Good gradings of matrix algebras by finite abelian groups of prime index

by

CRINA BOBOC AND S. DĂSCĂLESCU*
To Professor Ion D. Ion on the occasion of his 70th Birthday

Abstract

A group grading on a matrix algebra $M_m(k)$ is called good if all the matrix units e_{ij} are homogeneous elements. We present a new way to classify good G-gradings by the orbits of a certain action of the group G on a set of G-tuples of non-negative integers, and we use it to count the isomorphism types of good G-gradings on $M_m(k)$ in the case where $G = \mathbf{Z}_p^n$ is a cyclic group of prime index p.

Key Words: Matrix algebra, group graded algebra, good grading. 2000 Mathematics Subject Classification: Primary: 16W50.

1 Introduction and Preliminaries

Let k be a field, A a k-algebra and G a group. A G-grading on A is a decomposition $A = \bigoplus_{g \in G} A_g$ as a direct sum of k-subspaces of A such that $A_g A_h \subseteq A_{gh}$ for any $g, h \in G$. The elements of $\bigcup_{g \in G} A_g$ are called homogeneous elements of A. A general open problem is to describe all group gradings of the matrix algebra $M_m(k)$, see [7]. There have been several papers devoted to this problem during the last few years, see [1], [2], [3], [4] and the references cited there. In these works a special class of gradings on a matrix algebra have proved to be of a major importance, namely the good gradings (also called elementary gradings in [1]). A grading on $M_m(k)$ is called good if any matrix unit e_{ij} (the matrix having 1 on the (i,j)-position, and 0 everywhere else) is a homogeneous element. If G is a cyclic group and k is algebraically closed, it is proved in [1], [3] that any grading is isomorphic to a good grading. For gradings by abelian groups, the good gradings play a central role in the classification of all gradings on the matrix algebra, see [1]. We note that good gradings had appeared in [5], [6], where the algebra $M_m(k)$ is viewed as a quotient of the path algebra of the quiver Γ ,

^{*}This work was supported by Kuwait University Research Grant No. SM03/05

where Γ is the complete graph on m points, and good gradings on $M_m(k)$ were constructed from weight functions on Γ . The aim of this paper is to give a new description for the isomorphism types of good G-gradings on $M_m(k)$ for an arbitrary group G, and to count explicitly the isomorphism types for the case where $G = \mathbf{Z}_p^n = \mathbf{Z}_p \times \mathbf{Z}_p \times \ldots \times \mathbf{Z}_p$ is a finite abelian group of prime index p. A classification result for the types of good G-gradings on $M_m(k)$ was done in [3], where these types were proved to be in bijection with the orbits of a certain biaction by the symmetric group S_m from the left and G from the right on the set G^m . We give in Section 2 a more effective description of the types of good gradings as the orbits of a certain action of the group G on a set of G-tuples of non-negative integers. Our description makes more accessible the combinatorial computation to count the orbits. Then in Section 3 we use this description to compute the number of isomorphism types of good gradings on $M_m(k)$ by a finite abelian group of prime index $G = \mathbf{Z}_p^n$. The formula is given by a recurrence relation, and in Section 4 we use it to work out the number for specific values of n.

Throughout the paper k will be an arbitrary field. For facts about graded algebras we refer the reader to [8].

2 Good gradings and algebras of endomorphisms

A grading on the matrix algebra $M_m(k)$ is called good if all the matrix units e_{ij} are homogeneous elements. It is proved in [4, Proposition 1.2] that any good grading on the matrix algebra $M_m(k)$ is isomorphic to a graded algebra of the form END(V) for some graded vector space V of dimension m. If V is such a G-graded vector space, let $B = \{v_1, \ldots, v_m\}$ be a basis consisting of homogeneous elements, say of degrees g_1, \ldots, g_m . Then the endomorphism algebra End(V) (with the map composition as a multiplication) has a graded algebra structure $End(V) = \bigoplus_{\sigma \in G} End(V)_{\sigma}$, where $End(V)_{\sigma} = \{f \in End(V) | f(V_g) \subseteq V_{\sigma g}$ for any $g \in G\}$. The resulting graded algebra is denoted by END(V). But End(V) is isomorphic to the matrix algebra $M_m(k)$, and the matrix unit e_{ij} corresponds via the isomorphism $M_m(k) \simeq End(V)$ induced by the basis B, to the endomorphism $E_{ij} \in End(V)$ such that $E_{ij}(v_t) = \delta_{tj}v_i$ for any $1 \leq i, j, t \leq m$. Therefore $M_m(k)$ has a G-graded algebra structure such that e_{ij} has degree $g_ig_j^{-1}$.

We consider the set

$$\mathcal{Y}(m,G) = \{(a_g)_{g \in G} | a_g \in \mathbf{Z}, a_g \geq 0 \text{ for any } g \in G, \text{ and } \sum_{g \in G} a_g = m\}$$

The group G acts from the right on the set $\mathcal{Y}(m,G)$ by

$$(a_g)_{g \in G} \cdot h = (a_{gh})_{g \in G}$$

The next results classifies the good G-gradings on $M_m(k)$ in terms of the orbits of this action.

Proposition 2.1. The isomorphism types of good G-gradings on $M_m(k)$ are in bijective correspondence to the orbits of the right G-set $\mathcal{Y}(m, G)$.

Proof: A good G-grading on $M_m(k)$ is isomorphic to END(V) for some G-graded vector space V of dimension m. Clearly $\mathcal{Y}(m,G)$ is in bijective correspondence to the set of isomorphism types of G-graded vector spaces $V = \bigoplus_{g \in G} V_g$ of dimension m, where the correspondence associates to such a V the G-tuple $(\dim(V_g))_{g \in G}$. By [3, Theorem 2.1], if V and W are G-graded vector spaces of dimension m, then the graded algebras END(V) and END(W) are isomorphic if and only if $W \simeq V(\sigma)$ for some $\sigma \in G$. Hence END(V) and END(W) are isomorphic if and only if $\dim(W_g) = \dim(V_{g\sigma})$ for any $g \in G$, i.e. $(\dim(W_g))_{g \in G} = (\dim(V_g))_{g \in G} \cdot \sigma$, and the result follows.

Remark 2.2. We can construct explicitly the good grading corresponding to an orbit via the bijective correspondence from Proposition 2.1. Let $(a_g)_{g \in G} \in \mathcal{Y}(m,G)$. For any $g \in G$ let V_g be a vector space of dimension a_g , and consider $V = \bigoplus_{g \in G} V_g$. Then V is a graded vector space of dimension m, and a basis of V consisting of homogeneous elements has a_g elements of degree g for any $g \in G$. Thus the degrees of the basis elements are g_1, \ldots, g_m , where in this sequence we put a_g of g for any $g \in G$ (the order of the arrangement is not important). Then END(V) is isomorphic to $M_m(k)$ with the good grading given by assigning to e_{ij} degree $g_ig_j^{-1}$.

3 Gradings over finite abelian groups of prime index

In this section $G = \mathbf{Z}_p^n = \mathbf{Z}_p \times \mathbf{Z}_p \times \ldots \times \mathbf{Z}_p$, a finite abelian group of prime index p. The operation on G is additive, so the right action of G on $\mathcal{Y}(m,G)$ is $(a_q)_{q \in G} \cdot h = (a_{q+h})_{q \in G}$. Our aim is to count the orbits of this action.

For any $t \leq n$ we denote by $s_{n,t}$ the number of subgroups of order p^t of G.

Lemma 3.1. For any $1 \le t \le n$ we have that

$$s_{n,t} = \frac{(p^n - 1)(p^n - p)\dots(p^n - p^{t-1})}{(p^t - 1)(p^t - p)\dots(p^t - p^{t-1})}$$

Proof: Regard G as a \mathbb{Z}_p -vector space of dimension n. Then a subgroup of order p^t of G is a vector subspace of dimension t. The number of linear independent subsets $\{g_1, g_2, \ldots, g_t\}$ with t elements of G is $\frac{1}{t!}(p^n-1)(p^n-p)\ldots(p^n-p^{t-1})$. Indeed, g_1 can be any non-zero element, so there are p^n-1 choices for it. Then g_2 can be anything which is not a scalar multiple of g_1 , so it can be selected in p^n-p ways, and so on. In this way any linear independent set with t elements is counted t! times (all the possible permutations of its elements). The same argument shows that a \mathbf{Z}_{p} -vector space of dimension t has $\frac{1}{t!}(p^{t}-1)(p^{t}-p)\dots(p^{t}-p^{t-1})$ bases, so the same subgroup of order p^t of G is spanned by any of this number of linear independent subsets with t elements of G, and the desired formula follows.

Lemma 3.2. The elements of an orbit of $\mathcal{Y}(m,G)$ have the same stabilizer.

Proof: Let $y, z \in \mathcal{Y}(m, G)$ belong to the same orbit. Then the stabilizers of y and z are conjugate subgroups, and since G is abelian, they must be equal.

Lemma 3.3. Let H be a subgroup of order p^{n-t} of G. Then the number of elements of the set $\{z \in \mathcal{Y}(m, G) | z \cdot h = z \text{ for any } h \in H\}$ is

(i)
$$\binom{\frac{m}{p^n-t}+p^t-1}{p^t-1}$$
, if p^{n-t} divides m .
(ii) 0 , if p^{n-t} does not divide m .

Proof: Let $z = (a_g)_{g \in G} \in \mathcal{Y}(m,G)$. Then $z \cdot h = z$ for any $h \in H$ if and only if $a_{g+h} = a_g$ for any $g \in G$ and any $h \in H$. This is equivalent to a_g taking the same value for all g's in the same H-coset of G. Since any such coset has p^{n-t} elements, we must have $p^{n-t}|m$ (otherwise such z does not exist). Moreover, defining such a z is equivalent to defining a G/H-tuple of non-negative integers with sum $\frac{m}{n^{n-t}}$, and this can be done in $\binom{\frac{m}{p^n-t}+p^t-1}{p^t-1}$ ways.

If H is a subgroup of G, let $\mathcal{Y}(m,G)_H = \{z \in \mathcal{Y}(m,G) | Stab_G(z) = H\}$. We will need the following.

Lemma 3.4. Let H and K subgroups of G with |H| = |K|. Then $|\mathcal{Y}(m,G)_H| =$ $|\mathcal{Y}(m,G)_K|$.

Proof: Regarding again G as a \mathbb{Z}_p -vector space, we have that H and K are subspaces of the same dimension. Then there exists an automorphism ϕ of G such that $\phi(H) = K$. This induces a bijection $\tilde{\phi}: \mathcal{Y}(m,G) \to \mathcal{Y}(m,G)$ defined

by $\phi((a_g)_{g\in G})=(a_{\phi(g)})_{g\in G}$. Moreover, we have that

$$\tilde{\phi}((a_g)_{g \in G} \cdot u) = \tilde{\phi}((a_{g+u})_{g \in G})
= (a_{\phi(g+u)})_{g \in G}
= (a_{\phi(g)+\phi(u)})_{g \in G}
= \tilde{\phi}((a_g)_{g \in G}) \cdot \phi(u)$$

Hence we have that $\tilde{\phi}((a_g)_{g\in G})\cdot u = \tilde{\phi}((a_g)_{g\in G})$ if and only if $\tilde{\phi}((a_g)_{g\in G})$ $\phi^{-1}(u) = \tilde{\phi}((a_g)_{g \in G}),$ and this is equivalent to $(a_g)_{g \in G} \cdot \phi^{-1}(u) = (a_g)_{g \in G}.$ Thus $Stab_G(\mathring{\phi}(z)) = \phi(Stab_G(z))$ for any $z \in \mathcal{Y}(m,G)$. In particular we see that $Stab_G(z) = H$ if and only if $Stab_G(\phi(z)) = K$, showing that ϕ induces a bijection between $\mathcal{Y}(m,G)_H$ and $\mathcal{Y}(m,G)_K$.

The previous lemma shows that for any $0 \le t \le n$ we may define the integer γ_t by $\gamma_t = |\mathcal{Y}(m, G)_H|$, where H is a subgroup of G of order p^{n-t} (i.e. the definition does not depend on the choice of H). By Lemma 3.3 we have that $\gamma_0 = 1$ if p^n divides m, and $\gamma_0 = 0$ if p^n does not divide m. Then the numbers γ_t can be computed recurrently by using the following.

Lemma 3.5. For any 1 < t < n we have the following.

(1)
$$\gamma_t = 0$$
 if p^{n-t} does not divide m .
(2) $\gamma_t = \left(\frac{\frac{m}{p^n-t} + p^t - 1}{p^t - 1}\right) - s_{t,1}\gamma_{t-1} - s_{t,2}\gamma_{t-2} - \dots - s_{t,t}\gamma_0$ if p^{n-t} divides m .

Proof: Let H be a subgroup of order p^{n-t} of G. If p^{n-t} does not divide m, then by Lemma 3.3 we have that $\gamma_t = 0$, proving (1). Assume now that p^{n-t} divides m. Then

$$\mathcal{Y}(m,G)_{H} = \{z \in \mathcal{Y}(m,G) | z \cdot h = z \text{ for any } h \in H\} - \bigcup_{H < K \le G} \mathcal{Y}(m,G)_{K} \quad \ (1)$$

Indeed, this is true since for any $z \in \mathcal{Y}(m,G)$ with the property that $z \cdot h = z$ for any $h \in H$, the stabilizer of z is a subgroup K of G with $H \leq K$. Moreover, if K_1 and K_2 are different subgroups of G that contain H, then $\mathcal{Y}(m,G)_{K_1}$ $\mathcal{Y}(m,G)_{K_2} = \emptyset$. For any $1 \leq i \leq t$ there exist precisely $s_{t,i}$ subgroups K of order p^{n-t+i} of G with H < K (this is true since $|G/H| = p^t$ and $|K/H| = p^i$), and for any such K we have that $|\mathcal{Y}(m,G)_K| = \gamma_{t-i}$. Then (2) follows by counting the sets in equation (1).

We are now in the position to count the G-good gradings on the matrix algebra.

Theorem 3.6. Let p be a prime number and $G = \mathbb{Z}_p^n$. Then the number of isomorphism types of good G-gradings on the matrix algebra $M_m(k)$ is

$$\sum_{t=0,n} \frac{1}{p^t} \gamma_t s_{n,n-t}.$$

Proof: The number of isomorphism types of good G-gradings on $M_m(k)$ is the number of orbits of the right G-set $\mathcal{Y}(m,G)$. Let $0 \leq t \leq n$. Then an element z of $\mathcal{Y}(m,G)$ has orbit of length p^t if and only if its stabilizer is a subgroup H of G of order p^{n-t} , and in this case H is the stabilizer of any other element in the orbit of z. Since there are γ_t elements with stabilizer H, and there exist $s_{n,n-t}$ subgroups of G of order p^{n-t} , the number of elements having orbit of length p^t is $\gamma_t s_{n,n-t}$. Hence the number of orbits of length p^t is $\frac{1}{p^t} \gamma_t s_{n,n-t}$, and the result follows by summing over all possible values of t.

4 Examples

We first consider the case where n=1, i.e. $G=C_p$. We have that $\gamma_0=1$ if p divides m, and $\gamma_0=0$ otherwise. The recurrence relation in Lemma 3.5 shows that $\gamma_1=\binom{m+p-1}{p-1}-\gamma_0$. This shows that the number of isomorphism types of good gradings by the cyclic group C_p on the matrix algebra $M_m(k)$ is $1+\frac{1}{p}(\binom{m+p-1}{p-1}-1)$ in the case where p divides m, and $\frac{1}{p}\binom{m+p-1}{p-1}$ in the case where p does not divide m. This was proved in [2, Proposition 3.3] in the case where p contains a primitive p-th root of unity, and in [3, Example 2.7] for an arbitrary field k.

Now we consider the case where n=2, i.e. $G=C_p\times C_p$. Since $s_{2,0}=s_{2,2}=1$ and $s_{2,1}=p+1$, the number of isomorphism types of good G-gradings on $M_m(k)$ is $\gamma_0+\frac{p+1}{p}\gamma_1+\frac{1}{p^2}\gamma_2$. We distinguish three cases.

If p^2 divides m, then $\gamma_0 = 1$, $\gamma_1 = {m \choose p-1} - 1$, and $\gamma_2 = {m+p^2-1 \choose p^2-1} - (p+1)({m \choose p-1} - 1) - 1$. Therefore the number of isomorphism types of good $C_p \times C_p$ -gradings on $M_m(k)$ is

$$1 + \frac{p+1}{p}(\binom{\frac{m}{p}+p-1}{p-1}-1) + \frac{1}{p^2}(\binom{m+p^2-1}{p^2-1}-(p+1)\binom{\frac{m}{p}+p-1}{p-1}+p)$$

If p divides m, but p^2 does not divide m, then $\gamma_0 = 0$, $\gamma_1 = {m+p-1 \choose p-1}$, and $\gamma_2 = {m+p^2-1 \choose p^2-1} - (p+1){m+p-1 \choose p-1}$, so we have

$$\frac{p+1}{p} \binom{\frac{m}{p}+p-1}{p-1} + \frac{1}{p^2} (\binom{m+p^2-1}{p^2-1} - (p+1) \binom{\frac{m}{p}+p-1}{p-1})$$

isomorphism types of good $C_p \times C_p$ -gradings on $M_m(k)$.

Finally, if p does not divide m, then $\gamma_0 = \gamma_1 = 0$ and $\gamma_2 = {m+p^2-1 \choose p^2-1}$, so there exist

$$\frac{1}{p^2} \binom{m+p^2-1}{p^2-1}$$

isomorphism types of good $C_p \times C_p$ -gradings on $M_m(k)$.

References

- [1] Yu. A. Bahturin, S. K. Sehgal and M. V. Zaicev, Group gradings on associative algebras, J. Algebra **241** (2001), No. 2, 677-698.
- [2] C. Boboc and S. Dăscălescu, Gradings of matrix algebras by cyclic groups, Comm. Algebra 29 (2001), No. 11, 5013-5021.
- [3] S. CAENEPEEL, S. DĂSCĂLESCU AND C. NĂSTĂSESCU, On Gradings of Matrix Algebras and Descent Theory, Comm. Algebra **30** (2002), No. 12, 5901-5920.
- [4] S. Dăscălescu, B. Ion, C. Năstăsescu and J. Rios Montes, Group Gradings on Full Matrix Rings, J. Algebra **220** (1999), No. 2, 709-728.
- [5] E. L. Green, Graphs with relations, coverings and group-graded algebras, Trans. Amer. Math. Soc. **279** (1983), 297-310.
- [6] E. L. Green and E. N. Marcos, Graded quotients of path algebras: A local theory, J. Pure Appl. Alg. 93(1994), 195-226.
- [7] A. V. Kelarev, Applications of epigroups to graded ring theory, Semigroup Forum **50** (1995), 327-350.
- [8] C. Năstăsescu and F. Van Oystaeyen, *Graded Ring Theory*, North Holland (1982).

Received: 7.12.2005

University of Bucharest, Faculty of Physics,
P.O.Box MG 11, Măgurele,
Bucharest, Romania
E-mail: crina@al.math.unibuc.ro

Kuwait University, Faculty of Science,
Dept. Mathematics,
PO BOX 5969, Safat 13060, Kuwait
University of Bucharest, Faculty of Mathematics,
Str. Academiei 14, RO-010014,
Bucharest 1, Romania
E-mail: sdascal@mcs.sci.kuniv.edu.kw
E-mail: sdascal@al.math.unibuc.ro