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Abstract. In this paper we investigate some exponential convergence
concepts for linear recurrence sequences. Some illustrating examples clarify
the connections between these concepts.
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1. Introduction

A real sequence (xn) defined by the recurrence relation

xn+1 = anxn, n ∈ N, (1)

where (an) is a given sequence of real numbers, is called the linear recurren-
ce sequence generated by the sequence (an).

If there exists k ∈ N with ak = 0 then xn = 0 for every n > k. Let us
further assume that an 6= 0 for any n ∈ N and x0 6= 0. Using these hypotheses
we have that xn 6= 0 for any n ∈ N.

We observe that

x1 = a0x0, x2 = a0a1x0, . . . , xn = a0a1 . . . an−1x0, . . .

In what follows we will denote by

Xn
m

def
=

xm
xn

=

{
an · . . . · am−1, m ≥ n+ 1

1, m = n.
(2)

for all (m,n) ∈ ∆
def
= {(m,n) ∈ N2 : m ≥ n}.
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The aim of this paper is to define and exemplify various concepts of con-
vergence as uniform exponential convergence, nonuniform exponential con-
vergence, exponential convergence, strong exponential convergence and to
emphasize connections between them.

2. Uniform exponential convergence.

Let (xn) be the linear recurrence sequence generated by the sequence
(an).

Definition 1. The sequence (xn) is called uniformly exponentially con-

vergent to 0, and we write xn
u.e.s.−−−→ 0, if there exist N ≥ 1 and α > 0 such

that
|xm| ≤ Ne−α(m−n)|xn|, for all (m,n) ∈ ∆.

Remark 1. It is obvious that if xn
u.e.s.−−−→ 0, then xn → 0. The following

example shows that the converse implication is not valid.

Example 1. Let x0 = 1 and an = e−
1

n+1 . We have that

xn = e−(1+
1
2
+...+ 1

n) −→ 0.

If we suppose that xn
u.e.s.−−−→ 0, then the are some constants N ≥ 1 and

α > 0 with
e−(1+

1
2
+...+ 1

m) ≤ Ne−αm.

This implies
αm

1 +
1

2
+ . . .+

1

m

≤ 1 + lnN.

Using Stolz-Cesàro theorem we obtain

∞ = lim
m→∞

αm

1 +
1

2
+ . . .+

1

m

≤ 1 + lnN,

which is a contradiction.

Proposition 1. For every linear recurrence sequence (xn) the following
statements are equivalent:

(i) xn
u.e.s.−−−→ 0;

(ii) there are two constants N ≥ 1 and α > 0 such that

|Xn
m| ≤ Ne−α(m−n), for all (m,n) ∈ ∆;

(iii) there exist N ≥ 1 and r ∈ (0, 1) such that

|Xn
m| ≤ Nrm−n, for all (m,n) ∈ ∆.

(iv) there exist a constant N ≥ 1 and a nondecreasing sequence of real
numbers (bn)n ⊂ (0, 1] with lim

n→∞
bn = 0 such that

|Xn
m| ≤ Nbm−n, for all (m,n) ∈ ∆.
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Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are trivial.
(iv) ⇒ (i) We observe that if lim

n→∞
bn = 0, then there exists k ∈ N∗ such

that Nbk < 1. Let (m,n) ∈ ∆. There are s, r ∈ N with r ∈ [0, k) such that

m− n = ks+ r. Let α = − ln(Nbk)

k
> 0. If s = 0, then

|Xn
m| ≤ Nbr ≤ Neαre−αr ≤ Neαke−α(m−n) =

= Ne− ln(Nbk)e−α(m−n) =
e−α(m−n)

bk
.

For the case s ∈ N∗ using

n < n+ k < n+ 2k < . . . < n+ (s− 1)k < n+ sk ≤ m

we obtain

|Xn
m| = |Xn

n+sk| |Xn+sk
m | ≤ Nbr|Xn

n+sk| ≤
= N |Xn

n+(s−1)k| |X
n+(s−1)k
n+sk | ≤ N(Nbk)|Xn

n+(s−1)k| ≤
≤ N(Nbk)

2|Xn
n+(s−2)k| ≤ . . . ≤ N(Nbk)

s =

= Nes ln(Nbk) = Ne−αks = Ne−α(m−n−r) =

= Neαre−α(m−n) < Neαke−α(m−n) =
e−α(m−n)

bk
.

This shows that there are M =
1

bk
≥ 1 and α = − ln(Nbk)

k
> 0 such

that

|Xn
m| ≤ me−α(m−n), for all (m,n) ∈ ∆.

2

Theorem 2. For every linear recurrence sequence (xn) the following state-
ments are equivalent:

(i) xn
u.e.s.−−−→ 0;

(ii) there are some constants D ≥ 1 and d > 0 such that

∞∑

m=n

ed(m−n)|Xn
m| ≤ D, for all n ∈ N;

(iii) there is a constant D ≥ 1 such that

∞∑

m=n

|Xn
m| ≤ D, for all n ∈ N.
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Proof. (i) ⇒ (ii) Let n ∈ N. By our hypothesis there are N ≥ 1 and α > 0
such that for all d ∈ (0, α) we have that

∞∑

m=n

ed(m−n)|Xn
m| ≤

∞∑

m=n

Ne−(α−d)(m−n) =
Neα

eα − ed
= D.

(ii) ⇒ (iii) It is obvious.
(iii) ⇒ (i) Let (m,n) ∈ ∆. For any k ∈ N with n ≤ k ≤ m we have

that |Xk
m| ≤ D. We deduce that

(m− n+ 1)|Xn
m| =

m∑

k=n

|Xn
m| =

m∑

k=n

|Xk
m| |Xn

k | ≤

≤ D

m∑

k=n

|Xn
k | ≤ D

m∑

k=n

|Xn
k | = D2 = N,

thus,

|Xn
m| ≤ N

m− n+ 1
= Nbm−n,

where bn =
1

n+ 1
, for all n ∈ N. Using Proposition 1 we conclude that

xn
u.e.s.−−−→ 0. 2

Theorem 3. For every linear recurrence sequence (xn) the following state-
ments are equivalent:

(i) xn
u.e.s.−−−→ 0;

(ii) there are B ≥ 1 and b > 0 such that

m∑

k=0

eb(m−k)|Xk
m| ≤ B, for all m ∈ N;

(iii) there exists B ≥ 1 such that

m∑

k=0

|Xk
m| ≤ B, for all m ∈ N.

Proof. (i) ⇒ (ii) Let m ∈ N. By our hypothesis there are N ≥ 1 and α > 0
such that for all b ∈ (0, α) we have that

m∑

k=0

em−k|Xk
m| ≤

m∑

k=0

Ne−(α−b)(m−k) ≤ Neα

eα − eb
= B.

(ii) ⇒ (iii) It is trivial.
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(iii) ⇒ (i) Let (m,n) ∈ ∆. We have that |Xn
k | ≤ B for all k ∈ N with

n ≤ k ≤ m. Thus, we obtain that

(m− n+ 1)|Xn
m| =

m∑

k=n

|Xn
m| =

m∑

k=n

|Xn
k | |Xk

m| ≤

≤ B
m∑

k=n

|Xk
m| ≤ B

n∑

k=0

|Xk
m| = B2 = N,

thus,

|Xn
m| ≤ N

m− n+ 1
= Nbm−n,

where bn =
1

n+ 1
, for all n ∈ N. Using Proposition 1 we conclude that

xn
u.e.s.−−−→ 0. 2

A generalization of uniform exponential convergence is introduced by

3. Nonuniform exponential convergence.

Definition 2. The linear recurrence sequence (xn) is called nonuniformly

exponentially convergent to 0 and we denote xn
n.e.s.−−−→ 0 if there exist a

constant α > 0 and a nondecreasing sequence of real numbers N : N → [1,∞)
such that

|xm| ≤ N(n)e−α(m−n)|xn|, for all (m,n) ∈ ∆.

Remark 2. The linear recurrence sequence (xn) is nonuniformly exponen-
tially convergent to 0 if and only if there exist a constant α > 0 and a
nondecreasing sequence of real numbers N : N → [1,∞) such that

|Xn
m| ≤ N(n)e−α(m−n), for all (m,n) ∈ ∆.

Remark 3. If the linear recurrent sequence (xn) is nonuniformly exponen-
tially convergent to 0 then there are a constant α > 0 and a sequence of real
numbers N : N → [1,∞) such that

|xm| ≤ N(0)e−αm, for all m ∈ N.

Remark 4. It is obvious that

xn
u.e.s.−−−→ 0 ⇒ xn

n.e.s.−−−→ 0 ⇒ xn −→ 0.

The converse implications are not valid. In this sense, we present:

Example 4. Let c > 0, x0 = 1 and an =

{
ce−n if n = 2k
cen+1 if n = 2k + 1.

We observe that

Xn
m =

{
cm−namn, m > n
1, m = n,

where
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amn =





em−n if m = 2q and n = 2p
em if m = 2q and n = 2p+ 1
e−n if m = 2q + 1 and n = 2p
1 if m = 2q + 1 and n = 2p+ 1.

We shall prove that
(i) the sequence (xn) is not uniformly exponentially convergent to 0;

(ii) xn
n.e.s.−−−→ 0 if and only if c ∈ (0, 1/e) .

Firstly, if we suppose that the sequence xn
u.e.s.−−−→ 0, then there exist

some constants N ≥ 1 and α > 0 such that (ceα)m−namn ≤ N, for all
(m,n) ∈ ∆. In particular, for n = 2p + 1 and m = 2p + 2 it follows that
(ceα)e2p+2 ≤ N, for all positive integers p, which is a contradiction.

If we suppose that xn
n.e.s.−−−→ 0, then there exist a constant α > 0 and

a sequence of real numbers N : N → [1,∞) such that (ceα)m−namn ≤ N(n),
for all (m,n) ∈ ∆.

This implies

N(n) ≥





(ceα+1)m−n if m = 2q and n = 2p
(ceα+1)m−nen if m = 2q and n = 2p+ 1
(ceα+1)m−ne−n if m = 2q + 1 and n = 2p

(ceα)m−n if m = 2q + 1 and n = 2p+ 1.

Given any n ∈ N, the sequence
(
(ceα+1)m−n

)
m

is bounded. This shows

that ceα+1 ≤ 1, and from α > 0 we deduce that c ∈ (0, 1/e). Further we
observe that the sequence N : N → [1,∞) have the property that N(n) ≥ en

for all n ∈ N.
Conversely, for all c ∈ (0, 1/e), α = − ln(ce) > 0 and N(n) = en, n ∈ N,

we have that |Xn
m| ≤ N(n)e−α(m−n), for all (m,n) ∈ ∆. This shows that

xn
n.e.s.−−−→ 0.

Example 5. Let b, c ∈ (0, 1), x0 = 1 and an =





c

(n+ 2)b
if n = 2k

c(n+ 1)b if n = 2k + 1.

Then

Xn
m =

{
cm−namn, m > n
1, m = n,

where

amn =





(
n+ 1

m+ 1

)b

if m = 2q + 1 and n = 2p+ 1

1

(m+ 1)b
if m = 2q + 1 and n = 2p

(n+ 1)b if m = 2q and n = 2p+ 1
1 if m = 2q and n = 2p.

We shall prove that the linear recurrence sequence (xn) is
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(i) not uniformly exponentially convergent to 0, and

(ii) xn
n.e.s.−−−→ 0.

If we suppose that xn
n.e.s.−−−→ 0, then there exist some constants N ≥ 1

and α > 0 such that (ceα)m−namn ≤ N for all (m,n) ∈ ∆. In particular, for
n = 2p + 1 and m = 2p + 2 we have that (ceα)(2p + 2)b ≤ N for all p ∈ N,
which is a contradiction.

From α = − ln c we have that ceα = 1. Hence

(ceα)m−namn = amn ≤ (n+ 1)b = N(n),

for all (m,n) ∈ ∆. This shows that xn
n.e.s.−−−→ 0.

Theorem 6. The linear recurrence sequence xn
n.e.s.−−−→ 0 if and only if there

exist a constant d > 0 and a nondecreasing sequence of real numbers
S : N → [1,∞) such that

∞∑

m=n

ed(m−n)|Xn
m| ≤ S(n), for all n ∈ N. (3)

Proof. If we suppose that xn
n.e.s.−−−→ 0 then there exists a constant α > 0 and

a sequence N : N −→ [1,∞) such that for all d ∈ (0, α) we have that
∞∑

m=n

ed(m−n)|Xn
m| ≤

∞∑

m=n

N(n)e−(α−d)(m−n) =
N(n)eα

eα − ed
= S(n).

Conversely, if the relation (3) is true, then there exist a constant d > 0
and a sequence S : N −→ [1,∞) such that

ed(m−n)|Xn
m| ≤

∞∑

k=m

ed(k−n)|Xn
k | ≤ S(n), for all (m,n) ∈ ∆.

This shows that xn
n.e.s.−−−→ 0. 2

Theorem 7. If there are a constant b > 0 and a nondecreasing sequence of
real numbers ϕ : N −→ [1,∞) such that

m∑

k=n

eb(m−k)|Xk
m| ≤ ϕ(n), for all (m,n) ∈ ∆,

then the linear recurrence sequence xn
n.e.s.−−−→ 0.

Proof. By hypothesis we have that exists a constant b > 0 and a sequences
ϕ : N −→ [1,∞) such that

eb(m−n)|Xn
m| ≤

m∑

k=n

eb(m−k)|Xk
m| ≤ ϕ(n), for all (m,n) ∈ ∆.

This shows that xn
n.e.s.−−−→ 0. 2
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A particular case of nonuniform exponential convergence is introduced
next.

4. Exponential convergence.

Definition 3. The linear recurrence (xn) is called exponential convergent

to 0, and we write xn
e.s.−−→ 0, if there exist N ≥ 1, α > 0 and β ≥ 0 such that

|xm| ≤ Ne−α(m−n)eβn|xn|, for all (m,n) ∈ ∆.

Remark 5. The sequence xn
e.s.−−→ 0 if and only if there are N ≥ 1, α > 0

and β ≥ 0 such that

|Xn
m| ≤ Ne−α(m−n)eβn, for all (m,n) ∈ ∆.

Remark 6. It is obvious that if xn
e.s.−−→ 0, then xn

n.e.s.−−−→ 0. The converse is
not valid. This is illustrated by the following

Example 8. Let c > 0 and an =

{
cen(1+2n) if n = 2k

ce−(n+1)(1+2n+1) if n = 2k + 1.
Then

Xn
m =

{
cm−namn, m > n
1, m = n,

where

amn =





en(1+2n)e−m(1+2m) if m = 2q and n = 2p

e−m(1+2m) if m = 2q and n = 2p+ 1

en(1+2n) if m = 2q + 1 and n = 2p
1 if m = 2q + 1 and n = 2p+ 1.

We shall prove that xn
n.e.s.−−−→ 0 and xn

e.s.
9 0.

If we suppose that xn
e.s.−−→ 0, then there exist some constants N ≥ 1,

α > 0 and β ≥ 0 such that (ceα)m−namn ≤ Neβn. This implies

Neβn ≥





(ceα)m−nen(1+2n)e−m(1+2m) if m = 2q and n = 2p

(ceα)m−ne−m(1+2m) if m = 2q and n = 2p+ 1

(ceα)m−nen(1+2n) if m = 2q + 1 and n = 2p
(ceα)m−n if m = 2q + 1 and n = 2p+ 1.

In particular, for n = 2p and m = 2p+ 1 we have that

e2βp

e2p(1+22p)
≥ ceα

N

for all p ∈ N, which is a contradiction.
For c = 1/e and α = 1 we have that ceα = 1. This shows that

(ceα)m−namn = amn ≤ en(1+2n) = N(n) ≤ N(n)eβn for all β ≥ 0 and

(m,n) ∈ ∆. Finally we obtain that xn
e.s.−−→ 0.

Theorem 9. The linear recurrence sequence xn
e.s.−−→ 0 if and only if there
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are some constants D ≥ 1, d > 0 and c ≥ 0 such that

∞∑

m=n

ed(m−n)|Xn
m| ≤ Decn, for all n ∈ N. (4)

Proof. If the sequence xn
e.s.−→ 0, then there exist some constants N ≥ 1,

α > 0 and β ≥ 0 such that for all d ∈ (0, α) we have
∞∑

m=n

ed(m−n)|Xn
m| ≤

∞∑

m=n

Neβne−(α−d)(m−n) =
Neα

eα − ed
eβn = Decn,

for all n ∈ N.
Conversely, if the relation (4) is true, then there are D ≥ 1, d > 0 and

c ≥ 0 such that

ed(m−n)|Xn
m| ≤

∞∑

k=n

ed(k−n)|Xn
k | ≤ Decn, for all (m,n) ∈ ∆,

hence the sequence xn
e.s.−→ 0. 2

Theorem 10. The linear recurrence sequence xn
e.s.−→ 0 if and only if there

are some constants B ≥ 1, b > 0 and c ∈ [0, b) such that
m∑

k=0

eb(m−k)|Xk
m| ≤ Becm, for all m ∈ N. (5)

Proof. If xn
e.s.−→ 0, then there are N ≥ 1, α > 0 and β ≥ 0 such that

m∑

k=0

eb(m−k)|Xk
m| ≤ Ne(β−α)m

m∑

k=0

e(α+β−b)k =
Neα+β

eα+β − eb
eβm = Becm,

for all m ∈ N and all b ∈ (β, α+ β).
Conversely, if the relation (5) is true, then there are B ≥ 1, b > 0 and

c ∈ [0, b) such that

eb(m−n)|Xn
m| ≤

m∑

k=n

eb(m−k)|Xk
m| ≤

m∑

k=0

eb(m−k)|Xk
m| ≤ Becm.

It follows that |Xn
m| ≤ Becne−(b−c)(m−n), for all (m,n) ∈ ∆ and hence

xn
e.s.−→ 0. 2
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5. Strong exponential convergence.

Let (xn) be a linear recurrence sequence generated by the sequence (an).

Definition 4. The sequence (xn) is called strongly exponentially conver-

gent to 0, and we write xn
s.e.s.−−−→ 0, if there are N ≥ 1, α > 0 and β ∈ [0, α)

such that

|xm,n| ≤ Ne−α(m−n)eβn |xn| for all (m,n) ∈ ∆.

Remark 7. The sequence xn
s.e.s.−−−→ 0 if and only if there are N ≥ 1, α > 0

and β ∈ [0, α) such that

|Xn
m| ≤ Ne−α(m−n)eβn, for all (m,n) ∈ ∆.

Example 11. Let c > 0, x0 = 1 and let (an) be the sequence defined in
Example 4. Then:

(i) xn
e.s.−→ 0 if and only if c ∈ (0, 1/e) ;

(ii) xn
s.e.s.−→ 0 if and only if c ∈

(
0, 1/e2

)
.

If xn
e.s.−→ 0, then there are α > 0, β ≥ 0 and N ≥ 1 such that

(ceα)m−namn ≤ Neβn, for all (m,n) ∈ ∆, i.e.

Neβn ≥





(ceα+1)m−n if m = 2q and n = 2p
(ceα+1)m−nen if m = 2q and n = 2p+ 1
(ceα+1)m−ne−n if m = 2q + 1 and n = 2p
(ceα)m−n if m = 2q + 1 and n = 2p+ 1.

If the previous inequalities hold, then, from the considerations given in Ex-
ample 4 it follows that c ∈ (0, 1/e), β ≥ 1 and N ≥ 1.

Conversely, for any c ∈ (0, 1/e), α = − ln(ce) > 0, β = 1 and N = 1 we

have that |Xn
m| ≤ Ne−α(m−n)en for all (m,n) ∈ ∆.

The second statement can be obtain analogously, with the additional
condition that ln e = 1 ≤ β < α ≤ ln(ce)−1.

Remark 8. It is obvious that

xn
u.e.s.−−−→ 0 ⇒ xn

s.e.s.−−−→ 0 ⇒ xn
e.s.−−→ 0 ⇒ xn

n.e.s.−−−→ 0

The converse implications are not true, as we shown in the previous examples.

Theorem 12. The linear recurrence sequence xn
s.e.s.−−−→ 0 if and only if there

are D ≥ 1, d > 0 and c ≥ 0 with 0 ≤ c < d such that
∞∑

m=n

ed(m−n)|Xn
m| ≤ Decn, for all n ∈ N.

Proof. It follows from the Definition 4 and the proof of Theorem 9. 2

Similarly, from the proof of Theorem 10 it follows the following

Theorem 13. The linear recurrence sequence xn
s.e.s−−−→ 0 if and only if there
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are B ≥ 1, b > 0 and c ≥ 0 with 0 ≤ 2c < b such that
m∑

k=0

eb(m−k)|Xk
m| ≤ Becm, for all m ∈ N.

Remark 9. From xn −→ x ∈ R ⇔ xn−x −→ 0, the preceding considerations
can be generalized to the exponential convergence to x ∈ R.
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On homogeneous and approximately homogeneous functions

Dorian Popa1)

Abstract. We give some properties of homogeneous functions and prove
that for every approximately homogeneous function there exists a homo-
geneous function near it.

Keywords: Homogeneous functions, approximately homogeneous func-
tions, Euler equation.

MSC: 26D10, 39B82

1. Homogeneous functions

Homogeneous functions play an important role in many branches of
mathematics, as geometry, analysis, differential equations. They are also
often used in economic theory as production functions (see [1], [2]) and in
physics. A precise definition and a characterization of homogeneous functions
of several real variables will be given in what follows.

Recall that a nonempty set K ⊆ Rn is called a cone if for every x ∈ K
and every t ∈ (0,∞) we have tx ∈ K.
Definition 1.1. Let K be a cone in Rn and p ∈ R. A function f : K → R
is called homogeneous function of degree p if

f(tx1, tx2, . . . , txn) = tpf(x1, x2, . . . , xn)

for every x = (x1, . . . , xn) ∈ K and every t ∈ (0,∞).

1)Technical University of Cluj-Napoca, Department of Mathematics
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For example the function f(x1, x2) = x21 + 2x1x2 − 2x22 defined for all
(x1, x2) ∈ R2 is homogeneous of degree p = 2 and g(x1, x2) = lnx1 − lnx2
defined for x1, x2 ∈ (0,∞) is homogeneous of degree p = 0.Throughout this
paper by Dif we denote the partial derivative of f with respect to i-th
variable.

A characterization of differentiable homogeneous functions is given in
the following theorem.
Theorem 1.2. (Euler) Let K be an open cone in Rn and f : K → R be a
differentiable function. Then f is a homogeneous function of degree p ∈ R if
and only if the following relation holds

x1D1f(x) + x2D2f(x) + . . .+ xnDnf(x) = pf(x) (1)

for all x = (x1, x2, . . . , xn) ∈ K.
Proof. ,,⇒“ Suppose that f is a homogeneous function of degree p.

Then

f(tx1, tx2, . . . , txn) = tpf(x1, x2, . . . , xn) (2)

for all x = (x1, . . . , xn) ∈ K. Differentiating with respect to t, the relation
(2) becomes

D1f(tx)x1 +D2f(tx)x2 + . . .+Dnf(tx)xn = ptp−1f(x). (3)

Now (1) follows for t = 1 in (3).
,,⇐“ Suppose that (1) holds for all x ∈ K. Fix x ∈ K and define the

function ϕ : (0,∞) → R by

ϕ(t) =
f(tx1, tx2, . . . , txn)

tp
, ∀ t ∈ (0,∞).

We prove that ϕ′(t) = 0 for all t ∈ (0,∞). Let u1 = tx1, u2 = tx2, . . .,
un = txn. We have

ϕ′(t) =
(D1f(tx)x1 + . . .+Dnf(tx)xn)t

p − f(tx)ptp−1

t2p

=
(D1f(tx)x1 + . . .+Dnf(tx)xn)t− pf(tx)

tp+1

=
tx1D1f(tx) + . . .+ txnDnf(tx)− pf(tx)

tp+1
= 0, ∀ t > 0.

The function ϕ is constant, therefore ϕ(t) = ϕ(1) for all t ∈ (0,∞),
which is equivalent with f(tx) = tpf(x), and since x ∈ K is an arbitrary
element, it follows that f is a homogeneous function of degree p. �

A property of the partial derivatives of a homogeneous function is given
in the next theorem.
Theorem 1.3. Let K ⊆ Rn be an open cone and f : K → R a differentiable
and homogeneous function of degree p ∈ R. Then the partial derivatives Dif ,
1 ≤ i ≤ n, are homogeneous functions of degree p− 1.
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Proof. Take x ∈ K, h = (0, . . . , 0, hi, 0, . . . , 0) ∈ K, where hi 6= 0 is the
i-th coordinate, such that x+ h ∈ K. We have

f(tx+ th)− f(tx)

thi
=

tpf(x+ h)− tpf(x)

thi

= tp−1 f(x+ h)− f(x)

hi
.

Now letting hi → 0 in the previous relation we get

Dif(tx) = tp−1Dif(x),

i.e., Di is a homogeneous function of degree p− 1. �

2. Approximately homogeneous functions

In what follows let R+ = (0,∞) and ε ∈ R+.
Definition 2.1. A function f : Rn

+ → R of class C1 is called ε-homogeneous
function of degree p ∈ R if

|x1D1f(x) + . . .+ xnDnf(x)− pf(x)| ≤ ε (4)

for all x = (x1, . . . , xn) ∈ Rn
+.

A function f : Rn
+ → R which is ε-homogeneous function of degree p

for some ε > 0 and for some p ∈ R is called approximately homogeneous
function. In other words an approximately homogeneous function satisfies
approximately Euler’s equation for homogeneous functions. This notion is
in connection with Hyers-Ulam stability of functional equations (for more
details see [3], [4], [5]).

The main result of this work is contained in the next theorem.

Theorem 2.2. For every ε-homogeneous function f : Rn
+ → R of degree

p ∈ R \ {0} there exists a unique continuous homogeneous function
g : Rn

+ → R of degree p with the property

|f(x)− g(x)| ≤ ε

|p| , ∀ x ∈ Rn
+. (5)

Proof. Existence. Let f : Rn
+ → R be a function satisfying (4) for some

ε > 0 and some p ∈ R \ {0} and denote

x1D1f(x) + . . .+ xnDnf(x)− pf(x) =: h(x),Qx ∈ Rn
+. (6)

Consider the function w defined by

f(x1, x2, . . . , xn) = w

(
x1,

x2
x1

, . . . ,
xn
x1

)
⇔

⇔ (z1, . . . , zn) = u (z1, z1z2, . . . , z1zn) ,
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where z1 = x1, zk =
xk
x1

, xk, zk ∈ R+, 2 ≤ k ≤ n. We have, omitting the

arguments of functions (for simplicity)

D1f = D1w − x2
x21

D2w − . . .− xn
x21

Dnw

D2f =
1

x1
D2w

. . . . . . . . . . . . . . .

Dnf =
1

x1
Dnw

and replacing in (6) it follows

z1D1w(z1, . . . , zn) = pw(z1, . . . , zn) + h(z1, z1z2, . . . , z1zn)

which is equivalent to

D1

(
1

zp1
w (z1, . . . , zn)

)
=

1

zp+1
1

h(z1, z1z2, . . . , z1zn).

An integration with respect to z1 leads to

w(z1, . . . , zn) = zp1




z1∫

1

1

sp+1
h (s, z2s, . . . , zns) ds+ ϕ (z2, . . . , zn)


 ,

where ϕ : Rn
+ → R is an arbitrary function of class C1, or

f(x1, . . . , xn) = xp1


ϕ
(
x2
x1

, . . . ,
xn
x1

)
+

x1∫

1

1

sp+1
h

(
s,

x2
x1

s, . . . ,
xn
x1

s

)
ds


 .

We distinguish two cases in the definition of g, as follows:
i) If p > 0 let g : Rn

+ → R be given by

g(x1, . . . , xn) = xp1


ϕ
(
x2
x1

, . . . ,
xn
x1

)
+

∞∫

1

1

sp+1
h

(
s,

x2
x1

s, . . . ,
xn
x1

s

)
ds


 .

The function g is well defined, since by the relation |h(x)| ≤ ε for all
x ∈ Rn

+ and p > 0 it follows that

∞∫

1

1

sp+1
h

(
s,

x2
x1

s, . . . ,
xn
x1

s

)
ds
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is absolutely convergent. On the other hand, g is obviously a continuous
homogeneous function of degree p. We get

|f(x)− g(x)| =

∣∣∣∣∣∣
xp1

∞∫

x1

1

sp+1
h

(
s
x2
x1

s, . . . ,
xn
x1

s

)
ds

∣∣∣∣∣∣
≤

≤ xp1

∞∫

x1

ε

sp+1
ds =

ε

p
, x ∈ Rn

+.

ii) If p < 0 let g : Rn
+ → R be given by

g (x1, . . . , xn) = xp1


ϕ

(
x2
x1

, . . . ,
xn
x1

)
+

1∫

0

1

sp+1
f

(
s,

x2
x1

s, . . . ,
xn
x1

s

)
ds


 .

The existence and homogeneity of g follows analogously as in the pre-
vious case i) and

|f(x)− g(x)| =

∣∣∣∣∣∣
xp1

x1∫

0

1

sp+1
f

(
s,

x2
x1

s, . . . ,
xn
x1

s

)
ds

∣∣∣∣∣∣
≤

≤ xp1

x1∫

0

ε

sp+1
=

ε

|p| , x ∈ Rn
+.

The existence is proved.
Uniqueness. Suppose that for an ε-homogeneous function f of degree

p∈R \ {0} there exist two continuous homogeneous functions g1, g2 : R
n
+→R

of degree p satisfying (5). Since g1 6= g2 there exists x0 ∈ Rn
+ with

g1(x0) 6= g2(x0). For every t > 0 we have

|g1(tx0)− g2(tx0)| ≤ |g1(tx0)− f(tx0)|+ |f(tx0)− g2(tx0)| ≤
2ε

|p| .

Taking account of the homogeneity of g1, g2 it follows

tp|g1(x0)− g2(x0)| ≤
2ε

|p| ,

contradiction, since t is an arbitrary positive number.
The theorem is proved. �

Remark 2.3. The result proved in Theorem 2.2 states that for every
approximate homogeneous function of degree p 6= 0 there exists a homoge-
neous function of degree p close to it, i.e., Euler’s equation characterizing
homogeneous functions of degree p 6= 0 is stable in Hyers-Ulam sense (see
[3]).
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Remark 2.4. A surprising result holds for homogeneous functions of
degree zero, proving that Euler’s equation is not stable in this case. Indeed,
let f : Rn

+ → R be a solution of the equation

x1D1f(x) + . . .+ xnDnf(x) = ε, ε > 0,

i.e., an ε-homogeneous function of degree zero.
Then it can be easily proved that

f(x1, . . . , xn) = ϕ(x1, . . . , xn) + ε lnx1

for all (x1, . . . , xn) ∈ Rn
+, where ϕ is a homogeneous function of degree zero.

Let now g : Rn
+ → R be an arbitrary homogeneous function of degree zero.

Then for every t > 0

|f(t, t, . . . , t)− g(t, t, . . . , t)| = |ϕ(1, . . . , 1)− g(1, . . . , 1) + ε ln t| t→0+−→ ∞,

therefore

sup
x∈Rn

+

|f(x)− g(x)| = +∞.

Remark 2.5. Professor Valeriu Anisiu from Babeş-Bolyai University, Cluj-
Napoca, proved that we cannot choose the function g from Theorem 2.2 in
C1 ( see [6]). Indeed, consider q : R → R defined by

q(x) =
x2

2
for |x| ≤ 1 and q(x) = |x| for |x| > 1.

The function q is in C1(R). For the function f(x1, x2) = q(x1−x2), denoting

h(x1, x2) = x1D1f(x1, x2) + x2D2f(x1, x2)− f(x1, x2)

we have

|h(x1, x2)| = |(x1 − x2)q
′(x1 − x2)− q(x1 − x2)|, hence

|h(x1, x2)| = 0 for |x1 − x2| ≥ 1 and

|h(x1, x2)| ≤
1

2
for |x1 − x2| < 1.

So, f satisfies the hypothesis of Theorem 2.2 for n = 2, ε =
1

2
and

p = 1. Taking g(x1, x2) = |x1 − x2| we have

|f(x1, x2)− g(x1, x2)| = |p(x1 − x2)− |x1 − x2|| ≤
1

2
.

We know that g is unique but it is not differentiable at the points (x, x),
x > 0.
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An Elementary Characterization of the Orders of
Non-Abelian Groups

Nicolae Anghel1)

Abstract. In this note we present an elementary proof of a result due to
Dickson characterizing those integers n admitting non-abelian groups of
order n.

Keywords: Non-abelian group, Maximal subgroup, Automorphism, Cen-
tralizer, Normalizer.

MSC: Primary: 20D60, 20E28. Secondary: 11A41, 20D45, 20E34, 20E45.

The classification, up to isomorphism, of the abelian groups of a given
order is a fully-understood topic, a chapter in any book on finite groups.
They are uniquely representable as direct products of cyclic p-groups and
there are π(α1)π(α2) . . . π(αm) non-isomorphic abelian groups of order n, if
α1, α2, . . . , αm are the exponents in the prime factorization of n and π(α) de-
notes the number of partitions of a positive integer α [2]. By comparison, the
similar problem for non-abelian groups is extremely hard, but not hopelessly
hard, given the current state of the art in finite group theory [7]. Meanwhile,
there are many interesting and approachable topics regarding general non-
abelian groups of finite order. One of them is the description of the positive
integers n for which there are non-abelian groups of order n. In its equivalent
form, the characterization of those integers n for which all the groups of or-
der n are abelian, the problem was solved by Dickson in 1905 [1]. Dickson’s
proof relied on work by Miller and Moreno on the non-abelian groups whose
proper subgroups are all abelian [5], which in turn relied on Jordan’s work on
permutation groups [3]. As such, the proof can be judged as non-elementary.
That is also the case for more modern treatments of this problem [6], where it

1)Department of Mathematics, University of North Texas, Denton, anghel@unt.edu
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appears as a specialization of a certain arithmetic description of the nilpotent
groups, the direct products of p-groups corresponding to distinct primes.

The main purpose of this note is to give an elementary proof to Dick-
son’s result. It relies only on very basic concepts in group theory, such as
center, centralizer, normalizer, and automorphism group, and on the La-
grange and Cauchy theorems for groups.

Theorem 1. Let n > 1 be an integer with prime factorization pα1
1 pα2

2 . . . pαm
m ,

pk distinct primes, αk > 0 for all k’s. Then there is a non-abelian group of
order n if and only if either αi ≥ 3 for some index i (n contains perfect
cubes), or n is cube-free (αk ≤ 2 for all k’s) and there are indices i and j
such that pi divides p

αj

j − 1.

The Theorem provides a simple arithmetic criterion for testing integers
n vis-a-vis the existence of non-abelian groups of order n, as soon as their
prime factorization is known. At the same time, it can be seen to yield, for a
fixed n, a sieve for detecting all the integers m, 1 ≤ m ≤ n, with the property
that all the groups of order m are abelian, much like, and at the same level of
difficulty as, the Eratosthenes sieve. For instance, there are no non-abelian
groups of order 91 = 7 · 13, however there are non-abelian groups of order
1, 183 = 7 · 132. Also, there are exactly 43 numbers m, 1 ≤ m ≤ 100, for
which all the groups of order m are abelian.

The overall proof of the Theorem rests heavily on the following Lemma.
In addition, for the necessity part of it we are going to employ a method
developed by Jungnickel [4] for the purpose of characterizing the integers n
admitting only one (cyclic) group of order n, in fact a particular instance of
the present Theorem.

Lemma 2. Let p be a prime number and let H be a finite abelian group of
order |H|. Then there is a non-abelian group G of order p|H| possessing an

element a of order p and a normal subgroup H̃ isomorphic to H such that

the cyclic group 〈a〉 generated by a and H̃ intersect trivially if and only if p
divides |Aut(H)|, where Aut(H) represents the automorphism group of H.

Proof. [Proof of the Lemma] Assume first that G, a, and H̃, exist as stated.

Then any element of G is uniquely representable as aαh̃, for some integer

0 ≤ α ≤ p− 1 and h̃ ∈ H̃. In terms of this representation the multiplication
in G can be written as

(aαh̃)(aβ k̃) = aα+β((a−βh̃aβ)k̃), 0 ≤ α, β ≤ p− 1, h̃, k̃ ∈ H̃. (1)

Also, since G is non-abelian and H̃ is abelian there is an element l̃ in H̃

such that al̃ 6= l̃a. This and the fact that H̃ is a normal subgroup of G

yield a non-trivial automorphism φ of H̃, namely the restriction to H̃ of the

inner automorphism of G given by g 7−→ a−1ga. In Aut(H̃), a group under
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composition, φ has order p, since p is prime and a has order p in G. Then the

Lagrange theorem for groups implies that p divides |Aut(H̃)| = |Aut(H)|.
Conversely, suppose |Aut(H)| is divisible by p and, by Cauchy ’s the-

orem, let φ be a (non-trivial) element of order p in Aut(H). If Cp is the
cyclic group of order p, with generator x, take G to be, as a set, the cartesian
product Cp×H, and suggested by (1) define on G an internal operation ∗ by

(xα, h) ∗ (xβ , k) = (xα+β , φβ(h)k), 0 ≤ α, β ≤ p− 1, h, k ∈ H. (2)

The choices of x and φ imply that the definition (2) is correct even
if α, β are unrestricted non-negative integers. It is easy to check now that
(G, ∗) is a group of order p|H| with identity element (1, 1). In particular, the
inverse of (xα, h) is seen to be (xp−α, φp−α(h−1)). (G, ∗) is also non-abelian
since for any element l ∈ H such that φ(l) 6= l, (x, 1) ∗ (1, l) 6= (1, l) ∗ (x, 1).

By setting a := (x, 1) and H̃ := {1} ×H it is clear that a and H̃ have
all the properties specified in the Lemma. 2

Remark. The reader more seasoned in group theory may have noticed
that the construction in the Lemma is merely a particular instance of a semi-
direct product.
Proof. [Proof of the Theorem — Sufficiency] If αi ≥ 3 for some index i, then
the Lemma applied to p = pi and H = Cp2i

, the cyclic group of order p2i ,

with generator x, guarantees the existence of a non-abelian group G of order
p3i , since any automorphism of H is uniquely determined by an assignment
x 7−→ xα, α relatively prime to p2i , and therefore |Aut(H)| = p2i−pi = p(p−1).
Then the direct product G× Cn/p3i

yields a non-abelian group of order n.

If instead n is cube-free and for some necessarily distinct i and j, pi
divides p

αj

j − 1, two cases present themselves.

If αj = 1 then the Lemma applies to p = pi and H = Cpj , |Aut(H)| =
pj − 1, to give a non-abelian group G of order pipj , and so G×Cn/(pipj) is a
non-abelian group in support of the conclusion of the Theorem.

If αj = 2 one can implement the Lemma as above, by taking p = pi and
H = Cpj × Cpj , with generators x and y. Clearly, any automorphism of H
is uniquely determined by sending x to some element of H \ {1}, say z, then
sending y to any element of H \ 〈z〉, i.e., |Aut(H)| = (p2j − 1)(p2j − pj). 2

Proof. [Proof of the Theorem — Necessity] Arguing by contradiction, let n be
the least positive integer with prime factorization pα1

1 pα2
2 . . . pαm

m , 1 ≤ αk ≤ 2

for any index k, with no indices i and j such that pi divides p
αj

j −1, for which
there is a non-abelian group G of order n. In order to provide the reader
with a better way of following the flow of the proof we divide the argument
below into several sub-steps, some trivial, others not.

i) The center Z(G) is a proper subgroup of G. — G is non-abelian.
ii) Any proper subgroup of G is abelian. — It follows from the the

Lagrange theorem for groups and the minimality of |G|.
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iii) For any a ∈ G \ Z(G) the centralizer of a in G, CG(a), contains
Z(G) and is a maximal (abelian) subgroup of G. — This is true because
CG(a) 6= G and any proper subgroup of G containing a, being abelian is
contained in CG(a).

iv) Z(G) cannot be a maximal subgroup of G. — By iii), if a ∈ G\Z(G),
Z(G) ( CG(a) ( G.

v) All maximal subgroups of G must be of type CG(a) for some a ∈
G \ Z(G). — If U is a maximal subgroup, there is a ∈ U \ Z(G). By ii),
U ⊂ CG(a), therefore U = CG(a).

vi) If U is a maximal subgroup of G and a ∈ U \Z(G), then U = CG(a).
— Same proof as that of v).

vii) if U and V are two distinct maximal subgroups of G, then (U \
Z(G)) ∩ (V \ Z(G)) = ∅. — It follows from vii), by contradiction.

viii) Any maximal subgroup U of G is in fact equal to its normalizer,
NG(U). — If not, for some a ∈ G \ Z(G) there is x ∈ NG (CG(a)) such that
x /∈ CG(a). The automorphism φx of CG(a) induced by conjugation with x
has order the least integer q > 1 such that xq ∈ CG(a). Obviously, this order
is also a divisor of n = |G|. Without loss of generality, x can be chosen so
that the order of φx is a prime divisor of |G|, say pi. The subset K of G
consisting of elements of the form xαh, 0 ≤ α ≤ pi − 1, h ∈ CG(a), is seen,
by an argument similar to that presented in Equation (1), to be closed under
group multiplication and inverse taking. So K is a group and since CG(a) is
maximal, K = G. Notice also that the choice of x makes the elements of K
uniquely representable in terms of α and h. Consequently,

|K| = pi|CG(a)| = n = |G|. (3)

Now a simple argument by induction on the number of primes appearing in

the order of the abelian group CG(a) shows that if p
βj

j , 1 ≤ βj ≤ 2, appears

in the prime factorization of |CG(a)|, then p
βj

j contributes to |Aut(CG(a))| a
factor of type





pj − 1 if βj = 1,

p2j − pj if βj = 2 and CG(a) has an element of order p2j ,

(p2j − 1)(p2j − pj) if βj = 2 and CG(a) has no element of order p2j ,

(4)

and these are precisely all the factors of |Aut(CG(a))|. However, the assump-
tion made on the order of G and Equations (3) and (4) show that pi, the
order of φx, cannot divide |Aut(CG(a))|, a contradiction. Thus, U = NG(U).

ix) The conjugates of any maximal subgroup U of G by elements in G
are also maximal subgroups.

For a, b ∈ G, a /∈ Z(G), bCG(a)b
−1 = CG(bab

−1), and clearly,
bab−1 /∈ Z(G).
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x) If U is a maximal subgroup of G of order u|Z(G)|, u > 1, then the
total number of elements in all the distinct conjugates of U but not in Z(G)
equals n− n/u.

Indeed, the number of distinct conjugates of U is the index of the
normalizer of U in G, i.e., n/(u|Z(G)|), from NG(U) = U . Since by ix)
and vii) the distinct conjugates of U are disjoint outside Z(G) and since
|U \ Z(G)| = (u− 1)|Z(G)|, the claim follows.

xi) There are elements in G which do not belong to the conjugates of
some fixed maximal subgroup U of G.

True, since from x), u|Z(G)| < n is equivalent to |Z(G)|+n−n/u < n.
xii) Statement xi) contradicts |G| = n.
If V is a maximal subgroup of G containing an element as in xi), with

order v|Z(G)|, v > 1, there are another n−n/v elements in G, in addition to
those |Z(G)|+ n− n/u, already provided by U . However, this is impossible
since |G| ≥ |Z(G)|+ (n− n/u) + (n− n/v) > n = |G|.

The necessity part of the proof of the Theorem is now complete. 2

Remark. In particular, the Theorem shows that a group of order p2,
p prime, must be abelian, a well-known fact. Our proof differs from the
standard one, based on the use of the class equation for a group.

We end this note by inviting the interested reader to explore, in con-
nection with the above Theorem, other stimulating and rewarding problems.

a) Make precise the sieve alluded to after the statement of the Theorem.

b) For which integers n is there exactly one non-abelian group of order
n?

c) What is the asymptotic behavior, as n −→ ∞, of the function
NA(n) := the number of integers m, 1 ≤ m ≤ n, such that there are non-
abelian groups of order m?
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Matrix adjugates and Additive Commutators

Cezar Lupu1),

Abstract. In this note we study some properties of the additive commu-
tator of two matrices in the spirit of the well-known problem which states
that if [A,B] = AB − BA = A, then A is nilpotent. We give four proofs
for this problem and then we study the relation between the commutator
[A,B] and the adjugate of A and we will show that if [A,B] = adj(A), then
(adj(A))2 = On. Other related problems between the additive commutator
and the adjugate are also given.

Keywords: matrix, commutator of a matrix, nilpotent matrix, adjugate
of a matrix.

MSC: 15A24, 15A27, 15A60.

1. Introduction and Main Results

Let Mn(C) denote the ring of n × n matrices with complex entries.
Recall that:

(1) a matrix A ∈ Mn(C) is nilpotent if Am = On for some positive
integer m,

(2) the (additive) commutator of two matrices A,B ∈ Mn(C) is
[A,B] = AB −BA.

An interresting property proved by Shoda in 1936 is that only additive
commutators have zero trace. For a detailed proof of this result see [8] or
[7]. Later, Thompson showed in [21] that if Mn(F ) denotes the algebra of
n-square matrices with elements in a field F and M ∈ Mn(F ) such that M
has zero trace, then M = AB − BA for certain A,B ∈ Mn(F ), where A is
nilpotent and B has zero trace, apart from the cases when n = 2, 3. In [21]
it is also determined when M = MB −BM for some B ∈ Mn(F ). Sufficient
conditions for a matrix in Mn(C) to be nilpotent can be stated in terms of
commutators (see [5], [7]):

Theorem 1. Let A ∈ Mn(C). If [A,B] = A for some B ∈ Mn(C), then A
is nilpotent.

Our first main result provides a similar sufficient condition for the ad-
jugate of a matrix in Mn(C) to be nilpotent; recall that the adjugate or
classical adjoint of A = [aij ] ∈ Mn(C), written adj(A), is the n × n matrix
whose (i, j)-entry is the cofactor of aij .

Theorem 2. Let A ∈ Mn(C). If [A,B] = adj(A) for some B ∈ Mn(C), then
(adj(A))2 = On.

1)University of Pittsburgh, Department of Mathematics, Pittsburgh, PA 15260, USA,
lupucezar@gmail.com
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A key ingredient of the proof is the following theorem of Jacobson [6,
Lemma 2] which provides a sufficient condition for a commutator to be nilpo-
tent:

Theorem 3. Let A,B ∈ Mn(C). If A[A,B] = [A,B]A, then the commutator
[A,B] is nilpotent.

Combining Theorems 1 and 3, we prove a version of the former —
Theorem 4 below — and the Jacobson-type Theorem 5.

Theorem 4. Let A,B ∈ Mn(C).

(a) If [adj(A), B] = adj(A), then (adj(A))2 = On;
(b) If [adj(A), B] = A, then A is nilpotent.

Theorem 5. Let A,B ∈ Mn(C), and let [A,B]adj = [adj(A), adj(B)].

(a) If adj(A) and [A,B]adj commute, then (adj([A,B]))2 = On;
(b) If A and [A,B]adj commute, then (adj([A,B]))2 = On.

For further properties of the two commutators see [7], [13] and [22]. The
additive commutator has also deep connections with Lie algebras because
one can turn an associative algebra A into a Lie algebra by the Lie bracket
[X,Y ] = XY − Y X. Now, Lie(A) becomes a Lie algebra together with this
Lie bracket. Many important Lie algebras arise in this way. For example the
Lie algebra gln = Lie(A), where A is the algebra of n× n matrices with the
usual matrix multiplication. For more details one see [3].

2. Preliminaries and Proofs of Main Results

The adjugate of a matrix plays an important role in matrix theory. The
computation of the adjugate from its definition involves the computation of
n2 determinants of order n − 1, which is a prohibitively expensive O(n4)
process. More details and properties can be found in [10]. In [16] and [11]
other properties of the adjugate are developed. In what follows we state
a couple of Lemmas and give a proof of Theorem 3. Recall that a matrix
X ∈ Mn(C) is quasinilpotent if lim

n→∞
||Xn||1/n = 0. Equivalently, the matrix

X is quasinilpotent if the spectrum of X, denoted by σ(X), is {0}, that is, X
is nilpotent. In [1], it was proved that a quasinilpotent operator T ∈ L(H)
is the uniform limit of a sequence {Qk} of nilpotent operators in H where H
is a Hilbert space. We begin with the following well-known result

Lemma 6. Let A ∈ Mn(C). Then tr(Ak) = 0, k = 1, 2, . . . , n if and only if
A is nilpotent.

A proof of this Lemma can be found in [14]. Recall the following
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Definition 5. Let H be a complex Hilbert space and X : H → H a linear
bounded operator. The spectrum of X is given by

σ(X) = {λ ∈ C : X − λI is noninvertible}.
The spectral radius of X is denoted by ρ(X) and

ρ(X) = sup
λ∈σ(X)

|λ|.

Concerning the spectral radius, there exists a formula (see [15]), namely

ρ(X) = lim
n→∞

‖Xn‖1/n.

If H = Cn is finite-dimensional, then X is a matrix and the definition above
says that ρ(X) is the largest absolute value of an eigenvalue of X.

We have to prove that ρ(X) = 0, in our case ρ([A,B]) = 0. This means
that the matrix [A,B] is quasinilpotent which implies that the commutator
is nilpotent.

Definition 6. Let A be an algebra. We say that D : A → A is a derivation
if D is a linear mapping such that

D(ab) = aD(b) + bD(a), ∀a, b ∈ A.

The following property due to Leibniz holds:

Dn(ab) =
n∑

i=0

(
n
i

)
(Dn−ia)(Dib).

In [4] one can find other useful properties of D. For example, we have
D(an) = nan−1D(a) iff aD(a) = bD(b) and if D2(a) = 0, then by induction
and Leibniz property, we infer that Dn(an) = n!(Da)n, n ≥ 1.

Proof of Theorem 3. Consider the derivation D : Mn(C) → Mn(C)
given by DA(X) = XA− AX, for all X ∈ Mn(C). From the hypothesis, we
have that D2

A(B) = On and thus Dn
A(B

n) = n!(DA(B))n. Since ||DA|| ⇐
q2||A||, it follows that

||(DA(B))n|| ≤ q
2n

n!
||A||n||B||n

which is equivalent to

||(DA(B))n||1/n ≤ q
2

(n!)1/n
||A||||B||, n ≥ 1.

By passing to the limit when n → ∞, we have that lim
n→∞

||(DA(B))n||1/n = 0,

so we finally obtain ρ([A,B]) = 0 and thus [A,B] is quasinilpotent which
implies that [A,B] is nilpotent. �

Remark. This proof of Theorem 3 has its origins in a more general frame-
work. If we consider a Banach algebra A and for a, b ∈ A we define [a, b] =
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ab− ba such that a[a, b] = [a, b]a, then [a, b] is quasinilpotent. This was con-
jectured for the first time by Kaplansky and later proved independently by
Kleinecke in 1957 and Shikorov in [17] in 1961. For more details and history
of this problem we recommend [4].

We use Theorem 3 in order to prove Theorem 1.
First proof of Theorem 1. We can prove by induction that

AkB −BkA = kAk, k ≥ 1.

Now, for an operatorX we define its norm by ||X|| = sup
||x||=1

||Xx|| and satisfies

the inequality ||XY || ≤ ||X|| · ||Y ||. In our case, we have that

n||An|| = ||AnB −BnA|| ≤ ||AnB||+ ||BAn|| ≤ 2||An|| · ||B||, n ≥ 1.

From the relation above it follows that ||An|| = 0, so A is nilpotent.

Remark. This proof shows that the theorem holds true for infinite dimen-
sional spaces.

Second proof of Theorem 1. We have AkB − BkA = kAk, k ≥ 1. Let
f ∈ R[X] and define g(x) = xf ′(x), where f ′ is the derivative of f . We prove
that if f(A) = On, then g(A) = On. Denote f(x) = akx

k + . . . + a1x + a0
and f ′(x) = kakx

k−1 + . . .+ a1 and from here, we have g(x) = kakx
k + (k −

1)ak−1x
k−1 + . . .+ a1x. Since f(A) = On we obtain

akA
k + . . .+ a1A+ a0In = On.

Multiplying the above equality right and left with B we deduce that

akA
kB + . . .+ a1AB + a0B = On

and
akBAk + . . .+ a1BA+ a0B = On.

Thus, we obtain

ak(A
kB −BkA) + ak−1(A

k−1B −Bk−1A) + . . .+ a1(AB −BA) = On.

Since AkB −BkA = kAk for any k = 1, 2, . . . , n, the equality becomes

kakA
k + (k − 1)ak−1A

k−1 + . . .+ a1A = On = g(A).

On the other hand xg′(x) = x(f ′(x) + xf ′′(x)) = xf ′(x) + x2f ′′(x). By
putting x = A, we have

Af ′(A) +A2f ′′(A) = On.

But, from Af ′(A) = On, we have that A2f ′′(A) = On. By an easy

induction we deduce that Akf (k)(A) = On. Considering the characteristic
polynomial of the matrix A, we have

PA(X) = Xn + an−1X
n−1 + . . .+ a1X + a0.

From PA(A) = On we deduce that AnP
(n)
A (A) = On, and thus, A is

nilpotent. �
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Remark. Since [A,B] = A the condition from the Theorem 1.3 is automat-
ically satisfied, so it follows that the commutator [A,B] is nilpotent, so A is
nilpotent.

The following two Lemmas will be used in the proof of the Theorems
2, 4 and 5.

Lemma 7. (see also [18]) Let A ∈ Mn(C) be a singular matrix. Then there
exists a complex number λ such that (adj(A))2 = λ adj(A).

Proof. Let r = rank(A). Since det(A) = 0 we have that r ≤ n − 1.
If r ≤ n − 2, then all minors of order n − 1 of the matrix A are zero,
so adj(A) = On and thus our conclusion will be valid for any λ ∈ C. If

r = n − 1, let dj =




d1j
d2j
. . .
dnj


 be the j-column of adj(A), where dij is

the algebraic complement of the element aij . Thus, we have Adij = On,1,
∀ j = 1, 2, . . . , n, so the columns of adj(A) are solutions of the homogenous
system AX = On,1. It follows that every two columns of adj(A) are pro-
portional so rank(adj(A)) = 1. In this case, there exists M ∈ Mn,1(C) and
N ∈ M1,n(C) such that adj(A) = MN . Simple calculations yield

(adj(A))2 = (MN)2 = (MN)(MN) = M(NM)N =

= MλN = λMN = λ adj(A).

Lemma 8. If A ∈ Mn(C) is a matrix such that the adjugate adj(A) is nilpo-
tent, then (adj(A))2 = On.

Proof. From the hypothesis, it follows that det(adj(A)) = 0. By Lemma
7 we have that (adj(A))2 = λ adj(A). Since adj(A) is nilpotent there exists
k ≥ 1 such that (adj(A))k = On. On the other hand, by iteration, we deduce
that

On = (adj(A))k = λk−1 adj(A).

If adj(A) = On the conclusion is clear; if not we have λ = 0 and then
(adj(A))2 = On.

Finally, we prove our main theorems. We begin with the
First proof of Theorem 2. Since adj(A) commutes with A, it follows

that A commutes with [A,B], so by Theorem 3 it follows that the commu-
tator [A,B] is nilpotent and thus adj(A) is nilpotent. By Lemma 8 we have
(adj(A))2 = On.

Second proof of Theorem 2. If rank(A) ≤ n − 2, then adj(A) = On, so
(adj(A))2 = On. If rank(A) = n− 1, then det(A) = 0 and by Sylvester rank
inequality we have

0 = rank(det(A) · In) = rank(A adj(A)) ≥ rank(A) + rank(adj(A))− n,



C. Lupu, Matrix adjugates and Additive Commutators 95

so rank(adj(A)) ∈ {0, 1}. Since rank(adj(A)) = 0 is not the case, we have
rank(adj(A)) = 1. Now, by Lemma 7 we have (adj(A))2 = λ adj(A). Since
0 = tr([A,B]) = tr(adj(A)), from (adj(A))2 = λ adj(A) it follows that
tr((adj(A))2) = 0 and inductively we have tr(adj(A))k) = 0, for all k ≥ 1.
By Lemma 6 and Lemma 8 we have (adj(A))2 = On.

Third proof of Theorem 2. If rank(A) ≤ n − 2, then adj(A) = On, so
(adj(A))2 = On. If rank(A) = n− 1, then det(A) = 0.

From AB −BA = adj(A), by multiplying with adj(A) on left, we have

det(A)B − adj(A)BA = (adj(A))2

Now, by multiplying the above equality right with adj(A), we obtain

det(A)B adj(A)− det(A) adj(A)B = (adj(A))3.

We have (adj(A))3 = On which shows that adj(A) is nilpotent and by Lemma
8 we obtain (adj(A))2 = On.

Fourth proof of Theorem 2. Like in the third proof, if rank(A) ≤ n− 2
there is nothing to prove. If rank(A) = n − 1, then rank(adj(A)) = 1.
Now the problem reduces to the fact that if rank(AB − BA) = 1, then
(AB − BA)2 = On. Since rank([A,B]) = 1 there exists P ∈ M1,n(C) and
Q ∈ Mn,1(C) such that [A,B] = PQ. From here, it follows that [A,B]2 =
= α[A,B], where α = QP ∈ C. It follows that the minimal polyno-
mial of [A,B] is min[A,B](X) = X2 − αX. On the other hand, we have
0 = tr([A,B]) = kα, where k is the algebraic multiplicity of α. So α = 0 and
min[A,B](X) = X2 and we have that [A,B]2 = (adj(A))2 = On. �

Remark. Let Jk(0) be the Jordan block of size k. If A is nilpotent
and has rank n − 1, then A is similar to Jn(0). For any k > 1, adj(Jk(0))
is similar to J2(0) ⊕ Ok−1, so adj(Jk(0)) is nilpotent and it has nilpotency
index 2. Thus, if A is nilpotent, then adj(A) is nilpotent and from Lemma 8
we finally obtain adj2(A) = On.

Proof of Theorem 4. (a) It follows immediately from Theorem 1 and
Lemma 8.

(b) Since A · adj(A) = adj(A) · A = det(A) · In, we obtain that adj(A)
commutes with [adj(A), B], so by applying Theorem 3 we have that the com-
mutator [adj(A), B] is nilpotent, so A is nilpotent as desired. �

Proof of Theorem 5. (a) We have

[A,B]adj = [adj(A), adj(B)] = adj(BA)− adj(AB) =

= adj(BA−AB) = − adj([A,B]).

Now, by the hypothesis and Theorem 3 it follows that [A,B]adj is nilpo-
tent, and by the identity above it follows that adj([A,B]) is nilpotent and by
Lemma 8 we have (adj([A,B]))2 = On;

(b) Since adj(A) commutes with A by (a) the conclusion follows imme-
diately. �
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Remark. The 3× 3 matrices below show that the Jacobson-type condition
of the form [adj(A), [A,B]] = On is not enough for [A,B] to be nilpotent,

A =

(
J2(0) 0
0 0

)
, B =

(
J2(0)

T 0
0 0

)
.
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C. Corduneanu, Barbălat and his Lemma 97

Barbălat and his Lemma

C. Corduneanu1)

Abstract. A key result in mathematical analysis, very useful in the quali-
tative theory of differential equations, which is quite elementary, is known
as the Barbălat lemma. The paper is devoted to some comentaries and
some mathematical perspectives on the Barbălat lemma.

Keywords: Barbălat lemma, qualitative theory, differential equations.

MSC: 01A70, 34CXX

1. Introduction

Ioan Barbălat (1907–1988) was a Romanian mathematician who had
contributed, mostly, within the Seminar of ,,Qualitative Theory of Differen-
tial Equations“, organized under the leadership of the late Professor Aristide
Halanay, at the Institute of Mathematics of the Romanian Academy (1952-
1997). His academic affiliation was with the ,,Institute of Civil Engineering“
from Bucharest, where he held the chairmanship of the Mathematics Depart-
ment. Before occupying this position, he worked as a high-school teacher, in
insurance–actuarial companies or as an Assistant Professor, then Professor.

He was born in the city of Bârlad, studied in Romania and in France. In
particular, he spent several years in Paris, where he acquired mathematical
skills, under distinguished French professors at Sorbonne.

One of his major contributions to Mathematical Analysis/Differential
Equations is, likely, his result known in the mathematical literature under his
name: Barbălat’s Lemma. It is a very simple, but handy result, which carried
his name, along the last half-a-century, being quoted/used by hundreds of
researchers and authors, in numerous journal papers and books. Wikipedia
has also included reference to the Lemma.

This paper is aimed to pay a homage to the memory of a colleague, who
distinguished himself by special amiability and refined personality.

We shall first present one of the variants of his Lemma, as it appears
in the recent book [3] of Ivan Tyukin, published by Cambridge University
Press.

Then, we shall consider similar results interesting the applications to
the Theory of Dynamical Systems.

2. Barbălat’s Lemma (1959)

The statement of the Lemma:

A real valued function, f : R+ → R, which is uniformly continuous and
such that

1)University of Texas, Arlington, Romanian Academy
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lim
t→∞

t∫

0

f(s)ds = a ∈ R (1)

satisfies

lim
t→∞

f(t) = 0. (2)

Proof. (see [3]) If (2) does not hold, there exists a sequence {tn; n ≥ 1} ⊂ R+,
such that

|f(tn)| > ε0 > 0, n ≥ 1. (3)

The uniform continuity of f(t) on R+ allows us to write

|f(t)| ≥ ε0
2
, |t− tn| < δ, n ≥ 1, (4)

for some δ = δ(ε0) > 0, while (4) implies

f(t) ≥ ε0
2
, |t− tn| < δ, (5)

for infinitely many n ≥ 1. Without loss of generality, we can assume that (5)
holds for any n ≥ 1. Since (1) holds true when f(t) is substituted by −f(t),
we still can rely on (5), which must be verified for either f(t), or −f(t).

Therefore, we derive from (3) and (5) the inequalities

tn+δ∫

tn−δ

f(t)dt ≥ 2δε0, n ≥ 1, (6)

which are incompatible with (1). Indeed, condition (1) implies, on behalf of
Cauchy ’s criterion for existence of the limit, as t → ∞, the inequality

∣∣∣∣∣∣

t̄∫

t

f(s)ds

∣∣∣∣∣∣
< ε, t, t̄ ≥ T (ε), (7)

with arbitrary ε > 0. In particular, for ε < 2δε0, (7) becomes impossible,
which proves that our assumption (3) leads to a contradiction.

The Lemma is, thereby, proven.

Remark. Several variants of this Lemma can be found in various sources.
In our book [2], there are basically the same conditions, but (1) is substi-
tuted by

∞∫

0

f(t)dt < ∞, f(t) ≥ 0, (8)
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somewhat stronger. Obviously, (1) is the consequence of

t∫

0

f(s)ds →
∞∫

0

f(s)ds, as t → ∞. (9)

Let us point out the fact that Barbălat’s Lemma is of current use in
stability theory, for which the space C0(R+,R

n), consisting of all continuous
functions from R+ into Rn, tending to zero at ∞, is the natural choice.

Sometimes, the Lemma is stated in a slightly different form: f ∈L1(0,∞),
f ′(t) uniformly continuous on [0,∞) imply f ′(t) → 0 as t → ∞.

The dynamical interpretation is the following: the motion described by
the function f(t) leads to an equilibrium point (because the velocity f ′(t) → 0
as t → ∞).

3. A boundedness result

As seen in case of Barbălat’s Lemma, the assumption of uniform con-
tinuity has important implications on the global behavior of the function
involved.

In concise formulation, the Barbălat’s Lemma can be expressed as


f ;

t∫

0

f(s)ds ∈ C`(R+,R)



 ∩ {f ; f ′ ∈ Cu(R+,R)} ∈ C0(R+,R). (10)

The meaning of the notations are the following

• C`(R+,R) is the Banach space of continuous maps from R+ into
R, with the supremum norm on R+, each function being such that
lim
t→∞

f(t) exists and is finite;

• Cu(R+,R) stands for the set of uniformly continuous maps from R+

into R;
• C0(R+,R) is the (closed) subspace of C`(R+,R), for which the limits
of functions at infinity are zero.

It is also a Banach space with the supremum norm on R+.
We shall state and prove a result which provides a boundedness criterion

on R+.
Again, using concise formulation, this result can be stated as follows:

Theorem 1. Let M(R+,R) be the Banach space of maps from R+ into R,

locally integrable and such that

sup
t∈R+

t+1∫

t

|f(s)|ds = |f |M < ∞. (11)

(The functions of this space are called bounded in the mean.)
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By BC(R+,R), one denotes the Banach space of all continuous and
bounded maps from R+ into R, with the supremum norm.

Then, the following relationship takes place:

M(R+,R) ∩ Cu(R+,R) ⊂ BC(R+,R). (12)

Proof. One has to show that a uniformly continuous function on R+, with
values in R, which is bounded in the mean, is actually bounded in usual
sense, i.e., |f(t)| ≤ K < +∞, t ∈ R+, for some K > 0.

One proceeds by contradicting the boundedness. This fact implies the
existence of a sequence tn → ∞, as n → ∞, such that

|f(tn)| → ∞, as n → ∞. (13)

The uniform continuity of f implies the property: for each ε > 0, there
exists δ > 0, such that

|f(t)| − |f(tn)| ≤ |f(t)− f(tn)| < ε, |t− tn| < δ. (14)

From (14) one derives

|f(tn)| − ε < |f(t)| < |f(tn)|+ ε, |t− tn| < δ, (15)

and furthermore, by integration

tn+δ∫

tn−δ

|f(s)|ds ≥ 2δ(|f(tn)| − ε). (16)

It is not restrictive to assume 2δ < 1, which means that the length of the
interval of integration in (16) is less than 1. Hence, one can find τn < tn,
n > 1, such that [τn, τn+1] ⊃ [tn−δ, tn+δ]. Therefore, from (16) one obtains

τn+1∫

τn

|f(s)|ds ≥
tn+δ∫

tn−δ

|f(s)|ds ≥ 2δ(|f(tn)| − ε), n ≥ 1. (17)

Now, if one takes (13) into account, one finds that

sup
t∈R+

t+1∫

t

|f(s)|ds = ∞, (18)

which contradicts the definition of the space M(R+,R), according to (11).
Theorem 1 is thereby proven.
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4. Another kind of Barbălat’s Lemma

In order to state a criterion, for a function to belong to the space
C0(R+,R), we shall consider a subspace of the space M(R+,R), defined by
(11), namely

M0(R+,R) =



f ; f ∈ L1

loc(R+,R),

t+1∫

t

|f(s)|ds → 0 as t → ∞



 . (19)

It is obvious that the integral condition in (19) is equivalent to

F (t) =

t+1∫

t

|f(s)|ds ∈ C0(R+,R).

The result can be stated as follows:

Theorem 2. The following relationship is valid:

M0(R+,R) ∩ Cu(R+,R) ⊂ C0(R+,R). (20)

Proof. The inclusion (20) means that a function f : R+ → R, belonging
to both M0(R+,R) and Cu(R+,R), must be in the space C0(R+,R). Let
us consider such a function and observe that, in case it would not be in
C0(R+,R), one can find a sequence {tk; k ≥ 1} ⊂ R+, such that

|f(tk)| → `, as k → ∞. (21)

From the uniform continuity of f on R+, there results the property: to
each ε > 0, one can find δ > 0, such that

|f(t)| − |f(tk)| ≤ |f(t)− f(tk)| ≤ ε, |t− tk| < δ, k ≥ 1. (22)

Let us point out the fact that the existence of δ = δ(ε) is guaranteed as
the maximum possible value for δ, such that (22) holds.

We can diminish δ, as much as we want, keeping it positive, and (22)
remains valid. More precisely, we shall always choose δ in (22), with 2δ < 1.

From (22), one derives

|f(t)| ≥ |f(tk)| − ε, |t− tk| < δ, k ≥ 1, (23)

and, taking into account (21), with a sufficiently small ε > 0 in (23), one
obtains by integrating in (23), from tk − δ to tk + δ,

tk+δ∫

tk−δ

|f(t)|dt ≥ 2δ(|f(tk)| − ε), k ≥ 1. (24)
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Taking into account our assumption 2δ < 1, there results the existence
of a number τk ∈ R, such that [τk, τk + 1] ⊃ [tk − δ, tk + δ], which implies

τk+1∫

τk

|f(s)|ds ≥
tk+δ∫

tk−δ

|f(s)|ds ≥ 2δ(|f(tk)| − ε), t ≥ 1. (25)

Letting k → ∞ in both sides of (25), one obtains the impossibility:

0 ≥ 2δ(`− ε), (26)

due to the fact that both factors in the right hand side are strictly positive.
Of course, from the beginning we chosen ε < `, while δ > 0.

This ends the proof of Theorem 2.

Remark. Theorem 2 will be compared with the Barbălat ’s Lemma, which
we shall rephrase in the form

{f ; f ∈ C`(R+,R)} ∩
{
f ; f ′ ∈ Cu(R+,R)

}
⊂ C0(R+,R),

where C`(R+,R) denotes the Banach space of maps from R+ into R, such
that lim

t→∞
f(t) exists.

We shall now prove that the spaces C`(R+,R) and M0(R+,R) are dis-
tinct, though they contain both the space C0(R+,R).

First, it is almost obvious that a function f ∈ C`(R+,R), with
lim
t→∞

f(t) 6= 0, cannot be in M0(R+,R).

Second, the space M0(R+,R) contains also functions which do not
belong to C`(R+,R

n). It is rather elementary to prove that the function
f(t) = 0 on [0, 1], and

f(t) =

{
0, t ⊂ [k, k + 1− k−1],
k(t− k − 1 + k−1), t ∈ [k + 1− k−1, k + 1],

k ≥ 1,

is in M0(R+,R), but not in C`(R+,R). This f(t) is not continuous but it is
possible to construct even continuous examples.

We invite the reader to obtain such examples and get similar results to
the Barbălat’s Lemma.
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NOTE MATEMATICE

A property of the bidimensional sphere

Marius Cavachi1),

Abstract. It is natural to ask for a reasonable constant k having the prop-
erty that any open set of area greater than k on a bidimensional sphere of
area 1 always contains the vertices of a regular tetrahedron. We shall prove

that it is sufficient to take k =
3

4
. In fact we shall prove a more general

result. The interested reader will not have any problem in establishing

that
3

4
is the best constant with this property.

Keywords: area; open set; Haar measure; rotation group of the sphere.

MSC: 97G40

Our result is the following:

Theorem 1. Let n be a positive integer, and let S be a bidimensional sphere

of area 1. If M ⊂ S is an open set of area greater than
n− 1

n
and X ⊂ S is

a finite set with n elements, then there exists a rotation ρ of the sphere such
that ρ(X) ⊂ M .

In the proof, we use the following result whose proof we postpone:

Lemma 2. Let M,M ′ ⊂ S be open sets such that A(M) > A(M ′)2). Then
there exists a finite number of mutually disjoint spherical caps Uα and rota-
tions ρα such that:

(i)
⋃

α

Uα ⊂ M ;

(ii) M ′ ⊂
⋃

α

ρα(Uα);

(iii) M \
⋃

α

Uα has non-empty interior.

Proof of the Theorem. Let µ be a Haar measure on SO(3) such that
µ(SO(3)) = 1.

For any A ⊂ S, let ΦA be the characteristic function of A.

Fix a ∈ S and let IAa ∈ R be IAa =

∫

SO(3)

ΦA ◦ x(a)dµ(x).

1),,Ovidius“ University of Constanţa, Constanţa, Romania, mcavachi@yahoo.com
2)For any A ⊂ S, A(A) denotes its area.
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Remark 1. Note that if b is an arbitrary point on S, then IAa = IAb . Indeed
if ρ ∈ SO(3) is such that ρ(a) = b (and such a ρ always exists), then:

IAb =

∫

SO(3)

ΦA ◦ x(ρ(a))dµ(x) =
∫

SO(3)

ΦA ◦ (x ◦ ρ)(a))dµ(x ◦ ρ) =

=

∫

SO(3)

ΦA ◦ x(a)dµ(x),

since dµ(x ◦ ρ) = dµ(x), the Haar measure being rotation invariant.
Moreover, if B ⊂ S is an open set such that there exists ρ1 ∈ SO(3)

with ρ1(A) = B, then again IAa = IBa . Indeed,

IBa =

∫

SO(3)

Φρ(A) ◦ x(a)dµ(x) =
∫

SO(3)

ΦA ◦ ρ−1
1 ◦ x(a))dµ(x) =

=

∫

SO(3)

ΦA ◦ (ρ−1
1 ◦ x)(a)dµ(ρ−1

1 ◦ x) = IAa .

Returning to the problem, if X = {a1, . . . , an}, let

f : SO(3) → R, f(x) =
n∑

i=1

ΦM ◦ x(ai).

Note that it is enough to find an x ∈ SO(3) with f(x) > n− 1. Then, since
f(x) is an integer ≤ qn, we obtain f(x) = n and hence x(a1), . . . , x(an) ∈ M ,
which proves the Theorem. To find such an x, it is enough to show that

∫

SO(3)

f(x)dµ(x) > n− 1.

But this means that
n∑

i=1

IMai > n− 1,

which is implied by

IMai >
n− 1

n
for each i, that is

IMa >
n− 1

n
.

We divide the sphere S in n spherical lunes F1, . . . , Fn of equal areas.
Obviously, each Fi can be obtained as a rotation of F1. This implies:

1 = ISa =
n∑

i=1

IFi
a = nIF1

a , hence IF1
a =

1

n
.
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Let now M ′ = S \ Fn. Then

IM
′

a =
n−1∑

i=1

IFi
a =

n− 1

n
.

With Uα and ρα as in the Lemma, we deduce:

IMa > I∪αUα
a =

∑

α

IUα
a =

∑

α

Iρα(Uα)
a ≥ IM

′

a =
n− 1

n
,

and the proof is complete. �

Proof of the Lemma. Let 0 < m < 1 and let Ci, for i ∈ {1, . . . , k}, be spherical
caps of diameter d such that

k⋃

i=1

Ci = S,

and let Pi be the plane containing the center of S and parallel to the circle
bounding Ci. If πi : S → Pi is the orthogonal projection on Pi, we can choose
d small enough such that:

• For any open C ⊂ Ci, we have A(πi(C)) > mA(C).
• For any A 6= B ∈ Ci, we have the inequality of segment lengths:

|πi(A)πi(B)| > m · |AB|.
Define now M1 = C1 ∩M , M2 = C2 ∩ (M \M1),
M3 = C3 ∩ (M \M1 ∪M2), . . ., Mk = Ck ∩ (M \M1 ∪ · · · ∪Mk−1), and

similarly construct M ′
1,M

′
2, . . . ,M

′
k.

Let Ni = πi(Mi), N
′
i = πi(M

′
i). For 1−m close enough to 0, we have:

k∑

i=1

A(Ni) >
k∑

i=1

A(N ′
i).

In each plane Pi, we fix a side length ε square lattice. It can be proven
(see [1, pag. 315,327]) that the number ni of squares contained in Ni is

1

ε2
A(Ni) +O(

1

ε
),

and analogously we have an approximation for the number n′
i of squares

contained in N ′
i . Hence, for small enough ε, we get

k∑

i=1

ni >
k∑

i=1

n′
i.

Therefore, we can choose an injection u from the set P ′ of squares

contained in
k⋃

i=1

N ′
i into the set P of squares contained in

k⋃

i=1

Ni.
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Let P ∈ P ′ (and hence P ⊂ N ′
i for some i), let Q ∈ Ci be the point

whose projection on Pi is the center of P , and let DP be the spherical cap
defined as the intersection of S with the ball centered in Q and of radius ε/2.
Similarly, define Du(P ), corresponding to u(P ). Clearly, DP = ρP (Du(P )) for
some ρP ∈ SO(3). We remove from M all the caps Du(P ) and from M ′ all
the caps DP , for P ∈ P ′.

Define now s = A(M), s′ = A(M ′). Since
∑

n′
iε

2 → ∑A(N ′
i), when

ε → 0, we can choose ε and 1 − m small enough such the above procedure

removes from M and M ′ the sets M1 and M′
1 of area greater than

1

2
s′.

Inductively, define Si, S
′
i as follows: S1 = M \M1 and S′

1 = M ′ \M′
1.

By repeating the above process, obtain the sets S2, S
′
2 and so on.

Obviously, A(S′
t) <

(
1

2

)t

→ 0 as t grows to infinty.

Since A(St) > s− s′ > 0, there exists some t such that

A(St) > 4 · A(S′
t).

Once again, we go through the first step of the above construction
applied to the sets St, S

′
t with the difference that P ′ will be the minimal set

of all squares of lattices in Pi which cover
k⋃

i=1

N ′
i , and P will contain all the

squares of lattices with side length 2ε that are included in

k⋃

i=1

Ni. Also, DP

will be the intersection of S with the ball centered at Q and of radius
ε√
2
,

and Du(P ) is constructed analogously. The circle with the same center as

u(P ), of radius
ε√
2
, is included in u(P ).

Letting the set of Uα be the set of all Du(P ), the conditions (i) − (iii)
in the Lemma are satisfied and the proof is complete. �
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PROPOSED PROBLEMS

323. If m, n are given positive integers and A, B, C are three matrices
of size m× n with real entries, then

∑

cyc

(det(ABT ))2 det(CCT ) ≤
∏

det(AAT ) + 2
∏

cyc

| det(ABT )|.

Proposed by Flavian Georgescu, student, University of Bucharest,

Bucharest and Cezar Lupu, Politehnica University of Bucharest,

Bucharest, Romania.

324. Let p be a prime number and a, b, c, d positive integers such that
a ≥ c and b, d ∈ {0, 1, . . . , p− 1}. Show that
(
ap+ b

cp+ d

)
≡ (a−c)

(
a

c

)(
p+ b

d

)
+c

(
a

c

)(
p+ b

p+ d

)
−(a−1)

(
a

c

)(
b

d

)
(mod p2).

Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National

College, Bârlad, Romania.

325. Let p be a prime number. Show that

p∑

k=1

p

√
k +

p
√
k cannot be

rational.
Proposed by Marius Cavachi, Ovidius University of Constanţa,

Constanţa, Romania.

326. Let A, B ∈ Mn(R) be diagonalisable inMn(R) such that exp(A) =
exp(B). Show that A = B.

Proposed by Moubinool Omarjee, Jean Lurçat High School, Paris,

France.

327. Let N be the n × n matrix with all its elements equal to
1

n
and

A ∈ Mn(R), A = (aij)1≤i,j≤n, such that for some positive integer k one has
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Ak = N . Show that ∑

1≤i,j≤n

a2ij ≥ 1.

Proposed by Lucian Ţurea, Bucharest, Romania.

328. Given a > 0, let f be a real-valued continuous function on [−a, a]
and twice differentiable on (−a, a). Show that for all |x| < a, there exists
|ξ| < x such that

f(x) + f(−x)− 2f(0) = x2f ′′(ξ).

Proposed by George Stoica, University of New Brunswick in Saint

John, NB, Canada.

329. Let ABC be a triangle and let P be a point in its interior with
pedal triangle DEF . Suppose that the lines DE and DF are perpendicular.
Prove that the isogonal conjugate of P is the orthocenter of triangle AEF .

Proposed by Cosmin Pohoaţă, student, Princeton University,

Princeton, NJ, USA.

330. It is well-known that for p > 2 prime, the number

N =
2p−1 − 1

p

is integer. When is N a natural power of an integer?
Proposed by Ion Cucurezeanu, Ovidius University of Constanţa,

Constanţa, Romania.

331. Let f ∈ Z[X] be a monic polynomial of degree n+2, with f(0) 6= 0,
n ∈ N, n ≥ 1. Show that there are only finitely many positive integers a such
that f(X) + aXn is reducible over Z[X].

Proposed by Vlad Matei, student, University of Cambridge,

Cambridge, UK.

332. The cells of a rectangular 2011 × n array are colored using two
colors, so that for any two columns the number of pairs of cells situated on a
same row and bearing the same color is less than the number of pairs of cells
situated on a same row and bearing different colors.

i) Prove that n ≤ 2012 (a model for the extremal case n = 2012 does
indeed exist, but you are not asked to exhibit one).

ii) Prove that for a square array (i.e. n = 2011) each of the colors
appears at most 1006 · 2011 (and thus at least 1005 · 2011) times.

Proposed by Dan Schwarz, Bucharest, Romania.

333. Prove that for any m, n ≥ 3 there is an m × n matrix of rank 2
with entries distinct primes.

Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.
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334. Define F = {f : [0, 1] → [0, 1] : ∃A,B ⊂ [0, 1], A ∩ B = ∅,
A ∪ B = [0, 1], f(A) ⊂ B, f(B) ⊂ A}. Prove that F contains functions
with Darboux property (a function f has the Darboux property if f(I) is an
interval whenever I is an interval).

Proposed by Benjamin Bogoşel, student, West University of

Timişoara, Timişoara, Romania.

335. Let f : [0, 1]→R be an integrable function such that

1∫

0

f(x)dx=0.

Prove that
1∫

0

f2(x)dx ≥ 12




1∫

0

xf(x)dx




2

.

Proposed by Cezar Lupu, Politehnica University of Bucharest,

Bucharest, Romania, and Tudorel Lupu, Decebal High School, Constanţa,

Romania.

336. Given a function f : R → R, denote by fn its nth iterate. It is
also given that |f(x)− f(y)| ≤ |x− y| for all x, y ∈ R (f is Lipschitzian, and
non-expansive), and that fN (0) = 0 for some N ∈ N∗.

i) Prove that if N is odd, then |f(x)| ≤ |x| for all x ∈ R.
ii) Prove that if N is even, then |f(f(x))| ≤ |x| for all x ∈ R, but not

necessarily |f(x)| ≤ |x|.
Proposed by Dan Schwarz, Bucharest, Romania.

SOLUTIONS

309. Consider a prime p and a rational number a such that p
√
a /∈ Q.

Define a sequence of polynomials by f1 = Xp − a and fn+1 = fp
n − a for all

n ≥ 1. Show that all terms of the sequence fn are irreducible polynomials.

Proposed by Marius Cavachi, Ovidius University of Constanţa,

Constanţa, Romania.

Solution by the author. We show that the conclusion holds for p odd
prime. For the proof we use the following known result (see chapter Some
useful irreducibility criteria from T. Andreescu and G. Dospinescu, Problems
from the Book, XYZ Press, 2008).

Lemma 1. Let K be a field of complex numbers (a subfield of C), a ∈ C, and
let p be a positive prime number. Then the polynomial Xp − a is reducible
over K if and only if a is a pth power in K (i. e., if there exists b ∈ K with
a = bp).



110 Problems

It is sufficient to prove that the degree of the extension Q ⊂ Q(an) is
pn, where (an)n≥1 is the recurrent sequence defined by a0 = 0, a1 = p

√
a,

an+1 = p
√
a+ an (n ≥ 1). We shall do it by induction on n. For n = 1 the

property follows from the lemma. It is enough to prove that the extension
Q(an) ⊂ Q(an+1) has degree p (the statement we wrote previously follows
by Tower Law), or equivalently that the polynomial g(X) = Xp − (a+ an),
which has an+1 among its roots, is irreducible over Q(an)[X].

We argue by contradiction, so assume the contrary. The previous
lemma, it follows that an + a = αp, with α ∈ Q(an). Applying to this
equality the norm NQ(an)/Q, we obtain NQ(an)/Q(an + a) = N

p
Q(an)/Q

(α).

With the notation Fk = Q(ak), Nk = NFk/Fk−1
(k ≥ 1), we can write

NFn/Q(an + a) = N1(N2(. . . (Nn(an + a)) . . .)) =

= N1(N2(. . . (Nn

(
p
√
an−1 + a+ a

)
) . . .)) =

= N1(N2(. . . (Nn−1(an−1 + ap + a)) . . .)) = . . .

. . . = ((. . . ((ap + a)p + a)p . . .+ a)p + a)p + a = h(a).

Letting b = NFn/Q(α), it follows that h(a) = bp.

Let a =
r

s
, r, s ∈ Z, gcd(r, s) = 1. Multiplying the equality above by

sp
n
, we get an equality of the form rsp

n−1(1 + rsc) = bp, c ∈ Z. Since all of
the terms r, sp

n−1 and 1 + rsc are pairwise coprime, it follows that each of

them is a pth power, so p
√
a = p

√
r

s
∈ Q, a contradiction.

Solution by Marian Tetiva, Gheorghe Roşca Codreanu National College,
Bârlad, Romania. Thus stated, the problem is definitely false. Take, for

example, p = 2 and a =
4

3
; then f1 = X2 − 4

3
and

f2 =

(
X2 − 4

3

)2

− 4

3
= X4 − 8

3
X2 +

4

9
=

(
X2 − 2X +

2

3

)(
X2 + 2X +

2

3

)

is reducible over Q.
However we are able to prove that the assertion is true when a is integer.

In order to do that, we use the following auxiliary results.

Lemma 2. For integers a, n, p with n positive and p prime, the number

(· · · (((ap − a)p − a)p − a)p · · · )p − a

(with n parentheses) is a perfect pth power if and only if either a = 0 (with
arbitrary p and n) or a = 1, p is arbitrary, and n = 1.

The number

(· · · (((ap + a)p + a)p + a)p · · · )p + a

is a pth power of an integer if and only if either a = 0 (with arbitrary p and
n) or a = −1, p = 2, and n = 1.
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Lemma 3. (Capelli’s theorem) Let K be a subfield of C and let f , g be
polynomials from K[X]. Suppose that f is irreducible in K[X] and there
exists a complex root α of f such that g − α is irreducible in K[α][X]. Then
f(g(X)) is irreducible in K[X].

Lemma 1 is just an exercise in elementary arithmetics (the number from
the statement is between two consecutive pth powers that are easy to write
down). For a proof of Lemma 3, we refer the reader to the chapter Some
useful irreducibility criteria from Dospinescu and Andreescu’s book cited in
the previous solution.

Now we solve the problem (with integer a). Put

f1(X) = f(X), fn+1(X) = f1(fn(X)) for all n ≥ 1.

Then fn(X) = f1(· · · (f1(X)) · · · ) (with n appearances of f1), therefore

fn+1(X) = fn(f1(X))

also holds for all n ≥ 1.
We prove the result by induction on n. For n = 1, the irreducibility of

f1 follows by Lemma 2 (of course, we assume that it’s irreducibility over Q
of which we are talking about).

Assume further that fn is irreducible over Q, and let’s prove that fn+1 is
irreducible, too. We try to apply Capelli ’s theorem, with f = fn (irreducible,
according to the induction hypothesis), and g = f1. So, we need to show that,
for a certain root α of fn, the polynomial f1 − α = Xp − a− α is irreducible
over Q[α]. Suppose not. Using Lemma 2 once again, this means that a + α
is a pth power in Q[α], that is, there are b0, . . . , bm−1 ∈ Q (with m = pn, the
degree of fn and of α over Q), such that

(b0 + b1α+ · · ·+ bm−1α
m−1)p = a+ α.

Let α1 = α, α2, . . . , αm be all the roots of fn. Because the polynomial
with rational coefficients

(b0 + b1X + · · ·+ bm−1X
m−1)p − (a+X)

has the root α, it must be divisible with fn (which, being irreducible, is the
minimal polynomial of α), therefore it has all αj as zeros. By multiplying
side by side all equalities

(b0 + b1αj + · · ·+ bm−1α
m−1
j )p = a+ αj , 1 ≤ j ≤ m,

one gets
m∏

j=1

(b0 + b1αj + · · ·+ bm−1α
m−1
j )p =

m∏

j=1

(a+ αj)

or

bp =
m∏

j=1

(a+ αj)
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for some b which is a rational number according to the fundamental theorem
of symmetric polynomials. Actually in the right hand side we have

(−1)m
m∏

j=1

(−a− αj) = (−1)mfn(−a) ∈ Z,

that is bp needs to be an integer and, consequently, b is an integer, too.
As one can immediately see, this leads to an equality of the form

(· · · ((a2 − a)2 − a)2 · · · )2 − a = b2

when p = 2, or of the form

(· · · ((ap + a)p + a)p · · · )p + a = bp

when p is an odd prime, with integers a and b.
According to Lemma 1 (and because |a| ≥ 2), such an equality is im-

possible, hence our assumption (that f1 − α is reducible over K[α]) is false,
and the conditions to apply Capelli ’s theorem are fulfilled, leading to the
conclusion that fn+1 is irreducible. �

Remark. The counterexample we gave at the beginning of the solution
is for p = 2; we did not find one for odd prime p. Note that Lemma 1 is not
true when p = 2 if both a and b are assumed to be rational. If it were true
for odd p, it would give us a proof for the original statement (with rational
a) — but it seems hard to find an argument for that.

310. For n ≥ 4, 1 ≤ δ < ∆ ≤ n− 1, n, δ,∆ ∈ N, consider the function

f(xδ, xδ+1, . . . , x∆) =
∑

δ≤i<j≤∆

(
1√
i
− 1√

j

)2

xixj

and the domain

D = {(xδ, xδ+1, . . . , x∆) : xi ∈ N for δ ≤ i ≤ ∆,
∆∑

i=δ

xi = n}.

Show that if (xδ, . . . , x∆) ∈ D then

f(xδ, . . . , x∆) ≤
(

1√
δ
− 1√

∆

)2

α(n),

where α(n) = n2/4 for n even and α(n) = (n2 − 1)/4 for n odd. When does
equality hold?

Proposed by Ioan Tomescu, University of Bucharest, Bucharest, Romania.

Solution by the author. We shall prove that all points where f is maxi-
mum in D are the following:

i) If n ≥ 4 is even, then maxD f(xδ, . . . , x∆) is reached for (n/2, 0, . . . , 0, n/2);
ii) If n ≥ 5 is odd, then maxD f(xδ, . . . , x∆) is attained for

((n− 1)/2, 0, . . . , 0, (n+ 1)/2) and ((n+ 1)/2, 0, . . . , 0, (n− 1)/2).



Proposed problems 113

If xδ+1 = . . . = x∆−1 = 0 then

f(xδ, . . . , x∆) = (
1√
δ
− 1√

∆
)2xδx∆

and the result is obvious since xδ + x∆ = n. Otherwise, denote by i (δ + 1 ≤
i ≤ ∆ − 1) the smallest index such that xi ≥ 1 and by j (δ + 1 ≤ j ≤
∆ − 1) the greatest index such that xj ≥ 1; obviously i ≤ j. Denote by
α and β the operations consisting of replacing x = (xδ, . . . , x∆) ∈ D by
x′ = (xδ, 0, . . . , 0, xi, . . . , xj−1, xj − 1, 0, . . . , 0, x∆ + 1) ∈ D and by x′′ =
(xδ + 1, 0, . . . , 0, xi − 1, xi+1, . . . , xj , 0, . . . , 0, x∆) ∈ D, respectively. We have

f(x′)− f(x) =

(
1√
j
− 1√

∆

)2

(xj − x∆ − 1)+

+xδ

(
1√
j
− 1√

∆

)(
2√
δ
− 1√

j
− 1√

∆

)
+

+xi

(
1√
j
− 1√

∆

)(
2√
i
− 1√

j
− 1√

∆

)
+

+xi+1

(
1√
j
− 1√

∆

)(
2√
i+ 1

− 1√
j
− 1√

∆

)
+

+ · · ·+ xj−1

(
1√
j
− 1√

∆

)(
2√
j − 1

− 1√
j
− 1√

∆

)
.

Since 2√
k
− 1√

j
− 1√

∆
> 1√

j
− 1√

∆
for k = δ, i, i + 1, . . . , j − 1, we can

write

f(x′)− f(x) ≥
(

1√
j
− 1√

∆

)2

(xδ + xi + xi+1 + . . .+ xj − x∆ − 1), (1)

and this inequality is strict if at least one of xδ, xi, xi+1, . . . , xj−1 is different
from zero. Similarly,

f(x′′)− f(x) =

(
1√
δ
− 1√

i

)2

(xi − xδ − 1)+

+xi+1

(
1√
δ
− 1√

i

)(
1√
δ
+

1√
i
− 2√

i+ 1

)
+ . . .+ xj

(
1√
δ
− 1√

i

)
+

+

(
1√
δ
+

1√
i
− 2√

j

)
+ x∆

(
1√
δ
− 1√

i

)(
1√
δ
+

1√
i
− 2√

∆

)
,

which implies

f(x′′)− f(x) ≥
(

1√
δ
− 1√

i

)2

(xi + xi+1 + . . .+ xj + x∆ − xδ − 1). (2)

This last inequality is strict if at least one of xi+1, . . . , xj , x∆ is different from
zero.
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If i = j we get

f(x′)− f(x) ≥
(

1√
i
− 1√

∆

)2

(xδ + xi − x∆ − 1), (3)

the inequality being strict if xδ ≥ 1, and

f(x′′)− f(x) ≥
(

1√
δ
− 1√

i

)2

(x∆ + xi − xδ − 1), (4)

this inequality being strict if x∆ ≥ 1.
We shall prove that at least one of the differences f(x′) − f(x) and

f(x′′) − f(x) is positive, which implies that all sequences (xδ, . . . , x∆) ∈ D
realizing the maximum of f satisfy xδ+1 = . . . = x∆−1 = 0. Consider first the
case when i = j. It is clear that if xδ = x∆ = 0 then f(xδ, . . . , x∆) = 0, which
implies that (0, . . . , 0, xi, 0, . . . , 0) cannot maximize f . Otherwise, suppose
that xδ ≥ 1. If xδ + xi − x∆ − 1 ≥ 0 then inequality (3) is strict and it
follows that f(x′) > f(x), so that x cannot maximize f on D. Otherwise,
xδ + xi − x∆ − 1 ≤ −1. In this case x∆ ≥ xδ + xi, hence x∆ + xi − xδ − 1 ≥
2xi − 1 ≥ 1, which implies f(x′′) > f(x) and x also cannot maximize f . If
x∆ ≥ 1 the same conclusion follows since inequality (4) is strict.

Suppose that i < j. In this case xi > 0, xj > 0 and both inequalities (1)
and (2) are strict. If xδ+xi+· · ·+xj−x∆−1 ≥ 0 then from (1) it follows that
f(x′) > f(x). Otherwise, x∆ ≥ xδ+xi+· · ·+xj and xi+· · ·+xj+x∆−xδ−1 ≥
2(xi + · · ·+ xj)− 1 > 0, which implies f(x′′) > f(x) from (2).

Consequently, all sequences maximizing f have the form (n1, 0, . . . , 0, n2),
where n1 + n2 = n; in this case

f(n1, 0, . . . , 0, n2) =

(
1√
δ
− 1√

∆

)2

n1n2 ≤
(

1√
δ
− 1√

∆

)2

ϕ(n),

and the conclusion follows. �

311. Show that for any matrix A ∈ M2(R) there exist X, Y ∈ M2(R)
with XY = Y X such that A = X2n+1 + Y 2n+1 for all n ≥ 1.

Proposed by Vlad Matei, student, University of Bucharest,

Bucharest, Romania.

Solution by the author. We can prove easily by induction, using Hamilton-
Cayley relation A2−Tr(A)A+det(A)I2 = O2, that there are ak, bk ∈ R such
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that akA = Ak + bkI2, for all k ≥ 1. For x real number, we therefore have

(A+ xI2)
2n+1 =

2n+1∑

k=0

xkA2n+1−k

(
2n+ 1

k

)

=
n∑

k=0

xk(a2n+1−kA− b2n+1−kI2)

(
2n+ 1

k

)

= A
2n+1∑

k=0

xka2n+1−k

(
2n+ 1

k

)
− I2

2n+1∑

k=0

xkb2n+1−k

(
2n+ 1

k

)
.

Now we look at the polynomials

f(x) :=
2n+1∑

k=0

xka2n+1−k

(
2n+ 1

k

)
, g(x) :=

2n+1∑

k=0

xkb2n+1−k

(
2n+ 1

k

)
.

We have a1 = 1, so that f is not the zero polynomial. Thus we can find
c ∈ R such that f(c) 6= 0. We get

(
A+ cI2
2n+1
√
f(c)

)2n+1

+

(
2n+1

√
g(c)

f(c)
· I2
)2n+1

= A.

It is obvious that these two matrices commute. �

312. Let pn be the nth prime number. Show that the sequence (xn)n≥1

defined by

xn =

{
1

p1
+

1

p2
+ · · ·+ 1

pn

}
− {log log n}

is divergent. Here {x} denotes the fractional part of the real number x.
Proposed by Cezar Lupu, Politehnica University of Bucharest,

Bucharest, Romania and Cristinel Mortici, University of Valahia,

Târgovişte, Romania.

Solution by the authors. Here log denotes the natural logarithm (the
inverse function of exponential function).

First of all, it is well-known that there are infinitely many prime num-
bers. Let us denote by π(x) the counting function of prime numbers. From
the prime number theorem we infer

π(x) ∼ x

log x
for x → ∞.

Putting here x = pn, we get n ∼ pn
log pn

, and by taking the logarithm we

deduce log n ∼ log pn − log log pn. On the other hand, we have

log n

log pn
∼ 1− log log pn

log pn
,
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and since lim
x→∞

log log x

log x
= 0, we obtain log n ∼ log pn. Combining with the

fact that n ∼ pn
log pn

we thus obtain pn ∼ n logn. It is obvious that the

sequence (Pn)n≥1 defined by

Pn =
1

p1
+

1

p2
+ · · ·+ 1

pn

diverges because we have
∞∑

n=1

1

pn
∼

∞∑

n=2

1

n logn
, which is the celebrated

Bertrand series. Now, let’s prove that the sequence (Pn)n≥2 defined by

Pn = Pn − log logn

is convergent. We have Pn+1 − Pn =
1

pn+1
− (log log(n+ 1)− log log n). On

the other hand, it is well-known that pn > n log n for all n ≥ 1, and by
Lagrange’s theorem applied to the function log log x we infer the inequalities

1

(n+ 1) log(n+ 1)
< log log(n+ 1)− log logn <

1

n logn
, for all n > 1.

From these inequalities we conclude that the sequence Pn is strictly
decreasing. However, as it is shown in F. Mertens, Ein Beitrag zur analy-
tischen Zahlentheorie, J. reine angew. Math., 78(1874), 46–62, there exists
lim
n→∞

Pn = B, where B ' 0.261497 is known as Meissel-Mertens constant. It

is obvious that Pn ∈ [0, 1].
Next, we prove that xn ∈ {Pn − 1,Pn} for all n ≥ 2. Indeed, we have

xn = Pn− log log n− ([Pn]− [log logn]) = Pn− ([log logn+Pn]− [log log n]).

Since Pn ∈ [0, 1], we have [log logn] ≤ [log log n + Pn] ≤ [log log n + 1] =
1 + [log logn], so 0 ≤ [log logn + Pn] − [log logn] ≤ 1, and we obtain that
xn ∈ {Pn − 1,Pn} for all n ≥ 2, as claimed.

Now we can solve the problem. We assume, for the sake of a contradic-
tion, that the sequence xn is convergent. This implies

lim
n→∞

(xn+1 − xn) = lim
n→∞

(
Pn+1 − Pn − [Pn+1]− [log log n]+

+[Pn] + [log log(n+ 1)]
)
= 0,

which is equivalent to

lim
n→∞

(
[Pn+1]− [Pn]− [log log(n+ 1)] + [log log n]

)
= 0.

This means that each term of the sequence

yn = [Pn+1]− [Pn]− [log log(n+ 1)] + [log logn]

is the integer 0 from a rank n1 onwards. In other words, we have

[Pn+1]− [Pn] = [log log(n+ 1)]− [log log n] for all n ≥ n1.
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Since lim
n→∞

Pn = ∞, there exist infinitely many positive integers m ≥ n1 such

that [Pm] = am 6= [Pm+1], am ∈ N. Since Pn+1 = Pn +
1

pn+1
< Pn + 1,

we have [Pm+1] = am + 1, whence 1 = [log log(m + 1)] − [log logm]. Put
bm = [log logm], so that bm + 1 = [log log(m+ 1)]. Now, if am = bm, then it
follows

log logm < Pm < am + 1 = [log log(m+ 1)] ≤ log log(m+ 1) < Pm+1.

Then we obtain that the inequality between the extreme terms in the chain

B < Pm+1 − log logm < Pm+1 − Pm + log log(m+ 1)− log logm

<
1

(m+ 1) log(m+ 1)
+

1

m logm
<

2

m logm

holds for infinitely many positive integers m, which is false. If bm < am, then
we have

log logm < bm + 1 ≤ am < log log(m+ 1) < Pm+1,

whence Pm+1−log logm > am−bm ≥ 1. As lim
n→∞

(Pn−log log n) = B ∈ (0, 1),

we again reached a contradiction. �

313. Does there exist a set M of points in the Euclidean plane such
that the distance between any two of them is larger than 1 and such that
there is a point in M between any two distinct parallel lines in the plane?
Justify your answer.

Proposed by Marius Cavachi, Ovidius University of Constanţa, Con-

stanţa, Romania.

Solution by the author. Such a set does indeed exist. Choose a system
of coordinates and write d : y = mx+n instead of “the equation of the line d
is y = mx+n”. According to Kronecker’s density theorem, between any two
parallel lines of irrational slope there exists a point of the lattice 2Z× 2Z. It
remains to treat the case of parallel lines whose slope is either rational or ∞.
In what follows, p, q, r are varying rational numbers. Consider the countable
sets

A = {d | d : y = px+ r; p > 0, r < 0} ∪ {d | d : x = q; q > 0},
B = {d | d : y = px+ r; p < 0, r < 0} ∪ {d | d : y = q; q < 0},
C = {d | d : y = px+ r; p > 0, r > 0} ∪ {d | d : x = q; q < 0},
D = {d | d : y = px+ r; p < 0, r > 0} ∪ {d | d : y = q; q > 0}.
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Write A as a sequence (an)n≥1 and similarly for B, C and D. Then define

An = an ∩ {(x, 2n+ 1) | x > 0},
Bn = bn ∩ {(2n+ 1, y) | y < 0},
Cn = cn ∩ {(x,−2n− 1) | x < 0},
Dn = dn ∩ {(−2n− 1, y) | y > 0}.

We show that the set M = (2Z × 2Z) ∪ {An, Bn, Cn, Dn | n ≥ 1} has the
required properties.

The distance between any two points of M is at least one because their
x or y coordinates differ by at least one. Also, between any two distinct
parallel lines there exists one lying in A, B, C or D, so at least one point
from {An, Bn, Cn, Dn | n ≥ 1}. �

314. Let f : [0, 1] → R be a C2 real-valued function on [0, 1] which is
convex on [0, 1]. Prove

1∫

0

f(x)dx ≤ 1

4

(
f(0) + f

(
1

3

)
+ f

(
2

3

)
+ f(1)

)
.

Proposed by Tudorel Lupu, Decebal High School of Constanţa,

Constanţa, Romania.

Solution by the editors. We shall use the following lemmas.

Lemma 4. Any convex function f : [a, b] → R is continuous on the open
interval (a, b).

Lemma 5. (Hermite-Hadamard inequality) Let f : [a, b] → R be a convex
function on [a, b]. Then the following inequalities hold:

(b− a)f

(
a+ b

2

)
≤

b∫

a

f(x)dx ≤ (b− a)
f(a) + f(b)

2
.

Lemma 6. (Hardy-Littlewood-Pólya) Let f : [a, b] → R be a convex function
on [a, b]. Then the inequality

f(a) + f(b)

2
− f

(
a+ b

2

)
≥ f(c) + f(d)

2
− f

(
c+ d

2

)

holds for any a ≤ c ≤ d ≤ b.
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Returning to our problem, we split the integral

1∫

0

f into

1/3∫

0

f +

2/3∫

1/3

f +

1∫

2/3

f.

By Lemma 5, we have

1∫

0

f(x)dx ≤ 1

3

(
f(0) + f(1/3)

2
+

f(1/3) + f(2/3)

2
+

f(2/3) + f(1)

2

)
,

so we only need to prove

f(0) + 2f(1/3) + 2f(2/3) + f(1)

6
≤ f(0) + f(1/3) + f(2/3) + f(1)

4
,

which is equivalent to f

(
1

3

)
+f

(
2

3

)
≤ f(0)+f(1). This inequality follows

from Lemma 6 appplied for a = 0, b = 1 and c = 1
3 , d = 2

3 .

Solution by Marian Tetiva, Gheorghe Roşca Codreanu National College,
Bârlad, Romania. There’s no need that the function be C2; being convex is
enough to ensure for f the inequality

1∫

0

f(x)dx ≤ 1

n+ 1

n∑

k=0

f

(
k

n

)

for every positive integer n. (Note that f is Riemman integrable by Lemma 4.)
Indeed, denote by xn the right hand side of the above inequality. By convex-
ity, we have the inequalities

(k + 1)f

(
k

n

)
+ (n− k)f

(
k + 1

n

)
≥ (n+ 1)f

(
k + 1

n+ 1

)

for all k = 0, 1, . . . , n − 1. Summing them up we get (after some easy alge-
braic manipulations) xn ≥ xn+1 for all n ≥ 1; that is, the sequence (xn) is
decreasing. On the other hand,

lim
n→∞

xn = lim
n→∞

n

n+ 1
· 1
n

n∑

k=0

f

(
k

n

)
=

1∫

0

f(x)dx,

according to the definition of the Riemann integral. The well-known fact
that the limit of a decreasing sequence is at most equal to each term of the
sequence gives the desired inequality (and for n = 3 one gets the inequality
required by the proposer).
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Remark. The monotonicity of the sequence (xn) is also stated in
problem XII.22 proposed by Ion Raşa in Revista matematică din Timişoara,
1(1997), p. 53.

Solution by Angel Plaza, Las Palmas University, Las Palmas, Spain.
Since f is a C2 real-valued function on [0, 1] which is convex on [0, 1], f(x) ≤
r(x) for all secant lines of its graph, for x between the two abscissas of the
secant points. Considering the three linear functions passing through the

points of abscissas 0,
1

3
,
2

3
and 1, it is obtained

1∫

0

f(x)dx ≤ 1

3

(
f(0) + f(1/3)

2
+

f(1/3) + f(2/3)

2
+

f(2/3) + f(1)

2

)

=
1

6
f(0) +

1

3
f

(
1

3

)
+

1

3
f

(
2

3

)
+

1

6
f(1)

On the other hand, since f is convex,

f

(
1

3

)
≤ 1

2

(
f(0) + f

(
2

3

))

and

f

(
2

3

)
≤ 1

2

(
f

(
1

3

)
+ f(1)

)
.

Therefore it is also obtained

1∫

0

f(x)dx ≤ 1

3
f(0) +

1

6
f

(
1

3

)
+

1

6
f

(
2

3

)
+

1

3
f(1).

By summing up the two inequalities for
1∫
0

f(x)dx, we get

1∫

0

f(x)dx ≤ 1

4

(
f(0) + f

(
1

3

)
+ f

(
2

3

)
+ f(1)

)
. �

Remark. The author proved that for any C2 real-valued function f on
[0, 1] there exists c ∈ (0, 1) such that

1∫

0

f(x)dx =
1

4
(f(0) + f(1/3) + f(2/3) + f(1))− 1

36
f ′′(c).

The required inequality follows since the second derivative of a convex
function is non-negative.
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315. Let f : [0; 2π] → R be such that

2π∫

0

f(x) cos kxdx = 1 for all

k = 1, n, where n ≥ 2 is a fixed positive integer. Find the minimum of
2π∫

0

f2(x)dx over all such functions f .

Proposed by Vlad Matei, student, University of Bucharest,

Bucharest, Romania.

Solution by the author. We search for a function g(x) =
n∑

k=1

ak cos kx

which satisfies the required conditions. From the hypothesis we get

2π∫

0

(f(x)− g(x)) cos kxdx = 0,

for all k = 1, n, whence

2π∫

0

(f(x)−g(x))g(x)dx = 0. Using this, we can rewrite

2π∫

0

(f(x)− g(x))2dx ≥ 0 as

2π∫

0

f2(x)dx ≥
2π∫

0

f(x)g(x)dx. Since

2π∫

0

f(x)g(x)dx =
∑

k = 1nak

2π∫

0

f(x) cos kxdx =
∑

k = 1nak,

we conclude that

2π∫

0

f2(x)dx ≥
∑

k = 1nak.

It remains to determine ak for k = 1, n.

It is known that

2π∫

0

cos ix cos jxdx = πδij , where δij is the Kronecker

symbol. Since g satisfies the initial conditions, we obtain ak = 1/π for all
k = 1, n.

Puting all this together, we get

2π∫

0

f2(x)dx ≥ n/π. From this proof it is

obvious that the equality is attained if and only if f(x) =
1

π

∑
k = 1n cos kx.

Thus, n/π is the required minimum. �
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316. Let f : [0, 1] → [0,∞) and g : [0, 1] → [0, 1] be two integrable
functions. Prove that for any positive integers p, q, s, t with p 6= q, the
following inequality holds

1∫

0

fp(x)gs(x)dx ·
1∫

0

f q(x)gt(x)dx ≤
1∫

0

fp+q(x) · g
sp−qt

p−q (x)dx.

Proposed by Andrei Deneanu, student, Oxford University, Oxford,

UK and Cezar Lupu, Politehnica University of Bucharest, Romania.

Solution by the authors. Let us consider integrable functions

F,G : [0, 1] → [0,∞) such that

1∫

0

G(x)dx ≤ 1.

We shall prove that for any positive integers p, q, s, t, the following
inequality holds:

1∫

0

F p(x)G(x)dx

1∫

0

F q(x)G(x)dx ≤
1∫

0

F p+q(x)G(x)dx. (5)

This is trivially true if

1∫

0

F (x)G(x)dx = 0,

so below we may assume

1∫

0

F (x)G(x)dx 6= 0.

If p = q the asserted inequality is an immediate consequence of the
well-known Cauchy-Buniakovski-Schwarz inequality. We shall proceed by
induction on p + q. Without loss of generality, we may assume that q > p.
By applying Cauchy-Buniakovski-Schwarz integral inequality, we get

1∫

0

(√
F p+q(x)G(x)

)2
dx ·

1∫

0

(√
F q−p(x)G(x)

)2
dx ≥




1∫

0

F q(x)G(x)dx




2

.

On the other hand, by the induction hypothesis, we have the inequality

1∫

0

F q(x)G(x)dx ≥
1∫

0

F p(x)G(x)dx ·
1∫

0

F q−p(x)G(x)dx.
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Now, inequality (5) follows after simplification of

1∫

0

F q−p(x)G(x)dx in

1∫

0

F p+q(x)G(x)dx

1∫

0

F q−p(x)G(x)dx ≥

≥
1∫

0

F q(x)G(x)dx

1∫

0

F p(x)G(x)dx

1∫

0

F q−p(x)G(x)dx.

To solve our problem, we apply inequality (5) for

F (x) = f(x)g
s−t
p−q (x), G(x) = g

pt−sq

p−q (x). �

317. For integer n ≥ 2, determine the dimension of

V = span

{
P (x)

1− xdegP+1
: P (x) ∈ R[x], 0 ≤ degP < n− 1, degP + 1 | n

}

as a subspace of the R-linear space R(x).
Proposed by Dan Schwarz, Bucharest, Romania.

Solution by the author. Write the canonical factorization n =
s∏

i=1

peii .

Denote by Vi the span of the elements with degP + 1| n
pi
. It is clear that

every element belongs to (at least) one of these subspaces, hence

V = span

(
s⋃

i=1

Vi

)
.

Since dim(span(A ∪B)) = dimA+ dimB − dim(A ∩B) for linear sub-
spaces A, B, by induction one gets the inclusion/exclusion formula

dimV =
∑

k = 1s(−1)k−1
∑

|I| = k dim

(
⋂

i∈I
Vi

)
.

But

dim

(
⋂

i∈I
Vi

)
=

n∏
i∈I pi

,

so

dimV = n
∑

k = 1s(−1)k−1
∑

|I| = k
1∏

i∈I
pi

=
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= n

(
1−

s∏

k=1

(
1− 1

pk

))
= n− ϕ(n),

therefore dimV = n− ϕ(n), with ϕ(n) Euler’s indicator function. �

Remark. One may ask the same question in R[[x]] instead of R[x].

318. Let f be a polynomial with integer coefficients, deg(f) ≥ 1, and
k a positive integer. Show that there are infinitely many positive integers
n such that f(n) can be written in the form f(n) = d1d2 . . . dkdk+1, where
1 ≤ d1 < d2 < . . . < dk < n.

Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National

College, Bârlad, Romania.

Solution by the author. We can assume, without loss of generality, that
f has the leading coefficient positive, otherwise we can prove for −f , and
this implies the result for f . Thus, f(n) is positive for all n large enough.

Next, it is easy to verify through direct calculations that f
(
X + f(X)

)

is divisible by f(X), so f
(
X + f(X)

)
= f(X)g(X), where g ∈ Z[X] has

positive leading coefficient. We substitute again X with X + f(X), and we
obtain

f
(
X + f(X) + f

(
X + f(X)

))
= f(X)g(X)g

(
X + f(X)

)
.

We iterate this process, and in general, if we denote h(X) = X + f(X)

and h[p](X) = h(· · · (h(X)) · · · ) (p times), we get by induction

f
(
h[p](X)

)
= f(X)g(X)g

(
h(X)

)
· · · g

(
h[p−1](X)

)

for any integer p ≥ 1. If s is the degree of f (which is also the degree of h),

the degree of h[p] is sp, and the degrees of the polynomials in the right side
of the equality are s, s2 − s, . . . , sp − sp−1, respectively sp+1 − sp.

For s ≥ 2 we have s2 − s < s3 − s2 < · · · < sp − sp−1 < sp, so that for
m large enough we get

0 < g(m) < g
(
h(m)

)
< · · · < g

(
h[p−2](m)

)
< h[p](m).

Thus it is sufficient to choose p = k + 1 and n = h[k+1](m) for m large
enough such that the above inequalities hold, to have that f can be written
in the stated form (with d1 = g(m), . . . , dk = g

(
h[k−1](m)

)
and

dk+1 = f(m)g
(
h[k](m)

)
.

If s = 1 and f = aX + b we choose pairwise coprime integers d1, . . . , dk
which are coprime with a. By Chinese Remainder Theorem, there exists a
positive integer m such that am + 1 ≡ 0 (mod di), 1 ≤ i ≤ k. For n = mb
we have f(n) = an + b = (am + 1)b, and it is readily verified that n chosen
as above satisfies the requirements of the problem. This ends the proof. �
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319. Let µ be the Möbius function defined by µ(1) = 1, µ(p1p2 . . . pk) =
= (−1)k for all distinct primes p1, p2, . . . , pk, and µ(n) = 0 for any other
positive integer n. For integers n ≥ 2, q ≥ 1 and j ≥ 1 define

Nj =
1

j

∑

d/j

µ
(n
d

)
qd.

Show that
∑

x1+2x2+···+nxn=n
xi≥0

(
N1

x1

)(
N2

x2

)
· · ·
(
Nn

xn

)
= qn − qn−1.

Proposed by Gabriel Dospinescu, École Polytechnique, Paris,

France, and Marian Tetiva, Gheorghe Roşca Codreanu National College,

Bârlad, Romania.

Solution by the authors. In the following, all the polynomials will be
taken as monic.

Firstly, let us consider the case when q is a power of a prime number.
Then it is known that Nj is the number of monic irreducible polynomials of
degree j over Fq. This is true since Xqn − X ∈ Fq[X] is the product of all
monic irreducible polynomials from Fq[X] of degree dividing n, thus the sum
of the degrees of these polynomials is qn (in other words

∑

d|n
dNd = qn

for any n ≥ 1), hence the above formula for Nj follows from applying the
Möbius inversion formula.

We claim that the expresion
∑

x1+2x2+...+nxn=n
xi≥0

(
N1

x1

)(
N2

x2

)
· · ·
(
Nn

xn

)

counts the number of square-free polynomials (polynomials which decompose
in a product of distinct irreducible polynomials) of degree n over Fq. Indeed,
any such polynomial can be uniquely written as a product of x1 distinct

irreducible polynomials of degree 1 (which can be chosen in

(
N1

x1

)
ways), x2

distinct irreducible polynomials of degree 2 (which can be chosen in

(
N2

x2

)

ways), and so on, up to xn distinct irreducible polynomials of degree n (which

can be chosen in

(
Nn

xn

)
ways). Since we have also the equality of degrees, it

follows that these numbers must also satisfy x1 + 2x2 + · · ·+ nxn = n. The
above construction gives a bijection, so indeed the formula gives the number
of square-free polynomials of degree n over Fq.
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It is sufficient to prove that the number Mn of monic square-free poly-
nomials of degree n over Fq is qn − qn−1 (for n ≥ 2; if n = 1, obviously
N1 = M1 = q), and we obtain that the statement of the problem is true for
q power of a prime number. Since the formula is an equality of polynomi-
als and holds for infinitely many q, it follows that it is true for any positive
integer q.

Let us finish the proof. So we can assume q is a power of a prime
number. Let

f(x) =
1

1− qx
=
∑

n≥0

qnxn

be the generating function of the numbers qn, which give the number of all
monic polynomials of degree n over the field with q elements Fq, and let

g(x) =
∑

n≥0

Mnx
n

be the generating function of the numbers Mn (where M0 = 1). The equality

f(x) = g(x)f(x2)

is true since any polynomial can be written uniquely as a product of a square-
free polynomial and the square of an arbitrary polynomial. Identifying the

coefficients in the two sides of the equality g(x) =
f(x)

f(x2)
= f(x)(1 − qx2),

one gets M1 = q and Mn = qn − qn−1 for n ≥ 2. �

320. For n > 1, does there exist a quadratic polynomial f ∈ Q[X] such
that f2n + 1 is reducible over Q?

Proposed by Gabriel Dospinescu, École Polytechnique, Paris,

France, and Marian Tetiva, Gheorghe Roşca Codreanu National College,

Bârlad, Romania.

Solution by the authors. There is no such polynomial! Assume that
f = aX2 + bX + c has the property asked in problem and let ∆ = b2 − 4ac.
Let g = X2n + 1 and let z be a root of g. Finally, let α be a complex
number such that f(α) = z. Then α is a root of f 2n + 1. We clearly have
z ∈ Q[α] and so Q[z] ⊂ Q[α]. Moreover, since g is irreducible over Q (an easy
consequence of Eisenstein’s criterion applied to the polynomial g(X + 1)),
we have [Q[z] : Q] = 2n. Since f2n +1 is reducible of degree 2n+1, the degree
of the minimal polynomial of α is at most 2n, and since

[Q[α] : Q] = [Q[α] : Q[z]] · 2n,
we deduce Q[α] = Q[z]. This means that there exists h ∈ Q[X] such that
α = h(z). Now, since f(α) = z, we have

z +
∆

4a
= a

(
h(z) +

b

2a

)2

.
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The irreducibility of g over Q implies that the previous relation holds
not only for the root z of g, but for any of its roots z1, . . . , z2n . Taking

the product of these relations and using the fact that
2n∏

i=1

(
h (zi) +

b

2a

)
is a

rational number (this is immediate using Galois theory or, more elementarily,
from the fundamental theorem of symmetric polynomials), we deduce that(
∆

4a

)2n

+ 1 is the square of a rational number. But a classical result of

Fermat ensures that the equation a4 + b4 = c2 does not have nontrivial
integer solutions, thus we must have ∆ = 0.

By performing a translation of the variable X, we may thus assume
that f = a−1X2 for some nonzero rational number a. So, it remains to prove

that for any such a, the polynomial X2n+1
+ a2

n
is irreducible over Q. By

a standard theorem of Capelli, it is enough to check that a2
n
is not of the

form 4x4 for some rational number x. Since this is trivial (just consider
the exponent of 2 in the prime factorizations of both sides), the problem is
solved. �

321. Find the probability that, by choosing a positive integer n, the
numbers n

√
2 and n

√
3 have even integral parts both.

Proposed by Radu Gologan, Simion Stoilow Institute of Mathema-

tics of the Romanian Academy, Bucharest, Romania.

Solution by the author. The sequence defined by an =

(
n

√
2

2
, n

√
3

2

)

is uniformly distributed in [0, 1] × [0, 1] (mod 1) (due, by example, to the
uniform ergodicity of the transformation T : [0, 1] × [0, 1] → [0, 1] × [0, 1],

T (x, y) =

(
x+

√
2

2
, y +

√
2

2

)
). As the problem asks for inequalities of the

type 2k ≤ n
√
2 < 2k + 1, 2r ≤

√
3 < 2r + 1 with k, r, n ∈ N. The answer is

1

2
× 1

2
=

1

4
. �

322. Let K be an algebraically closed field and let P ∈ K[X1, . . . , Xn],

P = aX i1
1 · · ·Xin

n + bXj1
1 · · ·Xjn

n + cXk1
1 · · ·Xkn

n , where abc 6= 0. Assume that
Xt - P for all t and the points of coordinates (i1, . . . , in), (j1, . . . , jn) and
(k1, . . . , kn) are non-collinear (in Rn). Prove that P is reducible if and only
if charK = p and p | gcd(it, jt, kt) for all t for some prime p.

Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

Solution by the author. Before we start our proof we first introduce some
definitions and results regarding Newton polytopes and Minkowski sums of
convex polytopes.
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If I ⊆ Rn then we denote by conv I its convex hull, the smallest con-
vex set containing I. If I is a finite set then C = conv I is a bounded
set and therefore a convex polytope. Convex polytopes are analogues of
0-dimensional points, 1-dimensional segments, 2-dimensional convex poly-
gons or 3-dimensional convex polyhedra.

For any polytope C we denote by V(C) the set of all its vertices. Then
V(C) is the minimal subset of Rn that has C as its convex hull. Hence if
C = conv I, then V(C) ⊆ I.

If A,B ⊆ Rn then A + B := {a + b : a ∈ A, b ∈ B} is called their
Minkowski sum. In particular, if b ∈ Rn then A+b := A+{b}={a+b | a ∈ A}.
If A ⊆ Rn and λ ∈ R we denote λA := {λa : a ∈ A}.

If C ′, C ′′ are polytopes their Minkowski sum C = C ′ + C ′′ is also a
polytope. Indeed, one can write C ′ = conv I ′ and C ′′ = conv I ′′, where
I ′, I ′′ ⊂ Rn are finite, and we have C = conv I, where I = I ′ + I ′′, which is
also finite.

Given a polytope C we are interested in its Minkowski decompositions
C = C ′ + C ′′, where C ′, C ′′ are polytopes. From the definition of a convex
set one easily sees that C = λC+(1−λ)C for any λ ∈ [0, 1]. More generally,
if α ∈ Rn then C = (λC + α) + ((1 − λ)C − α). Such decompositions are
called homothetic as λC + α and (1− λ)C − α are homothetic images of C.
Polytopes for which there are no Minkowski decompositions other than those
of this type are called homothetically indecomposable.

Lemma 7. All triangles are homothetically indecomposable.

Let K be a field and let X = (X1, . . . , Xn) be a multi-variable.
Let K[X] = K[X1, . . . , Xn]. For any i = (i1, . . . , in) ∈ Nn we denote

Xi := X i1
1 · · ·Xin

n . For P ∈ K[X] we define the suport of P as the set

I(P ) ⊂ Nn such that P writes as P =
∑

i ∈ I(P )aiX
i with ai ∈ K∗. The

Newton polytope C(P ) ⊆ Rn of P is defined by C(P ) = conv I(P ).

Lemma 8. (Ostrowski, 1975) If P,Q ∈ K[X] \ {0} then

C(P ) + C(Q) = C(PQ).

Note that C(P ) = {0} iff I(P ) = {0}, i.e., iff P is a non-zero constant
polynomial.

Note that for any polynomial P ∈ K[X]\{0} we have C(P ) = conv I(P ),
so V(C(P )) ⊆ I(P ). In particular, all the vertices of C(P ) belong to Nn.

We denote by (·, ·) : Rn × Rn → R the usual inner product,
(a, b) = a1b1+. . .+anbn. If S ⊆ Rn, a∈ Rn we denote (S, a) := {(x, a) :x ∈ S}.

Let e1, . . . , en be the standard basis of Rn, et = (0, . . . , 1, . . . , 0).

Lemma 9. Let P ∈ K[X] \ {0}.

(i) We have degP = max

(
I(P ),

n∑

t=1

et

)
= max

(
C(P ),

n∑

t=1

et

)
.
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(ii) For any t the highest power of Xt dividing P is min (I(P ), et) =
= min (C(P ), et). In particular, Xt - P iff min (C(P ), et) = 0.

Proof. For any i = (i1, . . . , in) ∈ Nn we have

degX i = i1 + · · ·+ in =

(
i,

n∑

t=1

et

)

and the highest power of Xt dividing X i is it = (i, et).

It follows that degP = max

(
I(P ),

n∑

t=1

et

)
and the highest power of

Xt dividing P is min (I(P ), et). We still have to prove that

max

(
I(P ),

n∑

t=1

et

)
= max

(
C(P ),

n∑

t=1

et

)

and
min (I(P ), et) = min (C(P ), et) .

We prove more generally that if C = conv I and a ∈ Rn then
max(I, a) = max(C, a) and min(I, a) = min(C, a). We have I ⊆ C so
max(I, a) ≤ max(C, a). For the reverse inequality let M = max(I, a). Then
I ⊆ H− := {x ∈ Rn : (x, a) ≤ M}, one of the two halfspaces bounded
by the hyperplane H = {x ∈ Rn : (x, a) = M}. But I ⊆ H− and H− is
convex so C = conv I ⊆ H−. It follows that max(C, a) ≤ M . Similarly for
min(I, a) = min(C, a). �

Before starting our proof we need one more result.

Lemma 10. If K is algebraically closed, i, j ∈ Zn are linearly independent
and ε, η ∈ K∗ then there is x ∈ (K∗)n with xi = ε, xi = η.

Proof. First we show that if s1, t1, s2, t2 ∈ Z with s1t2 − s2t1 6= 0 and
ε1, ε2 ∈ K∗ then the system xs1yt1 = ε1, x

s2yt2 = ε2 has a solution with x,
y ∈ K∗. If t2 6= 0 we note that for any q ∈ Z our system is equivalent to the
system xs2yt2 = ε2, x

s1yt1(xs2yt2)−q = ε1ε
−q
2 . The second equation may be

written as xs3yt3 = ε3, where ε3 = e1ε
−q
2 , s3 = s1 − qs2 and t3 = t1 − qt2.

We choose q such that |t3| < |t2|. Note that s2t3− s3t2 = −(s1t2− s2t1) 6= 0.
We repeat the procedure and obtain new equivalent systems xslytl = el,
xsl+1ytl+1 = el+1 with sltl+1 − sl+1tl 6= 0 and |t2| > . . . > |tl+1| until we
get an index l with tl+1 = 0. We have 0 6= sltl+1 − sl+1tl = −sl+1tl, so
sl+1, tl 6= 0 and our system writes as xslytl = εl, x

sl+1 = εl+1, which obviously
has solutions. (Take x with xsl+1 = εl+1 and then take y with ytl = εlx

−sl .)
Let i = (i1, . . . , in), j = (j1, . . . , jn). Since i, j are linearly independent,

the 2 × n matrix

(
i

j

)
has rank 2, so there are 1 ≤ α < β ≤ n such that

iαjβ − iβjα 6= 0. Then as seen above there are y, z ∈ K∗ such that yiαziβ = ε
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and yjαzjβ = η. Then we simply take x = (x1, . . . , xn) with xα = y, xβ = z,
and xt = 1 for t 6= α, β and we have xi = ε, xj = η. �

We now start our proof. Note that our statement can be re-written as
follows:

If K is algebraically closed, P ∈ K[X], I(P ) = {i, j, k}, where
i, j, k ∈ Nn are non-collinear and Xt - P ∀t then P is reducible iff car K = p
and i, j, k ∈ pNn for some prime p.

We will write P = aiX
i + ajX

j + akX
k. If car K = p and i, j, k ∈ pNn

then P =
(
a
1/p
i Xi/p + a

1/p
j Xj/p + a

1/p
i Xk/p

)p
, so P is reducible.

Conversely, assume that P is reducible but there is no prime p such that
car K = p and i, j, k ∈ pNn. Then P = QR, where Q, R ∈ K[X]\K and Q is
irreducible. Since i, j, k are non-colinear, C(P ) = conv I(P ) is the triangle
of vertices i, j, k. By Lemma 8, C(P ) = C(Q) + C(R). Since C(P ) is a
triangle, by Lemma 7 we get C(Q) = lC(P )+α and C(R) = (1−λ)C(P )−α
for some λ ∈ [0, 1] and α = (α1, . . . , αn) ∈ Rn.

For any t we have Xt - P , whence Xt - Q, and by Lemma 9 (ii) we have
0 = min (C(P ), et) and

0 = min (C(Q), et) = min (λC(P ) + α, et) = λmin (C(P ), et) + (α, et) = αt.

So α = 0 and therefore C(Q) = λC(P ), C(R) = (1 − λ)C(P ). By
Lemma 9 (i) this implies

degQ = max

(
C(Q),

n∑

i=1

et

)
= λmax

(
C(P ),

n∑

i=1

et

)
= λ degP.

Note that we cannot have λ = 0 or 1 since this would imply either
C(Q) = {0} or C(R) = {0}, whence either Q or R is a constant polynomial.
Thus λ ∈ (0, 1).

Since C(P ) is the triangle of vertices i, j, k, C(Q) is the triangle of
vertices λi, λj, λk. So {λi, λj, λk} = V(C(Q)) ⊆ I(Q) ⊂ Nn. It follows that

λ ∈ Q, i.e. λ =
α

d
, with gcd (α, d) = 1, and i, j, k ∈ dNn. Since 0 < λ < 1 we

have 0 < α < d. In particular, d > 1.

Since i, j, k are non-colinear,
1

d
(j − i) and

1

d
(k − i) are linearly inde-

pendent. By Lemma 10, for any ε, η ∈ µd there is

γ(ε, η) = (γ1(ε, η), . . . , γn(ε, η)) ∈ (K∗)n

such that
γ(ε, η)

1
d
(j−i) = ε and γ(ε, η)

1
d
(k−i) = η.

By µd = µd(K) we denote the group of the d-roots of unity in K, i.e.,
the roots in K of f(x) = xd − 1. Since K is algebraically closed, all d roots
of f(x) are in K. Note that they are distinct since

gcd(f(x), f ′(x)) = gcd (xd − 1, dxd−1) = 1.
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Here we use the fact that d 6= 0 in K. If d = 0 in K then char K = p | d,
so i, j, k ∈ dNn ⊆ pNn for some prime p, contradicting our hypothesis. So
|µd| = d.

We denote γ(ε, η)X = (γ1(ε, η)X1, . . . , γn(ε, η)Xn).
Thus (γ(ε, η)X)h = γ(ε, η)hXh for any h ∈ Zn.
We define Pε,η(X) := P (γ(ε, η)X) and Qε,η(X) := Q(γ(ε, η)X). Since

Q divides P , we have Qε,η | Pε,η, and since Q is irreducible, so is Qε,η.

We have Pε,η = aiγ(ε, η)
iXi + ajγ(ε, η)

jXj + akγ(ε, η)
kXk and if

Q =
∑

h ∈ I(Q)bhX
h then Qε,η =

∑
h ∈ I(Q)bhγ(ε, η)

hXh.

Note that Pε,η = γ(ε, η)i(aiX
i + ajγ(ε, η)

j−iXj + akγ(ε, η)
k−iXk). But

γ(ε, η)j−i = ed = 1 and γ(ε, η)k−i = ηd = 1, so Pε,η = γ(ε, η)iP ∼ P .
(Here by ∼ we mean that the two polynomials are associates in K[X].) Since
Qε,η | Pε,η we have Qε,η | P ∀ε, η ∈ µd.

Assume now that Qε,η ∼ Qε′,η′ , that is, Qε′,η′ = tQε,η for some t ∈ K∗.
We have λi, λj, λk ∈ I(Q), and by considering the coefficients of Xλi, Xλj ,
Xλk we get

t =
biγ(ε

′, η′)λi

biγ(ε, η)λi
=

bjγ(ε
′, η′)λj

bjγ(ε, η)λj
=

blγ(ε
′, η′)λk

blγ(ε, η)λk
.

It follows that γ(ε, η)λ(j−i) = γ(ε′, η′)λ(j−i) and γ(ε, η)λ(k−i) = γ(ε′, η′)λ(k−i),

so εα = ε′α and ηα = η′α. (Recall, λ =
α

d
.) But ε, ε′, η, η′ ∈ µd and

gcd(α, d) = 1 imply ε = ε′ and η = η′.
Since Qε,η | P ∀ ε, η ∈ µd and Qε,η 6∼ Qε′,η′ if (ε, η) 6= (ε′, η′), we have∏

ε,η∈µd

Qε,η | P . It follows that degP ≥ deg
∏

ε,η∈µd

Qε,η = |µd|2 degQ. But

degQ = l degP ≥ 1

d
degP and |µd| = d, so |µd|2 degQ ≥ d degP > degP ,

contradiction. Hence P is irreducible. �
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ŞCOALA DE VARĂ A S.S.M.R
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iulie 2012. Data exactă va fi comunicată pe pagina de web a S.S.M.R.:
www/ssmr.ro

Pot participa la cursuri profesorii din România şi Republica
Moldova, membri sau nemembri ai S.S.M.R.

Înscrierile la cursuri se pot face ı̂ncepând cu data de 01 noiem-
brie 2011 la sediul S.S.M.R. din Bucureşti sau prin e-mail la adresa
office@rms.unibuc.ro.

Candidaţii vor fi admişi ı̂n funcţie de data depunerii banilor şi ı̂n
limita locurilor disponibile.

În limita locurilor disponibile, participanţii la cursuri pot fi ı̂nsoţiţi
de membri ai familiei.

Pentru informaţii suplimentare, vă rugăm să vă adresaţi la sediul
centralal S.S.M.R.

Directorul cursurilor
Dan Radu


