# Liouville theorems for weakly $F$-stationary maps with potential 

by
${ }^{1}$ Yingbo Han, ${ }^{1}$ Shuxiang Feng and ${ }^{2}$ Wei Zhang


#### Abstract

In this paper, we introduce the notion of weakly $F$-stationary map with potential which is a critical point of the functional $\Phi_{F, H}$ with respect to variations in the domain. It is a generalization of $F$-stationary maps with potential. We obtain some Liouville theorems for these maps under some curvature conditions of the domain manifolds and some conditions on $H$. We obtain similar theorems for maps obeying a class of integral equations involving the stress-energy tensor.


Key Words: Weakly $F$-stationary map with potential, Liouville theorem, stress-energy tensor.
2010 Mathematics Subject Classification: Primary 58E20, Secondary 53C21.

## 1 Introduction

Let $F:[0, \infty) \rightarrow[0, \infty)$ be a $C^{2}$ function such that $F(0)=0$ and $F^{\prime}(t)>0$ on $[0, \infty)$. For a smooth map $u:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ between two Riemannian manifolds $(M, g)$ and $(N, h)$, Asserda in [1] introduced the following functional

$$
\Phi_{F}(u)=\int_{M} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g}
$$

(see[10, 11, 12, 6]) where $u^{*} h$ is the symmetric 2 -tensor defined by

$$
\left(u^{*} h\right)(X, Y)=h(d u(X), d u(Y))
$$

for any vector fields $X, Y$ on $M$ and $\left\|u^{*} h\right\|$ is given by

$$
\left\|u^{*} h\right\|^{2}=\sum_{i, j=1}^{m}\left[h\left(d u\left(e_{i}\right), d u\left(e_{j}\right)\right)\right]^{2}
$$

with respect to a local orthonormal frame $\left(e_{1}, \cdots, e_{m}\right)$ on $(M, g)$. They derived that first variation formula of $\Phi_{F}$, then, by using stress-energy tensor, they obtained some monotonicity formulas and some Liouville theorems for stationary maps for the functional $\Phi_{F}$. Following [1], Han and Feng in [5] introduced the following functional $\Phi_{F, H}$ by

$$
\Phi_{F, H}(u)=\int_{M}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g}
$$

where $H$ is a smooth function on $N^{n}$. The map $u$ is $F$-stationary with potential $H$ for $\Phi_{F, H}$ if it is a critical point of $\Phi_{F, H}$ with respect to any compact supported variation of $u$. They obtained some Liouville theorems for $F$-stationary maps with potential $H$ and also investigated the stability for $F$-stationary maps with potential $H$ from or into the standard sphere.

Let $u_{t}:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)(-\epsilon<t<\epsilon)$ be a variation of $u$, i.e. $u_{t}=\Psi(t,$. with $u_{0}=u$, where $\Psi:(-\epsilon, \epsilon) \times M \rightarrow N$ is a smooth map. Let $\psi=\left.\frac{d \Psi}{d t}\right|_{t=0} \in$ $\Gamma\left(u^{-1} T N\right)$ be the variational field, where $\Gamma\left(u^{-1} T N\right)$ is the set of all smooth cross sections of the bundle. Let $\Gamma_{0}\left(u^{-1} T N\right)$ be a subset of $\Gamma\left(u^{-1} T N\right)$ consisting of all elements with compact supports contained in the interior of $M$. For each $\psi \in \Gamma_{0}\left(u^{-1} T N\right)$, there exists a variation $u_{t}(x)=\exp _{u(x)}(t \psi)$ (for $t$ small enough) of $u$, which has the variational field $\psi$. Such a variation is said to have a compact support. Let $D_{\psi} \Phi_{F, H}(u)=\left.\frac{d \Phi_{F, H}\left(u_{t}\right)}{d t}\right|_{t=0}$.

Remark 1. From the definition of F-stationary map with potential $H$, we know that a smooth map u from $M$ to $N$ is called $F$-stationary map with potential $H$ for the functional $\Phi_{F, H}$ if $D_{V} \Phi_{F, H}(u)=\left.\frac{d \Phi_{F, H}\left(u_{t}\right)}{d t}\right|_{t=0}=0$ for $V \in \Gamma_{0}\left(u^{-1} T N\right)$.

It is known that $d u(X) \in \Gamma\left(u^{-1} T N\right)$ for any vector field $X$ of $M$. If $X$ has a compact support which is contained in the interior of $M$, then $d u(X) \in$ $\Gamma_{0}\left(u^{-1} T N\right)$.

Definition 1. A smooth map $u:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ is said to be a weakly $F$ stationary map with potential $H$ for the functional $\Phi_{F, H}(u)$ if $D_{d u(X)} \Phi_{F, H}(u)=0$ for all $X \in \Gamma_{0}(T M)$.

Remark 2. From Remark 1 and Definition 1, we know that F-stationary maps with potential $H$ must be weakly F-stationary maps with potential $H$, that is, the weakly $F$-stationary maps with potential $H$ are the generalization of the $F$ stationary maps with potential $H$.

In this paper, we investigate weakly $F$-stationary maps with potential $H$ and obtain some Liouville theorems for these maps under some curvature conditions of the domain manifolds and some conditions on $H$. We also investigate some special maps, i.e. maps obeying the integral eqation (3.11) or (3.19) and obtain the Liouville theorems for these maps.

## 2 Preliminaries

Let $\nabla$ and ${ }^{N} \nabla$ always denote the Levi-Civita connections of $M$ and $N$ respectively. We choose a local orthonormal frame field $\left\{e_{i}\right\}$ on $M$. We define the $F$ - $H$-tension field $\tau_{\Phi_{F, H}}(u)$ of $u$ by

$$
\tau_{\Phi_{F, H}}(u)=\tau_{\Phi_{F}}(u)+{ }^{N} \nabla H \circ u,
$$

where $\tau_{\Phi_{F}}(u)=F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) \operatorname{div} v_{g}\left(\sigma_{u}\right)+\sigma_{u}\left(\operatorname{grad}\left(F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)\right)\right)$ as defined in [1] , and $\sigma_{u}=\sum_{j} h\left(d u(),. d u\left(e_{j}\right)\right) d u\left(e_{j}\right)$ as defined in [10].

Lemma 1. [5](The first variation formula) Let $u: M \rightarrow N$ be a smooth map. Then

$$
\begin{equation*}
D_{\psi} \Phi_{F, H}(u)=-\int_{M} h\left(\tau_{\Phi_{F, H}}(u), \psi\right) d v_{g} \tag{2.1}
\end{equation*}
$$

where $\psi=\Gamma_{0}\left(u^{-1} T N\right)$.
Let $u: M \rightarrow N$ be a weakly $F$-stationary map with potential $H$ and $X \in$ $\Gamma_{0}(T M)$. Then by (2.1) and the definition of weakly $F$-stationary maps with potential $H$, we have

$$
\begin{equation*}
D_{d u(X)} \Phi_{F, H}(u)=-\int_{M} h\left(\tau_{\Phi_{F, H}}(u), d u(X)\right) d v_{g}=0 \tag{2.2}
\end{equation*}
$$

Recall that for a 2-tensor field $T \in \Gamma\left(T^{*} M \otimes T^{*} M\right)$, its divergence $\operatorname{div} T \in$ $\Gamma\left(T^{*} M\right)$ is defined by

$$
\begin{equation*}
(\operatorname{div} T)(X)=\sum_{i}\left(\nabla_{e_{i}} T\right)\left(e_{i}, X\right) \tag{2.3}
\end{equation*}
$$

where $X$ is any smooth vector field on $M$. For two 2-tensors $T_{1}, T_{2} \in \Gamma\left(T^{*} M \otimes\right.$ $\left.T^{*} M\right)$, their inner product is defined as follows;

$$
\begin{equation*}
<T_{1}, T_{2}>=\sum_{i j} T\left(e_{i}, e_{j}\right) T_{2}\left(e_{i}, e_{j}\right) \tag{2.4}
\end{equation*}
$$

where $\left\{e_{i}\right\}$ is an orthonormal basis of with respect to $g$. For a vector field $X \in$ $\Gamma(T M)$, we denote by $\theta_{X}$ is dual one form i.e. $\theta_{X}(Y)=g(X, Y)$. The covariant derivative of $\theta_{X}$ gives a 2 -tensor field $\nabla \theta_{X}$ :

$$
\begin{equation*}
\left(\nabla \theta_{X}\right)(Y, Z)=\left(\nabla_{Z} \theta_{X}\right)(Y)=g\left(\nabla_{Z} X, Y\right) \tag{2.5}
\end{equation*}
$$

If $X=\nabla \varphi$ is the gradient of some function $\varphi$ on $M$, then $\theta_{X}=d \varphi$ and $\nabla \theta_{X}=$ Hess $\varphi$.

Lemma 2. (cf.[2, 3]). Let $T$ be a symmetric (0,2)-type tensor field and let $X$ be a vector field, then

$$
\begin{equation*}
\operatorname{div}\left(i_{X} T\right)=(\operatorname{div} T)(X)+<T, \nabla \theta_{X}>=(\operatorname{div} T)(X)+\frac{1}{2}<T, L_{X} g> \tag{2.6}
\end{equation*}
$$

where $L_{X}$ is the Lie derivative of the metric $g$ in the direction of $X$. Indeed, let $\left\{e_{1}, \cdots, e_{m}\right\}$ be a local orthonormal frame field on $M$. Then

$$
\begin{aligned}
& \frac{1}{2}<T, L_{X} g>=\sum_{i, j=1}^{m} \frac{1}{2}<T\left(e_{i}, e_{j}\right), L_{X} g\left(e_{i}, e_{j}\right)> \\
& =\sum_{i, j=1}^{m} T\left(e_{i}, e_{j}\right) g\left(\nabla_{e_{i}} X, e_{j}\right)=<T, \nabla \theta_{X}>
\end{aligned}
$$

Let $D$ be any bounded domain of $M$ with $C^{1}$ boundary. By using the stokes' theorem, we immediately have the following integral formula:

$$
\begin{equation*}
\int_{\partial D} T(X, \nu) d s_{g}=\int_{D}\left[<T, \frac{1}{2} L_{X} g>+\operatorname{div}(T)(X)\right] d v_{g} \tag{2.7}
\end{equation*}
$$

where $\nu$ is the unit outward normal vector field along $\partial D$.
From the equation (2.7), we have
Corollary 1. If $X$ is a smooth vector field with a compact contained in the interior of $M$, then

$$
\begin{equation*}
\int_{M}\left[<T, \frac{1}{2} L_{X} g>+\operatorname{div}(T)(X)\right] d v_{g}=0 \tag{2.8}
\end{equation*}
$$

Asserda in [1] introduced a symmetric 2-tensor $S_{\Phi_{F, u}}$ to the functional $\Phi_{F}(u)$ by

$$
\begin{equation*}
S_{\Phi_{F, u}}=F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) g-F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) h\left(\sigma_{u}(.), d u(.)\right) \tag{2.9}
\end{equation*}
$$

which is called the stress-energy tensor.
Lemma 3. [1] For any smooth vector field $X$ of $M$, we have

$$
\begin{equation*}
\left(d i v S_{\Phi_{F, u}}\right)(X)=-h\left(\tau_{\Phi_{F}}(u), d u(X)\right) \tag{2.10}
\end{equation*}
$$

By using the equations (2.2), (2.8) and (2.10), we know that if $u: M \rightarrow N$ is a weakly $F$-stationary map with potential $H$, then we have

$$
\begin{aligned}
0 & =\int_{M}<S_{\Phi_{F, u}}, \frac{1}{2} L_{X} g>d v_{g}-\int_{M} h\left(\tau_{\Phi_{F}}(u)+^{N} \nabla H(u)-{ }^{N} \nabla H(u), d u(X)\right) d v_{g} \\
& =\int_{M}<S_{\Phi_{F, u}}, \frac{1}{2} L_{X} g>d v_{g}-\int_{M} h\left(\tau_{\Phi_{F, H}}(u)-^{N} \nabla H(u), d u(X)\right) d v_{g} \\
& =\int_{M}<S_{\Phi_{F, u}}, \frac{1}{2} L_{X} g>d v_{g}+\int_{M} h\left({ }^{N} \nabla H(u), d u(X)\right) d v_{g}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\int_{M}<S_{\Phi_{F, u}}, \frac{1}{2} L_{X} g>d v_{g}+\int_{M} h\left({ }^{N} \nabla H(u), d u(X)\right) d v_{g}=0 \tag{2.11}
\end{equation*}
$$

for any $X \in \Gamma_{0}(T M)$.
Han and Feng in [5] introduced a symmetric 2-tensor $S_{\Phi_{F, H, u}}$ to the functional $\Phi_{F, H}(u)$ by

$$
\begin{equation*}
S_{\Phi_{F, H, u}}=\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] g-F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) h\left(\sigma_{u}(.), d u(.)\right) . \tag{2.12}
\end{equation*}
$$

which is called the stress-energy tensor.
Lemma 4. [5] For any smooth vector field $X$ of $M$, we have

$$
\begin{equation*}
\left(\operatorname{div} S_{\left.\Phi_{F, H, u}\right)}(X)=-h\left(\tau_{\Phi_{F, H}}(u), d u(X)\right)\right. \tag{2.13}
\end{equation*}
$$

By using the equations (2.2), (2.8) and (2.13), we know that if $u: M \rightarrow N$ is a weakly $F$-stationary map with potential $H$, then we have

$$
\begin{equation*}
\int_{M}<S_{\Phi_{F, H, u}}, \frac{1}{2} L_{X} g>d v_{g}=0 \tag{2.14}
\end{equation*}
$$

for any $X \in \Gamma_{0}(T M)$.

## 3 Liouville theorems

Let $\left(M, g_{0}\right)$ be a complete Riemannian manifold with a pole $x_{0}$. Denote by $r(x)$ the $g_{0}$-distance function relative to the pole $x_{0}$, that is $r(x)=\operatorname{dist}_{g_{0}}\left(x, x_{0}\right)$. Set $B(r)=\left\{x \in M^{m}: r(x) \leq r\right\}$. It is known that $\frac{\partial}{\partial r}$ is always an eigenvector of $H_{e s s}^{g_{0}}\left(r^{2}\right)$ associated to eigenvalue 2. Denote by $\lambda_{\max }$ (resp. $\lambda_{\text {min }}$ ) the maximum (resp. minimal) eigenvalues of $H_{e s s}^{g_{0}}\left(r^{2}\right)-2 d r \otimes d r$ at each point of $M-\left\{x_{0}\right\}$. Let $\left(N^{n}, h\right)$ be a Riemannian manifold, and $H$ be a smooth function on $N$.

From now on, we suppose that $u:\left(M^{m}, g\right) \rightarrow(N, h)$ is a smooth map, where $g=f^{2} g_{0}, 0<f \in C^{\infty}(M)$. Clearly the vector field $\nu=f^{-1} \frac{\partial}{\partial r}$ is an outer normal vector field along $\partial B(r) \subset(M, g)$. The following conditions that we will assume for $f$ are as follows:
$\left(f_{1}\right)$

$$
\frac{\partial \log f}{\partial r} \geq 0
$$

$\left(f_{2}\right)$ there is a constant $C>0$ such that

$$
\left(m-4 d_{F}\right) r \frac{\partial \log f}{\partial r}+\frac{m-1}{2} \lambda_{\min }+1-2 d_{F} \max \left\{2, \lambda_{\max }\right\} \geq C
$$

where $d_{F}$ is defined as follows: $d_{F}=\sup _{t \geq 0} \frac{t F^{\prime}(t)}{F(t)}\left(l_{F}=\inf _{t \geq 0} \frac{t F^{\prime}(t)}{F(t)}\right)$ (cf. [9], [3]). In this paper we assume that $d_{F}$ is finite.

Theorem 1. Let $u:\left(M, f^{2} g_{0}\right) \rightarrow(N, h)$ be a weakly F-stationary map with potential $H$. If f satisfies $\left(f_{1}\right)\left(f_{2}\right), H \leq 0\left(\right.$ or $\left.\left.H\right|_{u(M)} \leq 0\right)$ and $\int_{M}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)\right.$ $H \circ u] d v_{g}<\infty$, then $u$ is a constant.
Proof: We take $X=\phi(r) r \frac{\partial}{\partial r}=\frac{1}{2} \phi(r) \nabla^{0} r^{2}$, where $\nabla^{0}$ denotes the covariant derivative determined by $g_{0}$ and $\phi(r)$ is a nonnegative function determined later. By direct computation, we have
$<S_{\Phi_{F, H, u}}, \frac{1}{2} L_{X} g>=\phi(r) r \frac{\partial \log f}{\partial r}<S_{\Phi_{F, H, u}}, g>+\frac{1}{2} f^{2}<S_{\Phi_{F, H, u}}, L_{\phi(r) r \frac{\partial}{\partial r}} g_{0}>($
Let $\left\{e_{i}\right\}_{i=1}^{m}$ be an orthonormal basis with respect to $g_{0}$ and $e_{m}=\frac{\partial}{\partial r}$. We may assume that $\operatorname{Hess}_{g_{0}}\left(r^{2}\right)$ becomes a diagonal matrix with respect to $\left\{e_{i}\right\}_{i=1}^{m}$. Then $\left\{\widetilde{e}_{i}=f^{-1} e_{i}\right\}$ ia an orthonormal basis with respect to $g$.

Now we compute

$$
\begin{align*}
<S_{\Phi_{F, H, u}}, g> & =\sum_{i, j} S_{\Phi_{F, H, u}}\left(\widetilde{e_{i}}, \widetilde{e_{j}}\right) g\left(\widetilde{e_{i}}, \widetilde{e_{j}}\right) \\
& =m\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]-F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) \sum_{i} h\left(\sigma_{u}\left(\widetilde{e_{i}}\right), d u\left(\widetilde{e_{i}}\right)\right) \\
& =m\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]-F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)\left\|u^{*} h\right\|^{2} \\
& \geq m\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]-4 d_{F} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) \\
& \geq m\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]-4 d_{F}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] \\
& \geq\left(m-4 d_{F}\right)\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] \tag{3.2}
\end{align*}
$$

and

$$
\begin{aligned}
& f^{2}<S_{\Phi_{F, H, u}}, L_{\phi(r) r} \frac{\partial}{\partial r} g_{0}> \\
& =f^{2} \sum_{i, j} S_{\Phi_{F, H, u}}\left(\widetilde{e_{i}}, \widetilde{e_{j}}\right)\left(L_{\phi(r) r \frac{\partial}{\partial r}} g_{0}\right)\left(\widetilde{e_{i}}, \widetilde{e_{j}}\right) \\
& =f^{2}\left\{\sum_{i, j}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] g\left(\widetilde{e_{i}}, \widetilde{e_{j}}\right)\left(L_{\phi(r) r \frac{\partial}{\partial r}} g_{0}\right)\left(\widetilde{e_{i}}, \widetilde{e_{j}}\right)\right. \\
& \left.-\sum_{i, j} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) h\left(\sigma_{u}\left(\widetilde{e_{i}}\right), d u\left(\widetilde{e_{j}}\right)\right)\left(L_{\phi(r) r \frac{\partial}{\partial r}} g_{0}\right)\left(\widetilde{e_{i}}, \widetilde{e_{j}}\right)\right\} \\
& =\sum_{i}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]\left(L_{\phi(r) r \frac{\partial}{\partial r}} g_{0}\right)\left(e_{i}, e_{i}\right) \\
& \left.-\sum_{i, j} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) h\left(\sigma_{u}\left(\widetilde{e_{i}}\right), d u\left(\widetilde{e_{j}}\right)\right)\left(L_{\phi(r) r \frac{\partial}{\partial r}} g_{0}\right)\left(e_{i}, e_{j}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& =\phi(r) \sum_{i}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] \operatorname{Hess}_{g_{0}}\left(r^{2}\right)\left(e_{i}, e_{i}\right) \\
& +2\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] r \phi^{\prime}(r) \\
& -\phi(r) \sum_{i, j} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) h\left(\sigma_{u}\left(\widetilde{e_{i}}\right), d u\left(\widetilde{e_{j}}\right)\right) \operatorname{Hess}_{g_{0}}\left(r^{2}\right)\left(e_{i}, e_{j}\right) \\
& -2 F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) \\
& \geq \phi(r)\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]\left[2+(m-1) \lambda_{\min }\right] \\
& -\phi(r) F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) \max \left\{2, \lambda_{\max }\right\} \sum_{i} h\left(\sigma_{u}\left(\widetilde{e}_{i}\right), d u\left(\widetilde{e}_{i}\right)\right) \\
& +2\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] r \phi^{\prime}(r)-2 F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) \\
& =\phi(r)\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]\left[2+(m-1) \lambda_{\min }\right] \\
& -\phi(r) F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) \max \left\{2, \lambda_{\max }\right\}\left\|u^{*} h\right\|^{2} \\
& +2\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] r \phi^{\prime}(r)-2 F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) \\
& \geq \phi(r)\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]\left[2+(m-1) \lambda_{\min }\right] \\
& -\phi(r) 4 \max \left\{2, \lambda_{\max }\right\}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] \\
& +2\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] r \phi^{\prime}(r)-2 F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) \\
& \geq \phi(r)\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]\left[2+(m-1) \lambda_{\min }-4 d_{F} \max \left\{2, \lambda_{\max }\right\}\right] \\
& +2\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] r \phi^{\prime}(r)  \tag{3.3}\\
& -2 F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) .
\end{align*}
$$

From (3.1), (3.2), (3.3), $\left(f_{1}\right)$ and $\left(f_{2}\right)$, we have

$$
\begin{aligned}
<S_{\Phi_{F, H, u}}, \frac{1}{2} L_{X} g> & \geq \phi(r)\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]\left[\left(m-4 d_{F}\right) r \frac{\partial \log f}{\partial r}+1\right. \\
& \left.+\frac{(m-1)}{2} \lambda_{\min }-2 d_{F} \max \left\{2, \lambda_{\max }\right\}\right] \\
& +\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] r \phi^{\prime}(r)
\end{aligned}
$$

$$
\begin{align*}
& -F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) \\
& \geq C \phi(r)\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]+\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] r \phi^{\prime}(r) \\
& -F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) \tag{3.4}
\end{align*}
$$

For any fixed $R>0$, we take a smooth function $\phi(r)$ which takes value 1 on $B\left(\frac{R}{2}\right), 0$ outside $B(R)$ and $0 \leq \phi(r) \leq 1$ on $T(R)=B(R)-B\left(\frac{R}{2}\right)$. And $\phi(r)$ also satisfies the condition: $\left|\phi^{\prime}(r)\right| \leq \frac{C_{0}}{r}$ on $M$, where $C_{0}$ is a positive constant. From (2.14) and (3.4), we have

$$
\begin{align*}
0 & \geq \int_{M}\left[C \phi(r)\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]+\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] r \phi^{\prime}(r)\right] d v_{g} \\
& -\int_{M} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) d v_{g} \\
& \geq \int_{B\left(\frac{R}{2}\right)} C\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g}+\int_{T(R)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] r \phi^{\prime}(r) d v_{g} \\
& -\int_{T(R)} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) d v_{g} \\
& \geq \int_{B\left(\frac{R}{2}\right)} C\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g}-C_{0} \int_{T(R)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g} \\
& -C_{0} \int_{T(R)} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)\left\|u^{*} h\right\|^{2} d v_{g}  \tag{3.5}\\
& \geq \int_{B\left(\frac{R}{2}\right)} C\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g}-C_{0}\left(1+4 d_{F}\right) \int_{T(R)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g} .
\end{align*}
$$

From $\int_{M}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g}<\infty$, we have

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{T(R)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g}=0 \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6), we have

$$
0 \geq C \int_{M}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g} \geq C \int_{M} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g}
$$

so we know that $u$ is a constant.

Theorem 2. Let $u:\left(M, f^{2} g_{0}\right) \rightarrow(N, h)$ be a weakly $F$-stationary map with potential $H$. If $f$ satisfies $\left(f_{1}\right)\left(f_{2}\right), \frac{\partial H \circ u}{\partial r} \geq 0$ and $\int_{M} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g}<\infty$, then $u$ is a constant.

Proof: By using the similar method in the proof in Theorem 1, we can obtain the following:

$$
\begin{aligned}
<S_{\Phi_{F, u}}, \frac{1}{2} L_{X} g> & \geq C \phi(r) F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)+F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) \\
& -F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right)
\end{aligned}
$$

From $\frac{\partial H \circ u}{\partial r} \geq 0$, we have

$$
\begin{align*}
& <S_{\Phi_{F, u}}, \frac{1}{2} L_{X} g>+\phi(r) r \frac{\partial H \circ u}{\partial r} \\
& \geq C \phi(r) F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)+F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) \\
& -F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) \tag{3.7}
\end{align*}
$$

For any fixed $R>0$, we take a smooth function $\phi(r)$ which takes value 1 on $B\left(\frac{R}{2}\right), 0$ outside $B(R)$ and $0 \leq \phi(r) \leq 1$ on $T(R)=B(R)-B\left(\frac{R}{2}\right)$. And $\phi(r)$ also satisfies the condition: $\left|\phi^{\prime}(r)\right| \leq \frac{C_{0}}{r}$ on $M$, where $C_{0}$ is a positive constant. From (2.11) and (3.7), we have

$$
\begin{align*}
0 & \geq \int_{M}\left[C \phi(r) F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)+F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r)\right] d v_{g} \\
& -\int_{M} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) r \phi^{\prime}(r) h\left(\sigma_{u}\left(\widetilde{e_{m}}\right), d u\left(\widetilde{e_{m}}\right)\right) d v_{g} \\
& \geq \int_{B\left(\frac{R}{2}\right)} C F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g}-C_{0} \int_{T(R)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g} \\
& -C_{0} \int_{T(R)} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)\left\|u^{*} h\right\|^{2} d v_{g} \\
& \geq \int_{B\left(\frac{R}{2}\right)} C F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g}-C_{0}\left(1+4 d_{F}\right) \int_{T(R)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g} . \tag{3.8}
\end{align*}
$$

From $\int_{M} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g}<\infty$, we have

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{T(R)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g}=0 \tag{3.9}
\end{equation*}
$$

From (3.8) and (3.9), we have

$$
0 \geq C \int_{M} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g}
$$

so we know that $u$ is a constant.

Lemma 5. [5, 7, 8] Let $\left(M^{m}, g\right)$ be a complete Riemannian manifold with a pole $x_{0}$. Denote by $K_{r}$ the radial curvature of $M$.
(i) if $-\alpha^{2} \leq K_{r} \leq-\beta^{2}$ with $\alpha \geq \beta>0$ and $(m-1) \beta-4 d_{F} \alpha>0$, then

$$
\left[(m-1) \lambda_{\min }+2-4 d_{F} \max \left\{2, \lambda_{\max }\right\}\right] \geq 2\left(m-\frac{4 d_{F} \alpha}{\beta}\right)
$$

(ii) if $-\frac{A}{\left(1+r^{2}\right)^{1+\varepsilon}} \leq K_{r} \leq \frac{B}{\left(1+r^{2}\right)^{1+\varepsilon}}$ with $\varepsilon>0, A \geq 0$ and $0 \leq B<2 \varepsilon$, then

$$
\left[(m-1) \lambda_{\min }+2-4 d_{F} \max \left\{2, \lambda_{\max }\right\}\right] \geq 2\left[1+(m-1)\left(1-\frac{B}{2 \varepsilon}\right)-4 d_{F} e^{\frac{A}{2 \varepsilon}}\right]
$$

(iii) if $-\frac{a^{2}}{c^{2}+r^{2}} \leq K_{r} \leq \frac{b^{2}}{c^{2}+r^{2}}$ with $a \geq 0, b^{2} \in\left[0, \frac{1}{4}\right]$ and $c^{2} \geq 0$, then

$$
\begin{aligned}
& {\left[(m-1) \lambda_{\min }+2-4 d_{F} \max \left\{2, \lambda_{\max }\right\}\right]} \\
& \geq 2\left[1+(m-1) \frac{1+\sqrt{1-4 b^{2}}}{2}-4 d_{F} \frac{1+\sqrt{1+4 a^{2}}}{2}\right]
\end{aligned}
$$

Theorem 3. Let $(M, g)$ be an $m$-dimensional complete manifold with a pole $x_{0}$. Assume that the radial curvature $K_{r}$ of $M$ satisfies one of the following three conditions:
(i) if $-\alpha^{2} \leq K_{r} \leq-\beta^{2}$ with $\alpha \geq \beta>0$ and $(m-1) \beta-4 d_{F} \alpha>0$,
(ii) if $-\frac{A}{\left(1+r^{2}\right)^{1+\varepsilon}} \leq K_{r} \leq \frac{B}{\left(1+r^{2}\right)^{1+\varepsilon}}$ with $\varepsilon>0, A \geq 0,0 \leq B<2 \varepsilon$ and $1+(m-1)\left(1-\frac{B}{2 \varepsilon}\right)-4 d_{F} e^{\frac{A}{2 \varepsilon}}>0$,
(iii) if $-\frac{a^{2}}{c^{2}+r^{2}} \leq K_{r} \leq \frac{b^{2}}{c^{2}+r^{2}}$ with $a \geq 0, b^{2} \in\left[0, \frac{1}{4}\right], c^{2} \geq 0$ and $1+(m-$ 1) $\frac{1+\sqrt{1-4 b^{2}}}{2}-4 d_{F} \frac{1+\sqrt{1+4 a^{2}}}{2}>0$.

If $u:(M, g) \rightarrow(N, h)$ is a weakly $F$-stationary map with potential $H, H \leq 0$ (or $\left.H\right|_{u(M)} \leq 0$ ) and $\int_{M}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g}<\infty$, then $u$ is a constant.

Proof: From the proof of theorem 1 for $f=1$ and Lemma 5, we know that theorem 3 is true.

Theorem 4. Let $M$ and $K_{r}$ be as in Theorem 3. If $u:(M, g) \rightarrow(N, h)$ is a weakly F-stationary map with potential $H, \frac{\partial H \circ u}{\partial r} \geq 0$ and $\int_{M} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g}<\infty$, then $u$ is a constant.

Proof: From the proof of theorem 2 for $f=1$ and Lemma 5, we know that theorem 4 is true.

We say the functional $\Phi_{F, H}(u)\left(\Phi_{F}(u)\right)$ of $u$ is slowly divergent if there exists a positive function $\varphi(r)$ with $\int_{R_{0}}^{\infty} \frac{d r}{r \varphi(r)}=+\infty\left(R_{0}>0\right)$, such that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{B(R)} \frac{\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]}{\varphi(r(x))} d v_{g}<\infty\left(\lim _{R \rightarrow \infty} \int_{B(R)} \frac{F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)}{\varphi(r(x))} d v_{g}<\infty\right)( \tag{3.10}
\end{equation*}
$$

Theorem 5. Let $u:\left(M, f^{2} g_{0}\right) \rightarrow(N, h)$ be a smooth map which satisfies the following

$$
\begin{equation*}
\int_{M}\left(\operatorname{div} S_{\Phi_{F, H, u}}\right)(X) d v_{g}=0 \tag{3.11}
\end{equation*}
$$

for any $X \in \Gamma(T M)$. If $f$ satisfies $\left(f_{1}\right)\left(f_{2}\right), H \leq 0\left(\right.$ or $\left.\left.H\right|_{u(M)} \leq 0\right)$ and $\Phi_{F, H}(u)$ of $u$ is slowly divergent, then $u$ is a constant.

Proof: From the inequality (3.4) for $\phi(r)=1$, we have

$$
\begin{equation*}
<S_{\Phi_{F, H, u}}, \frac{1}{2} L_{X} g>\geq C\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] \tag{3.12}
\end{equation*}
$$

On the other hand, taking $D=B(r)$ and $T=S_{\Phi_{F, H, u}}$ in (2.7), we have

$$
\begin{align*}
& \int_{B(r)}<S_{\Phi_{F, H, u}}, \frac{1}{2} L_{X} g>d v_{g}+\int_{B(r)}\left(d i v S_{\Phi_{F, H, u}}\right)(X) d v_{g} \\
& =\int_{\partial B(r)} S_{\Phi_{F, H, u}(X, \nu) d s_{g}}=\int_{\partial B(r)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] g(X, \nu) d s_{g} \\
& -\int_{\partial B(r)} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) h\left(d u(X), \sigma_{u}(\nu)\right) d s_{g} \\
& =\int_{\partial B(r)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] f^{2} g_{0}\left(r \frac{\partial}{\partial r}, f^{-1} \frac{\partial}{\partial r}\right) d s_{g} \\
& -\int_{\partial B(r)} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) f^{-1} r h\left(d u\left(\frac{\partial}{\partial r}\right), \sigma_{u}\left(\frac{\partial}{\partial r}\right)\right) d s_{g} \\
& =r \int_{\partial B(r)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] f d s_{g} \\
& -\int_{\partial B(r)} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) f^{-1} r \sum_{i} h\left(d u\left(\widetilde{e}_{i}\right), d u\left(\frac{\partial}{\partial r}\right)\right)^{2} d s_{g} \\
& \leq r \int_{\partial B(r)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] f d s_{g}
\end{align*}
$$

Now suppose that $u$ is a nonconstant map, so there exists $R_{1} \geq R_{0}>0$ such that for $R \geq R_{1}$,

$$
\begin{equation*}
\int_{B(R)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] d v_{g} \geq c_{0} \tag{3.14}
\end{equation*}
$$

where $c_{0}$ is a positive constant. From (3.12), (3.13) and (3.14), we have

$$
\begin{equation*}
\int_{\partial B(R)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] f d s_{g} \geq \frac{c_{0} C}{R}+\frac{1}{R} \int_{B(R)}\left(\operatorname{div} S_{\Phi_{F, H, u}}\right)(X) d v_{g} \tag{3.15}
\end{equation*}
$$

for $R \geq R_{1}$. From (3.11), we have

$$
\lim _{R \rightarrow \infty} \int_{B(R)}\left(\operatorname{div} S_{\Phi_{F, H, u}}\right)(X) d v_{g}=0
$$

so we know that there exists a positive constant $R_{2} \geq R_{1}$ such that for $R \geq R_{2}$, we have

$$
\begin{equation*}
-\frac{c_{0} C}{2} \leq \int_{B(R)}\left(\operatorname{div} S_{\Phi_{F,, H u}}\right)(X) d v_{g} \leq \frac{c_{0} C}{2} \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16), we have

$$
\begin{equation*}
\int_{\partial B(R)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] f d s_{g} \geq \frac{c_{0} C}{2 R} \tag{3.17}
\end{equation*}
$$

for $R \geq R_{2}$. From (3.17) and $|\nabla r|=f^{-1}$, we have

$$
\begin{align*}
& \lim _{R \rightarrow \infty} \int_{B(R)} \frac{\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right]}{\varphi(r(x))} d v_{g} \\
& =\int_{0}^{\infty} \frac{d R}{\varphi(R)} \int_{\partial B(R)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] /|\nabla r| d s_{g} \\
& =\int_{0}^{\infty} \frac{d R}{\varphi(R)} \int_{\partial B(R)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] f d s_{g} \\
& \geq \int_{R_{2}}^{\infty} \frac{d R}{\varphi(R)} \int_{\partial B(R)}\left[F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)-H \circ u\right] f d s_{g} \\
& \geq \int_{R_{2}}^{\infty} \frac{c_{0} C d R}{2 R \varphi(R)}=+\infty \tag{3.18}
\end{align*}
$$

This contradicts (3.10), therefore $u$ is a constant.

From the proof of Theorem 5 for $f=1$, we immediately get the following:

Corollary 2. Let $M$ and $K_{r}$ be as in Theorem 3. If $u:(M, g) \rightarrow(N, h)$ is a smooth map which satisfies the following

$$
\int_{M}\left(\operatorname{div} S_{\Phi_{F, H, u}}\right)(X) d v_{g}=0
$$

for any $X \in \Gamma(T M), H \leq 0$ (or $\left.\left.H\right|_{u(M)} \leq 0\right)$ and $\Phi_{F, H}(u)$ of $u$ is slowly divergent, then $u$ is a constant.

Theorem 6. Let $u:\left(M, f^{2} g_{0}\right) \rightarrow(N, h)$ be a smooth map which satisfies the following

$$
\begin{equation*}
\int_{M} d i v S_{\Phi_{F, u}} d v_{g}=\int_{M} h\left({ }^{N} \nabla H \circ u, d u(X)\right) d v_{g} \tag{3.19}
\end{equation*}
$$

for any $X \in \Gamma(T M)$. If $f$ satisfies $\left(f_{1}\right)\left(f_{2}\right), \frac{\partial H \circ u}{\partial r} \geq 0$ and $\Phi_{F}(u)$ of $u$ is slowly divergent, then $u$ is a constant.

Proof: From the inequality (3.7) for $\phi(r)=1$, we have

$$
\begin{equation*}
<S_{\Phi_{F, u}}, \frac{1}{2} L_{X} g>+h\left({ }^{N} \nabla H \circ u, d u(X)\right) \geq C F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) . \tag{3.20}
\end{equation*}
$$

On the other hand, taking $D=B(r)$ and $T=S_{\Phi_{F, u}}$ in (2.7), we have

$$
\begin{align*}
& \int_{B(r)}<S_{\Phi_{F, u}}, \frac{1}{2} L_{X} g>d v_{g}+\int_{B(r)}\left(\operatorname{div} S_{\Phi_{F, u}}\right)(X) d v_{g}=\int_{\partial B(r)} S_{\Phi_{F, u}}(X, \nu) d s_{g} \\
& =\int_{\partial B(r)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) g(X, \nu) d s_{g}-\int_{\partial B(r)} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) h\left(d u(X), \sigma_{u}(\nu)\right) d s_{g} \\
& =r \int_{\partial B(r)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) f d s_{g}-\int_{\partial B(r)} F^{\prime}\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) f^{-1} r \sum_{i} h\left(d u\left(\widetilde{e}_{i}\right), d u\left(\frac{\partial}{\partial r}\right)\right)^{2} d s_{g} \\
& \leq r \int_{\partial B(r)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) f d s_{g} . \tag{3.21}
\end{align*}
$$

Now suppose that $u$ is a nonconstant map, so there exists $R_{3} \geq R_{0}>0$ such that for $R \geq R_{3}$,

$$
\begin{equation*}
\int_{B(R)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g} \geq c_{1} \tag{3.22}
\end{equation*}
$$

where $c_{1}$ is a positive constant. From (3.19), we have

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{B(R)}\left(\operatorname{div} S_{\Phi_{F, H}}\right) d v_{g}=\lim _{R \rightarrow \infty} \int_{B(R)} h\left({ }^{N} \nabla H \circ u, d u(X)\right) d v_{g} \tag{3.23}
\end{equation*}
$$

so we know that there exists a positive constant $R_{4}>R_{3}$ such that for $R \geq R_{4}$, we have

$$
\begin{equation*}
-\frac{C c_{1}}{2} \leq \int_{B(R)}\left(\operatorname{div} S_{\Phi_{F, H}}\right) d v_{g}-\int_{B(R)} h\left({ }^{N} \nabla H \circ u, d u(X)\right) d v_{g} \leq \frac{C c_{1}}{2} \tag{3.24}
\end{equation*}
$$

From $(3.21)(3.22)$ and (3.24), we have for $R>R_{4}$

$$
\begin{align*}
& R \int_{\partial B(R)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) f d s_{g} \\
& \geq \int_{B(R)}<S_{\Phi_{F, u}}, \frac{1}{2} L_{X} g>d v_{g}+\int_{B(R)}\left(\operatorname{div} S_{\Phi_{F, u}}\right)(X) d v_{g} \\
& \geq \int_{B(R)}<S_{\Phi_{F, u}}, \frac{1}{2} L_{X} g>d v_{g} \\
& +\int_{B(R)} h\left({ }^{N} \nabla H \circ u, d u(X)\right) d v_{g}-\frac{C c_{1}}{2} \\
& \geq C \int_{B(R)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) d v_{g}-\frac{C c_{1}}{2} \geq \frac{C c_{1}}{2} \tag{3.25}
\end{align*}
$$

From (3.25) and $|\nabla r|=f^{-1}$, we have

$$
\begin{align*}
\lim _{R \rightarrow \infty} \int_{B(R)} \frac{F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right)}{\varphi(r(x))} d v_{g} & =\int_{0}^{\infty} \frac{d R}{\varphi(R)} \int_{\partial B(R)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) /|\nabla r| d s_{g} \\
& =\int_{0}^{\infty} \frac{d R}{\varphi(R)} \int_{\partial B(R)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) f d s_{g} \\
& \geq \int_{R_{4}}^{\infty} \frac{d R}{\varphi(R)} \int_{\partial B(R)} F\left(\frac{\left\|u^{*} h\right\|^{2}}{4}\right) f d s_{g} \\
& \geq \int_{R_{4}}^{\infty} \frac{c_{1} C d R}{2 R \varphi(R)}=+\infty \tag{3.26}
\end{align*}
$$

This contradicts (3.10), therefore $u$ is a constant.

From the proof of Theorem 6 for $f=1$, we immediately get the following:
Corollary 3. Let $M$ and $K_{r}$ be as in Theorem 3. If $u:(M, g) \rightarrow(N, h)$ is a smooth map which satisfies the following

$$
\int_{M} \operatorname{div} S_{\Phi_{F, u}} d v_{g}=\int_{M} h\left({ }^{N} \nabla H \circ u, d u(X)\right) d v_{g}
$$

for any $X \in \Gamma(T M), \frac{\partial H \circ u}{\partial r} \geq 0$ and $\Phi_{F}(u)$ of $u$ is slowly divergent, then $u$ is $a$ constant.

Acknowledgement. The authors would like to thank the referee whose valuable suggestions make this paper more perfect. This project was supported by the National Natural Science Foundation of China ( Grant Nos.11201400, 10971029, 11026062), Project of Henan Provincial Department of Education (Grant No.2011A110015) and Talent youth teacher fund of Xinyang Normal University.

## References

[1] S. AsSERDA, Liouville-type results for stationary maps of a class of functional related to pullback metrics, Nonlinear analysis 75 (2012), 3480-3492.
[2] P. Baird, Stess-energy tensors and the Linchnerowicz Laplacian, J.Geo. and Phys. 58 (2008), 1329-1342.
[3] Y.X. Dong, S.W. Wei, On vanishing theorems for vector bundle valued $p$-forms and their applications, Comm. Math. Phys. 304 (2011), 329-368.
[4] R.E. Greene, H. Wu, Function theory on manifolds which posses pole, in: Lecture Notes in Mathematics, V.699, Springer-veriag, Berlin, Heidelberg, New York, 1979.
[5] Y.B. Han, S.X. Feng, Monotonicity formulas and the stability of $F$-stationary maps with potential, to appear in Huston Journal of Mathematics.
[6] Y.B. Han, S.X. Feng, Stability of $F$-stationary maps of a class of functionals related to conformal maps, Kodai Math. Jourmal 36 (2013), 455-478.
[7] Y.B. Han, S.X. Feng, Liouville type theorems of weakly $F$-stationary maps, preprint.
[8] Y.B. Han, Y. Li, Y.B. Ren and S.W. Wei, New comparison theorems in Riemannian Geometry, to appear in Bulletin of the Institute of Mathematics, Academia Sinica New Series.
[9] M. Kassi, A Liouville theorems for $F$-harmonic maps with finite $F$-energy, Electonic Journal Diff Equa. 15 (2006), 1-9.
[10] S. Kawai, N.Nakauchi, Some result for stationary maps of a functional related to pullback metrics, Nonlinear analysis 74 (2011), 2284-2295.
[11] N. Nakauchi, A variational problem related to conformal maps. Osaka J. Math. 48 (2011), 719-741.
[12] N. Nakauchi, Y. Takenaka, A variational problem for pullback metrics. Ricerche Math. 60 (2011), 219-235.

Received: 06.09.2013
Revised: 24.01.2014
Accepted: 26.01.2014
${ }^{1}$ College of Mathematics and Information Science, Xinyang Normal University, Xinyang, 464000, Henan, P. R. China

E-mail: hyb@xynu.edu.cn shuxiangfeng78@163.com
${ }^{2}$ (corresponding author)
School of Mathematics, South China University of Technology, Guangzhou, 510641,Guangdong, P.R.China

E-mail: sczhangw@scut.edu.cn

