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Abstract

In this paper we consider the estimation of the mean time to failure
using a weighted loss function that reflects fit and precision of estimation.
The weighted loss function we propose here is an extension of weighted bal-
anced loss function used in Rodrigues and Zellner [7] and a special case of
the one used in Chung et al [1]. As in the previously mentioned article, we
will prove that optimal point estimates relative to our weighted loss func-
tion are linear combination between Bayesian and non-Bayesian estimates.
Examples based on non-informative and informative priors for evaluating
posterior expected loss associated to alternative estimates are given. The
results obtained generalize the results from Ciumara et al. [3].
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1 Introduction

A goodness of fit criterion such as the sum of squared residuals in regression
problems leads to an estimate which gives good fit and unbiased estimator. Ro-
drigues and Zellner [7] argued that it may not be as precise as an estimator which
is biased.

Thus there is a need to provide a framework which combines the goodness
of fit and precision of estimation formally. Also, Rodrigues and Zellner [7] indi-
cated that other measures of goodness of fit and precision of estimation could be
incorporated in more general functional forms.

Rodrigues and Zellner [7] introduced and analyzed the balanced function
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and the two-parts weighted balanced loss function
n N 2
> (X -9)
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where 8 is some estimate of 6 and the given weight w € [0, 1]. Generalizations of
this loss function could be find in Ciumara et al. [3] and Chung et al. [1].

The first term in the right-hand-side of these functions represents a quadratic
measure of goodness-of-fit and the second term is a squared error measure of
precision.

In weighted balanced loss function expression, relative squared errors are used
instead of squared error terms in both parts of this loss function.

If w = 0 we get squared error or squared relative error loss function, and if
w = 1, we get a pure goodness-of-fit criterion.

A thorough treatment of Bayesian, non-Bayesian and optimal estimates of
parameters, could be find in Preda [5,6], Zellner [8] and Martz and Waller [4].

In this paper we focus on the three-parts balanced and weighted balanced
loss function considered in Ciumara et al. [3]. In Section 2 we use the proposed
three-parts loss functions in order to give optimal estimate of the mean time to
failure. We evaluate posterior expected loss for various estimates and compare
them to these of optimal estimates.

We apply the results obtained in Section 2 for a non-informative prior, in
Section 3, and for an informative prior, in Section 4.

Finally, we give a simple numerical example and some concluding remarks.

2 Three-parts weighted loss functions and optimal estimates of the
mean time to failure

Let a three-parts balanced and weighted balanced loss functions be Lpg
—~ ~ _\2 R 2
Lp (0.0) = wis +ws (0-X) +uws (0-0)

and, respectively, Ly p,
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where the weights satisfy wq, we, w3 € [0,1] and wy + wy + w3 = 1 (Ciumara et
al. [3]).

We should note however that the balanced loss function and the weighted
balanced loss function introduced by Rodrigues and Zellner [7] could be expressed

Es (7.0) =0 (24 (7-%) ) + 0= w) (0-0)°

and, respectively,

~ _—\2 ~ 2
L 32+(9fx) (ofa)
Therefore, the three-parts loss functions proposed here appear naturally by

N2
imposing different weights for s? and (9 - X ) , components of the measure of

goodness-of-fit.

Definition 2.1. (Rodrigues and Zellner [7]) Conditional on the data and prior
information, an estimate 0., of 0 is optimal if it minimizes the posterior expec-
tation of a given loss function.

We denote by

and
~ 2
~ (0-0)
LQ (97 9) -~ ——
The following result enables to prove the main theorem of this section.

Lemma 2.1. The posterior expectations of Ly is

—~ 1\ 2
v 7 (9 - 92)
%)  E(6?) g2

E(Ly) = 7

where @ is the posterior mean of 6, v = E ((0 — 5)2) the posterior variance and

~ E(0?
5, = 2,
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Proof: Considering the expression of Ly, we obtain

E(Ly) =E @;f _(5_9)2+2(5_9)1;(9—9)+E<(9—9)2)-

Since E (0) = 0, we get

~ N2
E(L2>:(9‘2+“,

But v=E ((0-9)") = B(6*) — ", thus E (6%) =v+8". Then, since ¥ + =
)

72 E(0? ~
%:(Tzeg,weget

E(Ly) = +

Now we could present the main result.

Theorem 2.1. For any posterior density w (0| X1, ..., Xp,), we have:
i) the optimal estimate for 6 is given by

0. — U)182 + w2y2 + w;;?é\g . U}ngl + ’wggé\g
o IUQY + ’UJ3§ wQY + U}3§

where 0, is the value ofé\ that minimizes Ly and 52 is the value 0f§ that minimizes
E (Ls).

i1) the minimal posterior expected loss is given by

wy X + w3l
E(LWB (0**,0)) = U&‘*‘W:g—% —
-1 (wﬁszgﬂvsﬁ)_
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Proof: i) Since L (5) = wlg\% + wo~—=——, we get

oL (6) o L
—_— 27{—w152+w2 (9—X> X}.
00 03
OL1(0) o 9 ~ =\ = .
Therefore, = 0 implies w1 s* = wo (9 — X) X, which leads to the value of

f that minimizes Ly,
2
5 w182 + we X

1 =
’I,UQX

. . . 2 S
Obviously, from the previous relation we get wi8% + we X = weX0.
Note that 0, could be written as

w152

where >\w1,w2 = m

= N2

Now, Lo (9, 9) = (9;29) and from Lemma 2.1, we know that E (L2 (9, 9)) =
— 7D 2 ~ R 2

E(%z) + E(aaz) (0 §Z2) . It results that w =0 for 0 = E(g )7 that is’ the

value of @ that minimizes the posterior expected loss (Lg (é\, 0)) is

g, = 21%)
Moraaver, since Ly (5, 9) - wlg‘% + w2 (g_ff + ws @;)27 we get
~ _\2
E(Lws (8.6)) = wl;; +W2(9_§2X> g |1 2% Eg?)

and, consequently,

oF (LW;ﬁ(@’ ) _ 533 [~urs® s (8- X) X + s (00— B (87))]
6E(LWE(§,9))
w152+w2Y2+w3E (02) which leads to tlfz value of # that minimizes E (LWB (5, 0)) ,

that is, the optimal estimate of § which is given by 0., from i).

Considering the above expression, = 0 implies that 0 [wQY + w3§] =
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ii) The minimal posterior expected loss is given by E (Lw g (0.4, 0)). After
some calculations we get

0 (wQY + ’U}3§)
T

. o
E(Lwp (0,6)) =1-wi - = (X +wsf) +
Therefore,

U}QY + wgg
9** ’

exactly what we had to prove. 0

E(LWB (9**,9)) = Wg + w3z —

Remark 2.1. We have

N2
: (7-0)
Ly (9) = w2 >\w1,w2 + (1 - >‘w1,w2) T ’
where Ay, wy = w%, with p = %(A— %), A = nwy, B = nwsX and C =
n (w152 + U}gy2).
Therefore, writing Ly as above suggests to compare 9 to 0 in a relative squared

error sense and, consequently, motivates the loss function Lw g (5, 9).

3 The exponential model with noninformative prior for 6

Here we consider the random variable X representing the time to failure, expo-
nentially distributed. The probability density function is, in this case

T
0
)

SR
®

[ (2]0) =

with 0 < 2 < oo and 0 < 6 < co. Obviously, F(X) = 6 is the mean time to
failure and Var (X) = 6%

As in Rodrigues and Zellner [7], the failure rate v = # is constant, therefore
we analyze the exponential model. When the failure rate varies with time, we
could employ other models, for example, Weibull model.
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The usual noninformative prior for 6 is proportional to %,

(Preda [6]). Thus, for the exponential model, the posterior density is

0

nz)"
7T(9|$17..,wn) = I—‘((n)e)n“e

The posterior mean and posterior variance are given by

7 nT
0=FE@|z1,.,x,) = —
and, respectively,
v = E(92|x1,..,.’13n) _(E(9|331,-.,xn))2 _
_
(n—1%(n—2)
(Ciumara [2]).
Moreover,
0. E(92|1’1a 7xn) nx
b2 = - —
0 n—2
Remark 3.1. From Theorem 2.1. we have that
wa X + w36
E(LWB (0**,0)) = 1—w1—% —
= 1 —w; — Q,
wr X tws6

where o =

TS

For the noninformative prior mentioned before, we get

w w3
2 n n—1 o
Ou = n 01 + m 0.
Wz + W3 57 W + W35

If we denote w

2

Y= —
wo + wg—nil

then R R
Oue =201+ (1 — %) 6s.
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~ 2
o is a non-Bayesian estimate of 6 and 0, = E(g ) is a
Bayesian estimate of the same parameter, it results that the optimal estimate
of 6 could be expressed as a linear combination of Bayesian and non-Bayesian
estimates of 6.

Moreover, in this case, we derive o from E (L g (04, 60)) and obtain

2
(UJQ + ws 77;—11)

52 n? ’
U)l? + wo + w3m

. ~ o 2
Since 6; = wys”+wy X7

o =

Now, it is of interest to compare E (L g (6., 0)) with the posterior expected
loss associated to 6 and/or 5. After some calculations, we get

—~ 2
A=FE (LWB (51,9)) — E(Lwg (0.:,0)) = aM

07
Because ¥ = —*2—— we can express « as
w2t w3 727
wo\ 2
@
u b
where
w2 + n2
u = w .
1_)\w1,w2 3(”—1) (n_2)
Therefore,
2
(01 - 0**) w2 2 é\ 2
A=oa~—r:k _ (&) 1-x?[(1-2
0% u 0,
We obtain A )
wo
—(1-%) (7) 72,
E (Lwp (04,9)) ( ) by
where
~\2
A
22 _ (1 é\l)
= 3
u(l—wy) — (%)
For given n, Ay, w, = ;”17‘;2*2 and weights (w1, we, w3), A increases with
’ w1 82+we X

the difference between Bayesian 52 and non-Bayesian 51 estimates of 6.

If, for example, wy = X = % and Z = 1 (that is wy = % and w3 = "2—;1),

m = 0.25. That is. under these conditions, expected loss is inflated

by 25% using/\gl rather than the optimal estimate 6,,. Similar conclusions are
available for 6.
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4 The exponential model with an informative prior for 6

Considering again the exponential model, we assume now an informative prior

for 6,
0 .
7T( )Nme

where v, a > 0 (in fact, 7 (0) = ﬁﬁe’%). Then

T+ a1 ek
e (9'«%17 ..,l’n) - T (n T I/) 9n+u+16 0
and T4
- nT + a
0=FE Oz, x,) = —212
( |mla , L ) TL+V*1
_ 2
+a)
E (6221, .., 2,) = (n
(01, -0 n) m+v—-1)(n+v—2)

(nZ + a)®
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Moreover, in this case,

~ E(@Q) n+u—1§

02 g — =
0 n+v-—2
and N R
9 - w2X01 -+ ’U)3092
- wgy + wgg .
Obviously, o -
X + wsb
E(Lwp (0...0) = 1 - (w1 i “’9“’3> |

We note that the posterior mean, could be written as

_ n J— n
0d=——-X 1—— )6
n+v—1 +( n—l—y—l) 0

where ¢y = %5 is the prior mean, so
0=cX +(1—c)by,

where ¢ = —2— € (0,1).

If wy = w3 and 0y > X (leading to § > X), then 05 has a greater weight in
expression of 0, than #;. The opposite is true for §, < X.
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5 Conclusions

The three-parts weighted balanced loss function reflects goodness-of-fit and preci-
sion of estimation. Traditional loss functions such as the sum of weighted squared
residuals and mean-squared error of estimation as well as the weighted balanced
loss function introduced by Rodrigues and Zellner [7] can be obtained from the
three-parts (weighted) balanced loss function introduced in Ciumara et al. [3],
taking certain values for weights.

For example, if we analyze a three-parts weighted balanced loss function of
the type presented here,

~ _—\2
22 2(0-X)

Lwp (5,9) =w1§+w2 52 “+ w3 52 s
we get
0. — 2'1U2Y§1 + wsg@
T 2unX +wsh
and _ _
2wa X + wsb

E(Lwp (04, 0)) = 2wa + w3 — 7
For w; = wy = §, w3 = 1 —w, where w € [0, 1], we get exactly the weighted
balanced loss function proposed by Rodrigues and Zellner [7].

The use of a weighted-balanced loss function creates a balance between Bayesian
and non-Bayesian procedures, that is, it leads to an estimate that is a linear com-
bination of a non-Bayesian and a Bayesian estimate.
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