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Abstract

We use the maxentropic reconstruction method for obtaining some ho-
mogeneous and stationary multiple Markov chains.

Key Words: Homogeneous and stationary multiple Markov chain,
maximum entropy.

2000 Mathematics Subject Classification: Primary 94A17, Se-
condary: 90C25.

1 Introduction

The problems of reconstruction of a countable probability distribution or of a
homogeneous and stationary simple or multiple Markov chain with discrete time
and countable state space, when only a partial information is know, present a
remarkable interest in many applications from various sciences (see Fang, Ra-
jasekera and Tsao [2], Guiagu [3], Iosifescu [7], Iosifescu and Grigorescu [8], for
example). Jaynes [10,11] and Kullback [12] proposed a variational method for
solving such problems, called the method of standard mazimum entropy (SME).
This method states that one should choose the probability distribution that max-
imizes the Shannon entropy [16]. In the case of multiple Markov chains, we can
use the Josifescu-Theodorescu entropy [9] (see Preda and Balcau [14]).

In this article we recast the proposed problem as a linear inverse problem
and we solve it by using the method of mazimum entropy in the mean (MEM).
This method, originally proposed by Rietch [15], was used by Gzyl [4] for finite
probability distributions, Gzyl and Velasquez [6] for homogeneous simple Markov
chains with finite state space, Preda and Balcau [13] for countable simple Markov
chains with common steady-state probabilities and for matrix scaling problems.

In Section 2 we present the general frame of the MEM method and we apply
this method for maxentropic reconstruction of some nonnegative multidimen-
sional matrices. In Section 3 we derive a method to obtain countable multiple
Markov chains with fixed joint probabilities. We give an example for our ap-
proach.
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2 MEM method

We consider the following linear inverse problem

Ax=D
’ (1)
where x €,
C{X(xi)ig/xiZO, ViEI,in<oo}, (2)
el

A : C — R¥ is a bounded linear operator, b € RX I and K being two
countable (finite or infinite) sets of indices.

Let (Q,B,v) be a probability space, and let X : (Q,8) — (C,B(C)) be a
random variable. Usually, 2 = C and we suppose that

o (suppv) = C,

where suppv is the support of v and @0 (suppv) is the closed convex hull
generated by supp v.

If the set K is infinite, then we suppose also that

Q is countable, b is bounded, A > 0 and b > 0. (3)
Definition 2.1. Let Mg be the set of all probability measures on (2, B), and let
M, Ab)={pe My /pu=<v, AE,[X] =b}.
For all n € M(v,A,b), let

d d
—uln—udy, if E, [\ln%ﬂ < 00,

H(p;v) = /Q dv — dv

400, otherwise

(the relative entropy of p with respect to v; the cross-entropy of v with respect to

u; the Kullback-Leibler number).

We consider the following entropy optimization problem, according to SME
method:
max —H (u;v)  s.t.
we M(v, A b).

MEM method is based on the following result (see [5] or [1], Theorem 1):

Program (P1) :

Theorem 2.1. If ;1 is a feasible solution for program (P1), then x = E,[X] is a
solution of linear inverse problem (1).

Next, we derive a convex dual program of program (P1).

Definition 2.2. For all A € RX | let the measure u(\) defined by
e—(MAX)

dp(A) = W

dv, where Z(\) = / e~ NAX) 1,
Q
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Definition 2.3. Let the set
{NeRE / Z(N) < o0}, if K is finite,
A, A;b) = ¢ (NeRE / Z()\) < 0, sz A, < oo}, if K is infinite,
€
and let the function L : A(v,A,b) — R defined by
L(A) =InZ(A) 4+ (\Db), VA € A(v, A, D).

Remark 2.1. For all A € A(v, A,b), u(X) is a probability measure on (2, B) (i.e.
u(X) € Mo) and p(X) < v.

We can define the following geometric dual problem for program (P1):

| minL(\) s.t.
Program (D1) : Ne A(v, A,b).
We have the following duality theorem (see [13], Theorems 1 and 2):

Theorem 2.2. (i) (weak duality) If u is a primal feasible solution of program
(P1) and X is a dual feasible solution of program (D1), then

—H(p;v) < L(N).

Moreover, the equality holds if and only if

o~ (MAX)

(ii) (strong duality) Assume that
/ eXldy < o0, Vs e R. (4)
Q

If \* € Int A(v, A, b) is a dual optimal solution of program (D1), then u(\*) is a
primal optimal solution of program (P1) and the duality gap vanishes, i.e.

—H(u(A\");v) = L(A").
Remark 2.2. The assumptions (3), A > 0, Z A < 00 and (4) are imposed for
keK

proving the theorem in the countable infinite case (see [13]).

Next we apply the MEM method to obtain d-dimensional matrices

T = (Tiy,. ig)ir,...iged
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verifying the constraints similar to (1). Particularly, in Section 3 we apply the
procedure to obtain countable Markov chains of order r with fixed joint probabil-
ities of the states at r consecutive times and with r-step transition probabilities
verifying some given linear constraints.

Let d € N*, .J be a countable (finite or infinite) set of indices, and let

1= = J[ Qs

(i1yeeeyiq)ET
B= ® B(Qil,...,id)a v = ® Vii,ias
(i1,..yig)€El (i1,yiq) €I
where, for all (i1,...,4q) € I, (%, iys B(Q, .. in), Viy,...iy) IS @ probability space.
Taking p = ® Wiy, iq, Where, for all (i1,...,17q) € I, w4, is a
(i1, ria)ET

probability measure on the space (£2
has now the following form:

B(£,....i,)), the primal problem (P1)

B] yeensld
max —H (pu;v)  s.t.
Hiv,..sia = Viy,ooias V(015 1a) € 1,
Program (P2) : P A
Z Az('h)...,idE/Lil ..... ig [Xiu---ﬂ'd] = by, Vk € K.
I

(i1,.00500) €

According to the above assumptions, K is a countable set of indices, X =
(Xiy,..sia)(ir,....ig)er 15 a random variable on (€2,B) with values in the space

id
(C,B(C)) defined by

C=x=(Tiy,...ig)(i1,inyer | X =0, Z Ty g <00 Py
(i1,0000%a)ET

A : C — R¥ is a bounded linear operator, b € R¥ and the conditions (3) are
also satisfied.

The maxentropic reconstruction of some d-dimensional matrices
L] geeey id)il,‘..,ideJ

that verify the following linear system

AT = b,
TelC, (5)

is based on the following direct consequence of Theorem 2.1.

Corollary 2.1. If u is a feasible solution for program (P2), then the matriz
T - (Til,...,id>(i1 ..... id)GI given by

,,,,,

is a d-dimensional matriz which verifies (5).
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Next, we derive a geometric dual program of program (P2). We have

Z(A) :/Qeio\’A)QdV: H C’ily---yid((A*)\)ilwv-»id)’

(i1,.yiq)ET

where

Ci1;~-.7id(y) = /Q e Y i dVihm,id (xilx‘..ﬂ;d)'

The dual problem for program (P2) has the following form:

min L(\) = Z Gy, iy (A" N)iyig) + (A D) st
Program (D2) : (i1,0.ria)ET

A€ A(v,Ab),

where A(v, A, b) is given by Definition 2.3.
As a direct consequence of Theorem 2.2, we have the next duality result.

Corollary 2.2. Assume that Z / Xy, gy, 4, < 00.
(irseryig)el ¥ it mig

(i) (weak duality) If u is a primal feasible solution of program (P2) and X is a

dual feasible solution of program (D2), then

—H(p;v) < L(A).
Moreover, the equality holds if and only if
(A" Ny oig Xy iy
" Giria (A V)i i)

(ii) (strong duality) If \* € Int A(v, A, b) is a dual optimal solution of program

(D2), then p(A*) = Q) tiy,...ia(X") given by
(’il,...,id)GI

duih...,id dVil,...,ida V(il,...,id) el.

e*(A*A*)‘il ,,,,, igXiq,eeig
 Ginnia (AN, i)

is a primal optimal solution of program (P2) and the duality gap vanishes, i.e.

d/llil’m’id()\*) duilwﬂ-d, V(il,...7id) el

—H(u(\*);v) = L),

3 Reconstruction of some countable multiple Markov chains

In this section we apply the above results to obtain homogeneous and stationary
Markov chains of order r (r € N*) {X(¢) / t € N} with the countable (finite
or infinite) state space J and with r-step transition probability array P =
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(Pi(lr) i ,j) verifying the constraints (5) for d = r + 1. We recall that
2t S i g €T
for any j,il,l. st el
P =P(X(t+r)=5/X(t) =i, Xt +7—1)=4,), ¥t €N

Particularly, we obtain homogeneous and stationary Markov chains of order
r without supplementary constraints, i.e. the r-step transition probability array
verifying only the imposed constraints

Pi(lr,)...,i,-;j >0, Vi, i1,..., 0 € J,
SR L =1 Vi€,
jed (6)
(r) (r) _ (r) ;
Z TiveoinEin iy = Z Tiveoipr.gs VI €,
i1, ir €J i1,0enyip—1€J

where 7(t) = (7T(T) . ) is the given joint probability of the states at r
i1yt €J

D] yeenslp
consecutive times, i.e. for any i1,...,4, € [
) L =PX(t)=d,..., X({t+r—1)=4,), VteN.

Remark 3.1. Obviously, the chain {X(t) / t € N} is completely characterized
by the distribution 7 and the transition probability array P wverifying the
constraints (6) and the following constraints

n) >0, Vi, iy el (7)
() _
> il =1 (8)
i1yeeyin€l
(r) _ (r)
D T ivirriis = D Tiseinisin VIS kST =10 (9)
i1, i €L [ERT TN <y |

In this particular case P(") is a solution of (5) by taking

d=r+1,
K=J uU(-J),

(k1,..0kr) 1, if (il,.. .,Z',«) = (kl, .. .,kr)7 . L.
A { 0, if (i1,....i) # (k1. .. Ky), L ir B Rk €,

ATR = T BTy ke d
D1 yeeesipy] 0’1 lf] 7é k, 11, ybrs Jy ;
bk17~»-,kr = 1, Vkl,. . .,kr (S J,

b_ =mp, Yk € J,
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where

M=y m L Vkeld

T geeey ir_1€J
The primal problem (P2) has now the following form:

max —H (pu;v)  s.t.
Hivoivg = Vir,oivgs Vilyeoosip, J € J,
Program (P3) : ZENHJ [Xirsoirgl =1, Yin,ovir €,
jeJd
S A B e e

11 yeens G Mg, ir,J

The maxentropic reconstruction of r-step transition probability array P(") =
(Pi(lr) i .j) is based on the following direct consequence of Corollary
T i, g€

2.1.
Corollary 3.1. If p is a feasible solution of (P3), then the matriz P(") =

p ) given by
( Wil J i GET
(r) = - "
Pily...yi'r;j = Eﬂil ,,,,, ir,j [Xil""’“’j], g €

is a solution for system (6).

Obviously, we have

(A, b)

Z Aky oo kor + Z TRA_k,

Eiyeoskr€d keJ
(A" Niv,ivg = Niayeie T, Ay Vin, oy, j €,

and hence we obtain that the geometric dual problem of (P3) has the following
form:

minL(A) = Y [Zln Cirvmid i + 70 A)
i1,emsin€d  jEJ
Program (D3) : DY ir} + Zm—)\,i s.t.
icJ
e A (v, 7)),

where

- {AeRE /L)) < oo}, if J is finite,
My, ) =9 (ANeRE J L(\) < oo, 3 M\ < oo}, if J is infinite.
keK

According to Corollary 2.2 we have the next duality result.
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...........

Corollary 3.2. Assume that Z / Xi,
(i1,eemsirg) €1 7 Hia
(i) (weak duality) If p is a primal feasible solution of program (P3) and X is a
dual feasible solution of program (D3), then
—H(p;v) < L(A).

Moreover, the equality holds if and only if

J e*[)‘il ««««« 1T+W§:?-..,1T)‘*J]X11 ----- ir,g J v( . ) I
Wiy, ing Vig,ooyipygy V01,500, ]) €
Cll Vi ]()\'Lly“-vir + ﬂz(:,) 77,7«A_]
(ii) (strong duality) If \* € Int Ay (v, 7(") is a dual optimal solution of program
(D3), then p(\*) = ® Wiy,..ini (AT) given by
(i1,0yir,g) €L
e_[)‘zl ..... iT+ﬂ£:?.,.,i7v)‘ij]Xi1 ----- ir,J

d:uilwwimj()‘*) = (r) dl/i1,..‘,i,-,j7 V(il, e aimj) el

Giryoimg Moy i F L2 AR )
is a primal optimal solution of program (P3) and
—H(u(A\");v) = L(A").

Remark 3.2. Taking r = 1, we obtain the mazxentropic reconstruction of simple
Markov chains with given common steady-state probabilities, with supplementary
constraints of type (5) (see [13]) or without supplementary constraints (see [6]).

Example 3.1. Let a € Ry. For any (i1,...,4r,7) € I, let
Qiivg = {00}, Vi = (1= 00y i j)€0 + 05 iy j€as
where 0;, ;. ; €[0,1]. Assume that
> iy <o
(i15eeesir,g)ET

We have
Girooip g (W) =1 =00y iy g+ 0iy a6V
The dual problem (D3) has the following form:

i .
minL(A\) = Y {Zln {1 O Oy iy W\ﬂ)}

i1,..,00€J \JEJ

FAivin ¢+ Z TA_; s.t.
ied

AE Al(V,W(T)).
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Let \* be an interior optimal solution of this problem. Then the primal problem
(P3) has the optimal solution p(A\*) = ® Wiy ,...in,i (AT) given by
(’il,...,iT,j)EI

—al\; A D
(1—0i,...i..5)20 + b3y g i T T g,

*
Pir, i, (A7) = T ,
=05, iy 00, i ge i T

St 1oeeip g

Vi1, ir,7) €1
Hence the r + 1-dimensional matriz P = (Pi(lr) i ,j) given by
i, €

(r) _ ) o
U yeenslry] E,“”ll ,,,,, Qg ]()\*)[Xllvu';“w.]]
\F () zx
aﬂil ’’’’’ ir,je af Tlseees 7'7‘+7T7'1 ,,,,, ir *J] . ) .
= a[xx +ﬂ_(7‘) A ) Vzla' s lpy ) € Ja
1- 9117 g T 9117 Jir,j € Bt 0 T

i a r-step transition probability array of a homogeneous and stationary Markov
chains of order r that verifies the imposed constraints (6), where

T
7T(r) = (7'('1(1) i )
) e ie €

is the given joint probability of the states at r consecutive times.

Remark 3.3. If the given joint probability ©(*) is unknown, then it can be also
reconstructed using the MEM method, from the imposed constraints (7), (8) and

(9).
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