇H(u)−N ∇H(u), du(X))dvg

=

∫
M

< SΦF,u
,

1

2
LXg > dvg −

∫
M

h(τΦF,H
(u)−N ∇H(u), du(X))dvg

=

∫
M

< SΦF,u
,

1

2
LXg > dvg +

∫
M

h(N∇H(u), du(X))dvg



Liouville theorems 439

i.e. ∫
M

< SΦF,u
,

1

2
LXg > dvg +

∫
M

h(N∇H(u), du(X))dvg = 0 (2.11)

for any X ∈ Γ0(TM).
Han and Feng in [5] introduced a symmetric 2-tensor SΦF,H,u

to the functional
ΦF,H(u) by

SΦF,H,u
= [F (

||u∗h||2

4
)−H ◦ u]g − F ′( ||u

∗h||2

4
)h(σu(.), du(.)). (2.12)

which is called the stress-energy tensor.

Lemma 4. [5] For any smooth vector field X of M , we have

(divSΦF,H,u)(X) = −h(τΦF,H
(u), du(X)). (2.13)

By using the equations (2.2), (2.8) and (2.13), we know that if u : M → N is
a weakly F -stationary map with potential H, then we have∫

M

< SΦF,H,u
,

1

2
LXg > dvg = 0 (2.14)

for any X ∈ Γ0(TM).

3 Liouville theorems

Let (M, g0) be a complete Riemannian manifold with a pole x0. Denote by r(x)
the g0-distance function relative to the pole x0, that is r(x) = distg0(x, x0). Set
B(r) = {x ∈ Mm : r(x) ≤ r}. It is known that ∂

∂r is always an eigenvector of
Hessg0(r2) associated to eigenvalue 2. Denote by λmax (resp. λmin) the maximum
(resp. minimal) eigenvalues of Hessg0(r2)− 2dr⊗ dr at each point of M −{x0}.
Let (Nn, h) be a Riemannian manifold, and H be a smooth function on N .

From now on, we suppose that u : (Mm, g)→ (N,h) is a smooth map, where
g = f2g0, 0 < f ∈ C∞(M). Clearly the vector field ν = f−1 ∂

∂r is an outer normal
vector field along ∂B(r) ⊂ (M, g). The following conditions that we will assume
for f are as follows:

(f1)

∂ log f

∂r
≥ 0,

(f2) there is a constant C > 0 such that

(m− 4dF )r
∂ log f

∂r
+
m− 1

2
λmin + 1− 2dF max{2, λmax} ≥ C,

where dF is defined as follows: dF = supt≥0
tF ′(t)
F (t) (lF = inft≥0

tF ′(t)
F (t) ) (cf. [9],

[3]). In this paper we assume that dF is finite.
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Theorem 1. Let u : (M,f2g0) → (N,h) be a weakly F -stationary map with

potential H. If f satisfies (f1)(f2), H ≤ 0 (or H|u(M) ≤ 0) and
∫
M

[F ( ||u
∗h||2
4 )−

H ◦ u]dvg <∞, then u is a constant.

Proof: We take X = φ(r)r ∂∂r = 1
2φ(r)∇0r2, where ∇0 denotes the covariant

derivative determined by g0 and φ(r) is a nonnegative function determined later.
By direct computation, we have

< SΦF,H,u
,

1

2
LXg >= φ(r)r

∂ log f

∂r
< SΦF,H,u

, g > +
1

2
f2 < SΦF,H,u

, Lφ(r)r ∂
∂r
g0 >(3.1)

Let {ei}mi=1 be an orthonormal basis with respect to g0 and em = ∂
∂r . We

may assume that Hessg0(r2) becomes a diagonal matrix with respect to {ei}mi=1.
Then {ẽi = f−1ei} ia an orthonormal basis with respect to g.

Now we compute

< SΦF,H,u
, g > =

∑
i,j

SΦF,H,u
(ẽi, ẽj)g(ẽi, ẽj)

= m[F (
||u∗h||2

4
)−H ◦ u]− F ′( ||u

∗h||2

4
)
∑
i

h(σu(ẽi), du(ẽi))

= m[F (
||u∗h||2

4
)−H ◦ u]− F ′( ||u

∗h||2

4
)||u∗h||2

≥ m[F (
||u∗h||2

4
)−H ◦ u]− 4dFF (

||u∗h||2

4
)

≥ m[F (
||u∗h||2

4
)−H ◦ u]− 4dF [F (

||u∗h||2

4
)−H ◦ u]

≥ (m− 4dF )[F (
||u∗h||2

4
)−H ◦ u] (3.2)

and

f2 < SΦF,H,u
, Lφ(r)r ∂

∂r
g0 >

= f2
∑
i,j

SΦF,H,u
(ẽi, ẽj)(Lφ(r)r ∂

∂r
g0)(ẽi, ẽj)

= f2{
∑
i,j

[F (
||u∗h||2

4
)−H ◦ u]g(ẽi, ẽj)(Lφ(r)r ∂

∂r
g0)(ẽi, ẽj)

−
∑
i,j

F ′(
||u∗h||2

4
)h(σu(ẽi), du(ẽj))(Lφ(r)r ∂

∂r
g0)(ẽi, ẽj)}

=
∑
i

[F (
||u∗h||2

4
)−H ◦ u](Lφ(r)r ∂

∂r
g0)(ei, ei)

−
∑
i,j

F ′(
||u∗h||2

4
)h(σu(ẽi), du(ẽj))(Lφ(r)r ∂

∂r
g0)(ei, ej)}
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= φ(r)
∑
i

[F (
||u∗h||2

4
)−H ◦ u]Hessg0(r2)(ei, ei)

+2[F (
||u∗h||2

4
)−H ◦ u]rφ′(r)

−φ(r)
∑
i,j

F ′(
||u∗h||2

4
)h(σu(ẽi), du(ẽj))Hessg0(r2)(ei, ej)

−2F ′(
||u∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm))

≥ φ(r)[F (
||u∗h||2

4
)−H ◦ u][2 + (m− 1)λmin]

−φ(r)F ′(
||u∗h||2

4
) max{2, λmax}

∑
i

h(σu(ẽi), du(ẽi))

+2[F (
||u∗h||2

4
)−H ◦ u]rφ′(r)− 2F ′(

||u∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm))

= φ(r)[F (
||u∗h||2

4
)−H ◦ u][2 + (m− 1)λmin]

−φ(r)F ′(
||u∗h||2

4
) max{2, λmax}||u∗h||2

+2[F (
||u∗h||2

4
)−H ◦ u]rφ′(r)− 2F ′(

||u∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm))

≥ φ(r)[F (
||u∗h||2

4
)−H ◦ u][2 + (m− 1)λmin]

−φ(r)4 max{2, λmax}[F (
||u∗h||2

4
)−H ◦ u]

+2[F (
||u∗h||2

4
)−H ◦ u]rφ′(r)− 2F ′(

||u∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm))

≥ φ(r)[F (
||u∗h||2

4
)−H ◦ u][2 + (m− 1)λmin − 4dF max{2, λmax}]

+2[F (
||u∗h||2

4
)−H ◦ u]rφ′(r) (3.3)

−2F ′(
||u∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm)).

From (3.1), (3.2), (3.3), (f1) and (f2), we have

< SΦF,H,u
,

1

2
LXg > ≥ φ(r)[F (

||u∗h||2

4
)−H ◦ u][(m− 4dF )r

∂ log f

∂r
+ 1

+
(m− 1)

2
λmin − 2dF max{2, λmax}]

+ [F (
||u∗h||2

4
)−H ◦ u]rφ′(r)
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−F ′( ||u
∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm))

≥ Cφ(r)[F (
||u∗h||2

4
)−H ◦ u] + [F (

||u∗h||2

4
)−H ◦ u]rφ′(r)

−F ′( ||u
∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm)). (3.4)

For any fixed R > 0, we take a smooth function φ(r) which takes value 1 on
B(R2 ), 0 outside B(R) and 0 ≤ φ(r) ≤ 1 on T (R) = B(R) − B(R2 ). And φ(r)

also satisfies the condition: |φ′(r)| ≤ C0

r on M , where C0 is a positive constant.
From (2.14) and (3.4), we have

0 ≥
∫
M

[Cφ(r)[F (
||u∗h||2

4
)−H ◦ u] + [F (

||u∗h||2

4
)−H ◦ u]rφ′(r)]dvg

−
∫
M

F ′(
||u∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm))dvg

≥
∫
B( R

2 )

C[F (
||u∗h||2

4
)−H ◦ u]dvg +

∫
T (R)

[F (
||u∗h||2

4
)−H ◦ u]rφ′(r)dvg

−
∫
T (R)

F ′(
||u∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm))dvg

≥
∫
B( R

2 )

C[F (
||u∗h||2

4
)−H ◦ u]dvg − C0

∫
T (R)

[F (
||u∗h||2

4
)−H ◦ u]dvg

− C0

∫
T (R)

F ′(
||u∗h||2

4
)||u∗h||2dvg (3.5)

≥
∫
B( R

2 )

C[F (
||u∗h||2

4
)−H ◦ u]dvg − C0(1 + 4dF )

∫
T (R)

[F (
||u∗h||2

4
)−H ◦ u]dvg.

From
∫
M

[F ( ||u
∗h||2
4 )−H ◦ u]dvg <∞, we have

lim
R→∞

∫
T (R)

[F (
||u∗h||2

4
)−H ◦ u]dvg = 0. (3.6)

From (3.5) and (3.6), we have

0 ≥ C
∫
M

[F (
||u∗h||2

4
)−H ◦ u]dvg ≥ C

∫
M

F (
||u∗h||2

4
)dvg,

so we know that u is a constant.

Theorem 2. Let u : (M,f2g0) → (N,h) be a weakly F -stationary map with

potential H. If f satisfies (f1)(f2), ∂H◦u
∂r ≥ 0 and

∫
M
F ( ||u

∗h||2
4 )dvg < ∞, then

u is a constant.
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Proof: By using the similar method in the proof in Theorem 1, we can obtain
the following:

< SΦF,u
,

1

2
LXg > ≥ Cφ(r)F (

||u∗h||2

4
) + F (

||u∗h||2

4
)rφ′(r)

− F ′(
||u∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm)).

From ∂H◦u
∂r ≥ 0, we have

< SΦF,u
,

1

2
LXg > +φ(r)r

∂H ◦ u
∂r

≥ Cφ(r)F (
||u∗h||2

4
) + F (

||u∗h||2

4
)rφ′(r)

−F ′( ||u
∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm)). (3.7)

For any fixed R > 0, we take a smooth function φ(r) which takes value 1 on
B(R2 ), 0 outside B(R) and 0 ≤ φ(r) ≤ 1 on T (R) = B(R) − B(R2 ). And φ(r)

also satisfies the condition: |φ′(r)| ≤ C0

r on M , where C0 is a positive constant.
From (2.11) and (3.7), we have

0 ≥
∫
M

[Cφ(r)F (
||u∗h||2

4
) + F (

||u∗h||2

4
)rφ′(r)]dvg

−
∫
M

F ′(
||u∗h||2

4
)rφ′(r)h(σu(ẽm), du(ẽm))dvg

≥
∫
B( R

2 )

CF (
||u∗h||2

4
)dvg − C0

∫
T (R)

F (
||u∗h||2

4
)dvg

− C0

∫
T (R)

F ′(
||u∗h||2

4
)||u∗h||2dvg

≥
∫
B( R

2 )

CF (
||u∗h||2

4
)dvg − C0(1 + 4dF )

∫
T (R)

F (
||u∗h||2

4
)dvg. (3.8)

From
∫
M
F ( ||u

∗h||2
4 )dvg <∞, we have

lim
R→∞

∫
T (R)

F (
||u∗h||2

4
)dvg = 0. (3.9)

From (3.8) and (3.9), we have

0 ≥ C
∫
M

F (
||u∗h||2

4
)dvg,

so we know that u is a constant.
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Lemma 5. [5, 7, 8] Let (Mm, g) be a complete Riemannian manifold with a pole
x0. Denote by Kr the radial curvature of M .
(i) if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0 and (m− 1)β − 4dFα > 0, then

[(m− 1)λmin + 2− 4dF max{2, λmax}] ≥ 2(m− 4dFα

β
),

(ii) if − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0 and 0 ≤ B < 2ε, then

[(m− 1)λmin + 2− 4dF max{2, λmax}] ≥ 2[1 + (m− 1)(1− B

2ε
)− 4dF e

A
2ε ],

(iii) if − a2

c2+r2 ≤ Kr ≤ b2

c2+r2 with a ≥ 0, b2 ∈ [0, 1
4 ] and c2 ≥ 0, then

[(m− 1)λmin + 2− 4dF max{2, λmax}]

≥ 2[1 + (m− 1)
1 +
√

1− 4b2

2
− 4dF

1 +
√

1 + 4a2

2
].

Theorem 3. Let (M, g) be an m-dimensional complete manifold with a pole x0.
Assume that the radial curvature Kr of M satisfies one of the following three
conditions:

(i) if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0 and (m− 1)β − 4dFα > 0,

(ii) if − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0, 0 ≤ B < 2ε and

1 + (m− 1)(1− B
2ε )− 4dF e

A
2ε > 0,

(iii) if − a2

c2+r2 ≤ Kr ≤ b2

c2+r2 with a ≥ 0, b2 ∈ [0, 1
4 ], c2 ≥ 0 and 1 + (m −

1) 1+
√

1−4b2

2 − 4dF
1+
√

1+4a2

2 > 0.

If u : (M, g)→ (N,h) is a weakly F -stationary map with potential H, H ≤ 0

(or H|u(M) ≤ 0) and
∫
M

[F ( ||u
∗h||2
4 )−H ◦ u]dvg <∞, then u is a constant.

Proof: From the proof of theorem 1 for f = 1 and Lemma 5, we know that
theorem 3 is true.

Theorem 4. Let M and Kr be as in Theorem 3. If u : (M, g) → (N,h) is a

weakly F -stationary map with potential H, ∂H◦u
∂r ≥ 0 and

∫
M
F ( ||u

∗h||2
4 )dvg <∞,

then u is a constant.

Proof: From the proof of theorem 2 for f = 1 and Lemma 5, we know that
theorem 4 is true.
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We say the functional ΦF,H(u) (ΦF (u)) of u is slowly divergent if there exists
a positive function ϕ(r) with

∫∞
R0

dr
rϕ(r) = +∞ (R0 > 0), such that

lim
R→∞

∫
B(R)

[F ( ||u
∗h||2
4 )−H ◦ u]

ϕ(r(x))
dvg <∞( lim

R→∞

∫
B(R)

F ( ||u
∗h||2
4 )

ϕ(r(x))
dvg <∞)(3.10)

Theorem 5. Let u : (M,f2g0) → (N,h) be a smooth map which satisfies the
following ∫

M

(divSΦF,H,u
)(X)dvg = 0 (3.11)

for any X ∈ Γ(TM). If f satisfies (f1)(f2), H ≤ 0 (or H|u(M) ≤ 0) and ΦF,H(u)
of u is slowly divergent, then u is a constant.

Proof: From the inequality (3.4) for φ(r) = 1, we have

< SΦF,H,u
,

1

2
LXg >≥ C[F (

||u∗h||2

4
)−H ◦ u]. (3.12)

On the other hand, taking D = B(r) and T = SΦF,H,u
in (2.7), we have∫

B(r)

< SΦF,H,u
,

1

2
LXg > dvg +

∫
B(r)

(divSΦF,H,u
)(X)dvg

=

∫
∂B(r)

SΦF,H,u
(X, ν)dsg

=

∫
∂B(r)

[F (
||u∗h||2

4
)−H ◦ u]g(X, ν)dsg

−
∫
∂B(r)

F ′(
||u∗h||2

4
)h(du(X), σu(ν))dsg

=

∫
∂B(r)

[F (
||u∗h||2

4
)−H ◦ u]f2g0(r

∂

∂r
, f−1 ∂

∂r
)dsg

−
∫
∂B(r)

F ′(
||u∗h||2

4
)f−1rh(du(

∂

∂r
), σu(

∂

∂r
))dsg

= r

∫
∂B(r)

[F (
||u∗h||2

4
)−H ◦ u]fdsg

−
∫
∂B(r)

F ′(
||u∗h||2

4
)f−1r

∑
i

h(du(ẽi), du(
∂

∂r
))2dsg

≤ r
∫
∂B(r)

[F (
||u∗h||2

4
)−H ◦ u]fdsg. (3.13)
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Now suppose that u is a nonconstant map, so there exists R1 ≥ R0 > 0 such that
for R ≥ R1, ∫

B(R)

[F (
||u∗h||2

4
)−H ◦ u]dvg ≥ c0, (3.14)

where c0 is a positive constant. From (3.12), (3.13) and (3.14), we have∫
∂B(R)

[F (
||u∗h||2

4
)−H ◦ u]fdsg ≥

c0C

R
+

1

R

∫
B(R)

(divSΦF,H,u
)(X)dvg (3.15)

for R ≥ R1. From (3.11), we have

lim
R→∞

∫
B(R)

(divSΦF,H,u
)(X)dvg = 0,

so we know that there exists a positive constant R2 ≥ R1 such that for R ≥ R2,
we have

−c0C
2
≤

∫
B(R)

(divSΦF,,Hu
)(X)dvg ≤

c0C

2
. (3.16)

From (3.15) and (3.16), we have∫
∂B(R)

[F (
||u∗h||2

4
)−H ◦ u]fdsg ≥

c0C

2R
(3.17)

for R ≥ R2. From (3.17) and |∇r| = f−1, we have

lim
R→∞

∫
B(R)

[F ( ||u
∗h||2
4 )−H ◦ u]

ϕ(r(x))
dvg

=

∫ ∞
0

dR

ϕ(R)

∫
∂B(R)

[F (
||u∗h||2

4
)−H ◦ u]/|∇r|dsg

=

∫ ∞
0

dR

ϕ(R)

∫
∂B(R)

[F (
||u∗h||2

4
)−H ◦ u]fdsg

≥
∫ ∞
R2

dR

ϕ(R)

∫
∂B(R)

[F (
||u∗h||2

4
)−H ◦ u]fdsg

≥
∫ ∞
R2

c0CdR

2Rϕ(R)
= +∞. (3.18)

This contradicts (3.10), therefore u is a constant.

From the proof of Theorem 5 for f = 1, we immediately get the following:
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Corollary 2. Let M and Kr be as in Theorem 3. If u : (M, g) → (N,h) is a
smooth map which satisfies the following∫

M

(divSΦF,H,u
)(X)dvg = 0

for any X ∈ Γ(TM),H ≤ 0 (or H|u(M) ≤ 0) and ΦF,H(u) of u is slowly divergent,
then u is a constant.

Theorem 6. Let u : (M,f2g0) → (N,h) be a smooth map which satisfies the
following ∫

M

divSΦF,u
dvg =

∫
M

h(N∇H ◦ u, du(X))dvg (3.19)

for any X ∈ Γ(TM). If f satisfies (f1)(f2), ∂H◦u
∂r ≥ 0 and ΦF (u) of u is slowly

divergent, then u is a constant.

Proof: From the inequality (3.7) for φ(r) = 1, we have

< SΦF,u
,

1

2
LXg > +h(N∇H ◦ u, du(X)) ≥ CF (

||u∗h||2

4
). (3.20)

On the other hand, taking D = B(r) and T = SΦF,u
in (2.7), we have∫

B(r)

< SΦF,u
,

1

2
LXg > dvg +

∫
B(r)

(divSΦF,u
)(X)dvg =

∫
∂B(r)

SΦF,u
(X, ν)dsg

=

∫
∂B(r)

F (
||u∗h||2

4
)g(X, ν)dsg −

∫
∂B(r)

F ′(
||u∗h||2

4
)h(du(X), σu(ν))dsg

= r

∫
∂B(r)

F (
||u∗h||2

4
)fdsg −

∫
∂B(r)

F ′(
||u∗h||2

4
)f−1r

∑
i

h(du(ẽi), du(
∂

∂r
))2dsg

≤ r
∫
∂B(r)

F (
||u∗h||2

4
)fdsg. (3.21)

Now suppose that u is a nonconstant map, so there exists R3 ≥ R0 > 0 such that
for R ≥ R3, ∫

B(R)

F (
||u∗h||2

4
)dvg ≥ c1, (3.22)

where c1 is a positive constant. From (3.19), we have

lim
R→∞

∫
B(R)

(divSΦF,H
)dvg = lim

R→∞

∫
B(R)

h(N∇H ◦ u, du(X))dvg, (3.23)
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so we know that there exists a positive constant R4 > R3 such that for R ≥ R4,
we have

−Cc1
2
≤

∫
B(R)

(divSΦF,H
)dvg −

∫
B(R)

h(N∇H ◦ u, du(X))dvg ≤
Cc1

2
(3.24)

From (3.21)(3.22) and (3.24), we have for R > R4

R

∫
∂B(R)

F (
||u∗h||2

4
)fdsg

≥
∫
B(R)

< SΦF,u
,

1

2
LXg > dvg +

∫
B(R)

(divSΦF,u
)(X)dvg

≥
∫
B(R)

< SΦF,u
,

1

2
LXg > dvg

+

∫
B(R)

h(N∇H ◦ u, du(X))dvg −
Cc1

2

≥ C
∫
B(R)

F (
||u∗h||2

4
)dvg −

Cc1
2
≥ Cc1

2
(3.25)

From (3.25) and |∇r| = f−1, we have

lim
R→∞

∫
B(R)

F ( ||u
∗h||2
4 )

ϕ(r(x))
dvg =

∫ ∞
0

dR

ϕ(R)

∫
∂B(R)

F (
||u∗h||2

4
)/|∇r|dsg

=

∫ ∞
0

dR

ϕ(R)

∫
∂B(R)

F (
||u∗h||2

4
)fdsg

≥
∫ ∞
R4

dR

ϕ(R)

∫
∂B(R)

F (
||u∗h||2

4
)fdsg

≥
∫ ∞
R4

c1CdR

2Rϕ(R)
= +∞. (3.26)

This contradicts (3.10), therefore u is a constant.

From the proof of Theorem 6 for f = 1, we immediately get the following:

Corollary 3. Let M and Kr be as in Theorem 3. If u : (M, g) → (N,h) is a
smooth map which satisfies the following∫

M

divSΦF,u
dvg =

∫
M

h(N∇H ◦ u, du(X))dvg

for any X ∈ Γ(TM), ∂H◦u∂r ≥ 0 and ΦF (u) of u is slowly divergent, then u is a
constant.
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