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Abstract

A group grading on a matrix algebra M, (k) is called good if all the
matrix units e;; are homogeneous elements. We present a new way to
classify good G-gradings by the orbits of a certain action of the group G
on a set of G-tuples of non-negative integers, and we use it to count the
isomorphism types of good G-gradings on M, (k) in the case where G = Zj
is a cyclic group of prime index p.
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1 Introduction and Preliminaries

Let k be a field, A a k-algebra and G a group. A G-grading on A is a decompo-
sition A = ®4cqA,y as a direct sum of k-subspaces of A such that 4,4, C Ay,
for any g,h € G. The elements of UscgA, are called homogeneous elements of
A. A general open problem is to describe all group gradings of the matrix al-
gebra M, (k), see [7]. There have been several papers devoted to this problem
during the last few years, see [1], [2], [3], [4] and the references cited there. In
these works a special class of gradings on a matrix algebra have proved to be of
a major importance, namely the good gradings (also called elementary gradings
in [1]). A grading on M,, (k) is called good if any matrix unit e;; (the matrix
having 1 on the (¢, j)-position, and 0 everywhere else) is a homogeneous element.
If G is a cyclic group and k is algebraically closed, it is proved in [1], [3] that
any grading is isomorphic to a good grading. For gradings by abelian groups, the
good gradings play a central role in the classification of all gradings on the ma-
trix algebra, see [1]. We note that good gradings had appeared in [5], [6], where
the algebra M,, (k) is viewed as a quotient of the path algebra of the quiver T,
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where I is the complete graph on m points, and good gradings on M,, (k) were
constructed from weight functions on I'. The aim of this paper is to give a new
description for the isomorphism types of good G-gradings on M,, (k) for an arbi-
trary group G, and to count explicitly the isomorphism types for the case where
G =12y =72, X2y Xx...xX1Z,is afinite abelian group of prime index p. A classi-
fication result for the types of good G-gradings on M, (k) was done in [3], where
these types were proved to be in bijection with the orbits of a certain biaction
by the symmetric group S,, from the left and G from the right on the set G™.
We give in Section 2 a more effective description of the types of good gradings as
the orbits of a certain action of the group G on a set of G-tuples of non-negative
integers. Our description makes more accessible the combinatorial computation
to count the orbits. Then in Section 3 we use this description to compute the
number of isomorphism types of good gradings on M,,(k) by a finite abelian
group of prime index G' = Zj;. The formula is given by a recurrence relation, and
in Section 4 we use it to work out the number for specific values of n.

Throughout the paper k will be an arbitrary field. For facts about graded
algebras we refer the reader to [8].

2 Good gradings and algebras of endomorphisms

A grading on the matrix algebra M, (k) is called good if all the matrix units
ei; are homogeneous elements. It is proved in [4, Proposition 1.2] that any good
grading on the matrix algebra M, (k) is isomorphic to a graded algebra of the
form END(V) for some graded vector space V of dimension m. If V is such
a G-graded vector space, let B = {vy,...,v,,} be a basis consisting of homo-
geneous elements, say of degrees g;,...,¢,,.- Then the endomorphism algebra
End(V) (with the map composition as a multiplication) has a graded algebra
structure End(V) = @ycqEnd(V),, where End(V), = {f € End(V)|f(V;) C
V4 for any g € G}. The resulting graded algebra is denoted by END(V'). But
End(V') is isomorphic to the matrix algebra My, (k), and the matrix unit e;; cor-
responds via the isomorphism M,, (k) ~ End(V') induced by the basis B, to the
endomorphism E;; € End(V') such that E;;(vy) = dgyv; for any 1 < i, 5, < m.
Therefore My, (k) has a G-graded algebra structure such that e;; has degree gigjfl.

We consider the set

Y(m,G) ={(ag)gec|ay € Z,ay > 0 for any g € G, and z ag =m}
geG

The group G acts from the right on the set Y(m,G) by
(ag)gec - h = (agn)gec

The next results classifies the good G-gradings on M,,(k) in terms of the
orbits of this action.
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Proposition 2.1. The isomorphism types of good G-gradings on M,,(k) are in
bijective correspondence to the orbits of the right G-set Y(m,G).

Proof: A good G-grading on M,,(k) is isomorphic to END(V) for some G-
graded vector space V of dimension m. Clearly Y(m, G) is in bijective correspon-
dence to the set of isomorphism types of G-graded vector spaces V = @4eaVy
of dimension m, where the correspondence associates to such a V the G-tuple
(dim(Vy))gea. By [3, Theorem 2.1], if V' and W are G-graded vector spaces
of dimension m, then the graded algebras END(V) and END(W) are iso-
morphic if and only if W ~ V(o) for some ¢ € G. Hence END(V) and
END(W) are isomorphic if and only if dim(W,) = dim(V,,) for any g € G,
ie. (dim(Wy))geq = (dim(Vy))geq - o, and the result follows. O

Remark 2.2. We can construct explicitly the good grading corresponding to
an orbit via the bijective correspondence from Proposition 2.1. Let (ag)gec €
Y(m,G). For any g € G let V, be a vector space of dimension a,, and consider
V =®4eaVy. Then 'V is a graded vector space of dimension m, and a basis of V
consisting of homogeneous elements has a, elements of degree g for any g € G.
Thus the degrees of the basis elements are g1,...,9m, where in this sequence we
put ag of g for any g € G (the order of the arrangement is not important). Then
END(V) is isomorphic to My, (k) with the good grading given by assigning to e;;
degree g; gj_l.

In [3] the isomorphism types of good G-gradings on M,, (k) are classified by
the orbits of the biaction of the symmetric group S,, (by permutation from the
left) and G (by translation from the right) on the set G™. We can describe the
bijective correspondence between the orbits of the right G-set Y (m,G) and the
orbits of this biaction. If 2 = (g1,...,9m) € G™, define a4(2) = |[{i|]l < i <
m and g; = g}|, which is the number of appearances of g in the G-tuple z. Now
define the map ¢ : G™ — Y(m,G) by ¢(z) = (ay(2))geq. Then clearly ¢ induces
a bijection between the orbits of the biaction of S,,, and G on G™ and the orbits
of the right action of G on Y (m, G).

3 Gradings over finite abelian groups of prime index

In this section G = Z} = Z, x Z, x ... X Z,, a finite abelian group of prime
index p. The operation on G is additive, so the right action of G on Y(m,G) is
(ag)gec - h = (@g+n)gec. Our aim is to count the orbits of this action.

For any ¢ < n we denote by s, ; the number of subgroups of order p* of G.

Lemma 3.1. For any 1 <t <n we have that

(" -1@"—p)...(p" —p"")
P -1)@E-p)...(0 —p~1)

Sn,t =
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Proof: Regard G as a Z,-vector space of dimension n. Then a subgroup of order
pt of G is a vector subspace of dimension t. The number of linear independent
subsets {g1,g2,...,g:} with ¢ elements of G is % (p" — 1)(p" — p) ... (p" —p'*).
Indeed, g; can be any non-zero element, so there are p™ — 1 choices for it. Then go
can be anything which is not a scalar multiple of g1, so it can be selected in p" —p
ways, and so on. In this way any linear independent set with ¢ elements is counted
t! times (all the possible permutations of its elements). The same argument shows
that a Z,-vector space of dimension ¢ has % (p* — 1)(p* — p) ... (p" — p'™") bases,
so the same subgroup of order p' of G is spanned by any of this number of
linear independent subsets with ¢ elements of GG, and the desired formula follows.
0

Lemma 3.2. The elements of an orbit of Y(m,G) have the same stabilizer.

Proof: Let y,z € Y(m,G) belong to the same orbit. Then the stabilizers of
y and z are conjugate subgroups, and since G is abelian, they must be equal.
0

Lemma 3.3. Let H be a subgroup of order p"~t of G. Then the number of
elements of the set {z € Y(m,G)|z-h =z for any h € H} is

_m 4t
(i) (”"_ptizi 1), if Pt divides m.

(i) 0, if p"~t does not divide m.

Proof: Let z = (ag)gec € Y(m,G). Then z - h = z for any h € H if and only if
ag+n = a4 for any g € G and any h € H. This is equivalent to a4 taking the same
value for all g’s in the same H-coset of G. Since any such coset has p™~! elements,
we must have p"~¢|m (otherwise such z does not exist). Moreover, defining such
a z is equivalent to defining a G/ H-tuple of non-negative integers with sum z%’
S =

1
o1 ) ways. a

and this can be done in (

If H is a subgroup of G, let Y(m,G)g = {z € Y(m,G)|Stabg(z) = H}. We
will need the following.

Lemma 3.4. Let H and K subgroups of G with |H| = |K|. Then |Y(m,G)u| =
|V(m, Gk |-

Proof: Regarding again G as a Zp-vector space, we have that H and K are
subspaces of the same dimension. Then there exists an automorphism ¢ of G
such that ¢(H) = K. This induces a bijection ¢ : Y(m,G) — Y(m,G) defined
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by #((ag)gea) = (ag(g))gea- Moreover, we have that

¢((ag)_qEG'u) = ¢((a_q+u)g€G)
(a¢(g+u))g€G‘
(@) +o(u))gec

= ¢((ag)gec) - $(u)

Hence we have that d((ag)gec) - u = d((ag)gec) if and only if ¢((ay)seq -
¢~ (u)) = #((ag)gec), and this is equivalent to (ag)geq - ¢~ (u) = (ag)gec-

Thus Stabg(4(z)) = ¢(Stabg(z)) for any z € Y(m,G). In particular we see that
Staba(z) = H if and only if Stabg(é(z)) = K, showing that ¢ induces a bijection

between Y(m,G)m and Y(m,G)k. O

The previous lemma shows that for any 0 < ¢t < n we may define the integer 7y,
by v¢ = |Y(m, G)u|, where H is a subgroup of G of order p"~* (i.e. the definition
does not depend on the choice of H). By Lemma 3.3 we have that v, = 1 if p»
divides m, and 9 = 0 if p" does not divide m. Then the numbers ; can be
computed recurrently by using the following.

Lemma 3.5. For any 1 <t <n we have the following.
(1) v =0 if p"~t does not divide m.

—m o tpt-1 . b g
(2) v = (7 ptt_li ) = 8t1%—1 — St,2%t—2 — --- — St,Y0 if PPt divides m.

Proof: Let H be a subgroup of order p”~* of G. If p"~* does not divide m, then
by Lemma 3.3 we have that v; = 0, proving (1). Assume now that p™t divides
m. Then

Y(m,G)g ={z€ Y(m,G)|z-h=zforany he€ H} — U Y(m,@k (1)
H<K<G

Indeed, this is true since for any z € Y(m,G) with the property that z-h = 2
for any h € H, the stabilizer of z is a subgroup K of G with H < K. Moreover,
if K; and K, are different subgroups of G that contain H, then Y(m,G)g, N
Y(m,G)k, = 0. For any 1 < i <t there exist precisely s; ; subgroups K of order
p" i of G with H < K (this is true since |G/H| = p' and |K/H| = p'), and for
any such K we have that |Y(m,G)k| = y—i- Then (2) follows by counting the
sets in equation (1). O

We are now in the position to count the G-good gradings on the matrix
algebra.

Theorem 3.6. Let p be a prime number and G = Z7. Then the number of
isomorphism types of good G-gradings on the matriz algebra M,, (k) is

1
E I?'Ytsn,n—t-
t=0,n
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Proof: The number of isomorphism types of good G-gradings on M,, (k) is the
number of orbits of the right G-set Y(m,G). Let 0 <t < n. Then an element 2
of Y(m, @) has orbit of length p’ if and only if its stabilizer is a subgroup H of
G of order p"~ %, and in this case H is the stabilizer of any other element in the
orbit of z. Since there are <y, elements with stabilizer H, and there exist s, ¢
subgroups of G of order p®~¢, the number of elements having orbit of length p
is V¢Sn,n—t- Hence the number of orbits of length p’ is ,%%Sn,n—t, and the result
follows by summing over all possible values of ¢. g

4 Examples

We first consider the case where n = 1, i.e. G = (). We have that v =1
if p divides m, and ¢ = 0 otherwise. The recurrence relation in Lemma 3.5
shows that v = ("7 ') — 7. This shows that the number of isomorphism
types of good gradings by the cyclic group Cp on the matrix algebra M, (k) is
1+ %((m;ffl) — 1) in the case where p divides m, and %(m;_”;l) in the case
where p does not divide m. This was proved in [2, Proposition 3.3] in the case
where k contains a primitive p-th root of unity, and in [3, Example 2.7] for an
arbitrary field k.

Now we consider the case wheren = 2,i.e. G = Cp, x (). Since spg = 520 =1
and s21 = p+1, the number of isomorphism types of good G-gradings on M, (k)
is v + p’#wl + 1%72. We distinguish three cases.

If p? divides m, then 7o = 1, 34 = (%:ffl) —1, and 7 = (m+p_2_1) -

(p+ 1)(( A 1) — 1) — 1. Therefore the number of isomorphism types of good
Cp x Cp gradlngs on M, (k) is

p+1 (Z+p—1 1 (m+p*—1 Zip-1

1+ 252 (> —1) 4+ = —p+1)(7

S (PP e (M p+ (777
If p divides m, but p?> does not divide m, then o = 0, v, = (%:_pl_ 1), and

Yo = (m+p - (p+1)( LA 1) so we have

p+1(Z+p-1 1, (m+p*—1 T +p—1
pr- il 1
p ( p—1 +p2( p’—1 ~le+l) p—1 )
isomorphism types of good C), x Cp-gradings on M, (k).

Finally, if p does not divide m, then 79 = = 0 and 7, = (m;;’: 1), so there

exist
1 (fm+p*—1
P2 p2—1

isomorphism types of good C}, x Cp-gradings on My, (k).
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