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Estimation of the Mean Time to Failure relative to a Class

of Loss Fun
tions

by

Roxana Ciumara and Miruna Beldiman

Abstra
t

In this paper we 
onsider the estimation of the mean time to failure
using a weighted loss fun
tion that re�e
ts �t and pre
ision of estimation.
The weighted loss fun
tion we propose here is an extension of weighted bal-
an
ed loss fun
tion used in Rodrigues and Zellner [7℄ and a spe
ial 
ase of
the one used in Chung et al [1℄. As in the previously mentioned arti
le, we
will prove that optimal point estimates relative to our weighted loss fun
-
tion are linear 
ombination between Bayesian and non-Bayesian estimates.
Examples based on non-informative and informative priors for evaluating
posterior expe
ted loss asso
iated to alternative estimates are given. The
results obtained generalize the results from Ciumara et al. [3℄.
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1 Introdu
tion

A goodness of �t 
riterion su
h as the sum of squared residuals in regression

problems leads to an estimate whi
h gives good �t and unbiased estimator. Ro-

drigues and Zellner [7℄ argued that it may not be as pre
ise as an estimator whi
h

is biased.

Thus there is a need to provide a framework whi
h 
ombines the goodness

of �t and pre
ision of estimation formally. Also, Rodrigues and Zellner [7℄ indi-


ated that other measures of goodness of �t and pre
ision of estimation 
ould be

in
orporated in more general fun
tional forms.

Rodrigues and Zellner [7℄ introdu
ed and analyzed the balan
ed fun
tion
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and the two-parts weighted balan
ed loss fun
tion

L̃WB

(
θ̂, θ

)
= w

n∑
i=1

(
Xi − θ̂

)2

nθ̂2
+ (1 − w)

(
θ̂ − θ

)2

θ̂2

where θ̂ is some estimate of θ and the given weight w ∈ [0, 1]. Generalizations of
this loss fun
tion 
ould be �nd in Ciumara et al. [3℄ and Chung et al. [1℄.

The �rst term in the right-hand-side of these fun
tions represents a quadrati


measure of goodness-of-�t and the se
ond term is a squared error measure of

pre
ision.

In weighted balan
ed loss fun
tion expression, relative squared errors are used

instead of squared error terms in both parts of this loss fun
tion.

If w = 0 we get squared error or squared relative error loss fun
tion, and if

w = 1, we get a pure goodness-of-�t 
riterion.

A thorough treatment of Bayesian, non-Bayesian and optimal estimates of

parameters, 
ould be �nd in Preda [5,6℄, Zellner [8℄ and Martz and Waller [4℄.

In this paper we fo
us on the three-parts balan
ed and weighted balan
ed

loss fun
tion 
onsidered in Ciumara et al. [3℄. In Se
tion 2 we use the proposed

three-parts loss fun
tions in order to give optimal estimate of the mean time to

failure. We evaluate posterior expe
ted loss for various estimates and 
ompare

them to these of optimal estimates.

We apply the results obtained in Se
tion 2 for a non-informative prior, in

Se
tion 3, and for an informative prior, in Se
tion 4.

Finally, we give a simple numeri
al example and some 
on
luding remarks.

2 Three-parts weighted loss fun
tions and optimal estimates of the

mean time to failure

Let a three-parts balan
ed and weighted balan
ed loss fun
tions be LB

LB

(
θ̂, θ

)
= w1s

2 + w2

(
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)2

+ w3
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)2

and, respe
tively, LWB ,
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+ w3

(
θ̂ − θ

)2

θ̂2
,
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where the weights satisfy w1, w2, w3 ∈ [0, 1] and w1 + w2 + w3 = 1 (Ciumara et

al. [3℄).

We should note however that the balan
ed loss fun
tion and the weighted

balan
ed loss fun
tion introdu
ed by Rodrigues and Zellner [7℄ 
ould be expressed

as

L̃B

(
θ̂, θ

)
= w

(
s2 +

(
θ̂ − X

)2
)

+ (1 − w)
(
θ̂ − θ

)2

and, respe
tively,

L̃WB

(
θ̂, θ

)
= w

s2 +
(
θ̂ − X

)2

θ̂2
+ (1 − w)

(
θ̂ − θ

)2

θ̂2
.

Therefore, the three-parts loss fun
tions proposed here appear naturally by

imposing di�erent weights for s2 and
(
θ̂ − X

)2

, 
omponents of the measure of

goodness-of-�t.

De�nition 2.1. (Rodrigues and Zellner [7℄) Conditional on the data and prior

information, an estimate θ∗∗ of θ is optimal if it minimizes the posterior expe
-

tation of a given loss fun
tion.

We denote by

L1

(
θ̂
)

= w1
s2

θ̂2
+ w2

(
θ̂ − X

)2

θ̂2

and

L2

(
θ̂, θ

)
=

(
θ̂ − θ

)2

θ̂2
.

The following result enables to prove the main theorem of this se
tion.

Lemma 2.1. The posterior expe
tations of L2 is

E (L2) =
v

E (θ2)
+

θ
2

E (θ2)

(
θ̂ − θ̂2

)2

θ̂2
,

where θ is the posterior mean of θ, v = E
((

θ − θ
)2

)
the posterior varian
e and

θ̂2 =
E(θ2)

θ
.
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Proof: Considering the expression of L2, we obtain

E (L2) = E



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)2
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
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+ 2
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Sin
e E (θ) = θ, we get

E (L2) =

(
θ̂ − θ

)2

+ v

θ̂2
.

But v = E
((

θ − θ
)2

)
= E

(
θ2

)
− θ

2
, thus E

(
θ2

)
= v + θ

2
. Then, sin
e v

θ
+ θ =

v+θ
2

θ
=

E(θ2)
θ

= θ̂2, we get

E (L2) =
v

E (θ2)
+

θ
2

E (θ2)

(
θ̂ − θ̂2

)2

θ̂2
.

Now we 
ould present the main result.

Theorem 2.1. For any posterior density π (θ|X1, ...,Xn), we have:

i) the optimal estimate for θ is given by

θ∗∗ =
w1s

2 + w2X
2

+ w3θθ̂2

w2X + w3θ
=

w2Xθ̂1 + w3θθ̂2

w2X + w3θ
,

where θ̂1 is the value of θ̂ that minimizes L1 and θ̂2 is the value of θ̂ that minimizes

E (L2).

ii) the minimal posterior expe
ted loss is given by

E (LWB (θ∗∗, θ)) = w2 + w3 −
w2X + w3θ

θ∗∗
=

= 1 −

(
w1 +

w2X + w3θ

θ∗∗

)
.
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Proof: i) Sin
e L1

(
θ̂
)

= w1
s2

bθ2
+ w2

(bθ−X)
2

bθ2
, we get

∂L1

(
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2
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[
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2 + w2

(
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)
X

]
.

Therefore,
∂L1(bθ)

∂bθ
= 0 implies w1s

2 = w2

(
θ̂ − X

)
X, whi
h leads to the value of

θ̂ that minimizes L1,

θ̂1 =
w1s

2 + w2X
2

w2X
.

Obviously, from the previous relation we get w1s
2 + w2X

2
= w2Xθ̂1.

Note that θ̂1 
ould be written as

θ̂1 =
X

1 − λw1,w2

,

where λw1,w2
= w1s2

w1s2+w2X
2 .

Now, L2

(
θ̂, θ

)
=

(bθ−θ)
2

bθ2
and from Lemma 2.1, we know that E

(
L2

(
θ̂, θ

))
=

v
E(θ2) + θ

E(θ2)

(bθ−bθ2)
2

bθ2
. It results that

∂E(L2(bθ,θ))
∂bθ

= 0 for θ̂ =
E(θ2)

θ
, that is, the

value of θ̂ that minimizes the posterior expe
ted loss E
(
L2

(
θ̂, θ
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is

θ̂2 =
E

(
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)

θ
.

Moreover, sin
e LWB

(
θ̂, θ

)
= w1

s2

bθ2
+ w2
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2

bθ2
+ w3
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2
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E
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and, 
onsequently,

∂E
(
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2
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[
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Considering the above expression,
∂E(LW B(bθ,θ))

∂bθ
= 0 implies that θ̂

[
w2X + w3θ

]
=

w1s
2+w2X

2
+w3E

(
θ2

)
whi
h leads to the value of θ̂ that minimizes E

(
LWB

(
θ̂, θ

))
,

that is, the optimal estimate of θ whi
h is given by θ∗∗ from i).
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ii) The minimal posterior expe
ted loss is given by E (LWB (θ∗∗, θ)). After

some 
al
ulations we get

E
(
LWB

(
θ̂, θ

))
= 1 − w1 −

2

θ̂

(
w2X + w3θ

)
+

θ∗∗
(
w2X + w3θ

)

θ̂2
.

Therefore,

E (LWB (θ∗∗, θ)) = w2 + w3 −
w2X + w3θ

θ∗∗
,

exa
tly what we had to prove.

Remark 2.1. We have

L1

(
θ̂
)

= w2


λw1,w2

+ (1 − λw1,w2
)

(
θ̂ − θ̂1

)2

θ̂2


 ,

where λw1,w2
= µ

w2
, with µ = 1

n

(
A − B2

C

)
, A = nw2, B = nw2X and C =

n
(
w1s

2 + w2X
2
)
.

Therefore, writing L1 as above suggests to 
ompare θ̂ to θ in a relative squared

error sense and, 
onsequently, motivates the loss fun
tion LWB

(
θ̂, θ

)
.

3 The exponential model with noninformative prior for θ

Here we 
onsider the random variable X representing the time to failure, expo-

nentially distributed. The probability density fun
tion is, in this 
ase

f (x|θ) =
1

θ
e−

x

θ ,

with 0 ≤ x < ∞ and 0 < θ < ∞. Obviously, E (X) = θ is the mean time to

failure and V ar (X) = θ2.

As in Rodrigues and Zellner [7℄, the failure rate γ = 1
θ
is 
onstant, therefore

we analyze the exponential model. When the failure rate varies with time, we


ould employ other models, for example, Weibull model.
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The usual noninformative prior for θ is proportional to 1
θ
,

π (θ) ∼
1

θ

(Preda [6℄). Thus, for the exponential model, the posterior density is

π (θ|x1, .., xn) =
(nx)

n

Γ (n) θn+1
e−

nx

θ .

The posterior mean and posterior varian
e are given by

θ = E (θ|x1, .., xn) =
nx

n − 1

and, respe
tively,

v = E
(
θ2|x1, .., xn

)
− (E (θ|x1, .., xn))

2
=

=
(nx)

2

(n − 1)
2
(n − 2)

(Ciumara [2℄).

Moreover,

θ̂2 =
E

(
θ2|x1, .., xn

)

θ
=

nx

n − 2
.

Remark 3.1. From Theorem 2.1. we have that

E (LWB (θ∗∗, θ)) = 1 − w1 −
w2X + w3θ

θ∗∗
=

= 1 − w1 − α,

where α = w2X+w3θ
θ∗∗

.

For the noninformative prior mentioned before, we get

θ∗∗ =
w2

w2 + w3
n

n−1

θ̂1 +
w3

n
n−1

w2 + w3
n

n−1

θ̂2.

If we denote

Σ =
w2

w2 + w3
n

n−1

,

then

θ∗∗ = Σ · θ̂1 + (1 − Σ) · θ̂2.
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Sin
e θ̂1 = w1s2+w2X
2

w2X
is a non-Bayesian estimate of θ and θ̂2 =

E(θ2)
θ

is a

Bayesian estimate of the same parameter, it results that the optimal estimate

of θ 
ould be expressed as a linear 
ombination of Bayesian and non-Bayesian

estimates of θ.

Moreover, in this 
ase, we derive α from E (LWB (θ∗∗, θ)) and obtain

α =

(
w2 + w3

n
n−1

)2

w1
s2

X
2 + w2 + w3

n2

(n−1)(n−2)

.

Now, it is of interest to 
ompare E (LWB (θ∗∗, θ)) with the posterior expe
ted

loss asso
iated to θ̂1 and/or θ̂2. After some 
al
ulations, we get

∆ = E
(
LWB

(
θ̂1, θ

))
− E (LWB (θ∗∗, θ)) = α

(
θ̂1 − θ∗∗

)2

θ̂2
1

.

Be
ause Σ = w2

w2+w3
n

n−1

, we 
an express α as

α =

(
w2

Σ

)2

u
,

where

u =
w2

1 − λw1,w2

+ w3
n2

(n − 1) (n − 2)
.

Therefore,

∆ = α

(
θ̂1 − θ∗∗

)2

θ̂2
1

=

(
w2

Σ

)2

u
(1 − Σ)

2

(
1 −

θ̂2

θ̂1

)2

.

We obtain
∆

E (LWB (θ∗∗, θ))
= (1 − Σ)

2
(w2

Σ

)2

Z2,

where

Z2 =

(
1 −

bθ2

bθ1

)2

u (1 − w1) −
(

w2

Σ

)2 .

For given n, λw1,w2
= w1s2

w1s2+w2X
2 and weights (w1, w2, w3), ∆ in
reases with

the di�eren
e between Bayesian θ̂2 and non-Bayesian θ̂1 estimates of θ.

If, for example, w2 = Σ = 1
2 and Z = 1 (that is w1 = 1

2n
and w3 = n−1

2n
),

∆
E(LW B(θ∗∗,θ)) = 0.25. That is, under these 
onditions, expe
ted loss is in�ated

by 25% using θ̂1 rather than the optimal estimate θ∗∗. Similar 
on
lusions are

available for θ̂2.
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4 The exponential model with an informative prior for θ

Considering again the exponential model, we assume now an informative prior

for θ,

π (θ) ∼
1

θν+1
e−

a

θ

where ν, a > 0 (in fa
t, π (θ) = aν

Γ(ν)
1

θν+1 e−
a

θ ). Then

π (θ|x1, .., xn) =
(nx + a)

n+ν

Γ (n + ν)

1

θn+ν+1
e−

nx+a

θ

and

θ = E (θ|x1, .., xn) =
nx + a

n + ν − 1
,

E
(
θ2|x1, .., xn

)
=

(nx + a)
2

(n + ν − 1) (n + ν − 2)
,

v =
(nx + a)

2

(n + ν − 1)
2
(n + ν − 2)

.

Moreover, in this 
ase,

θ̂2 =
E

(
θ2

)

θ
=

n + ν − 1

n + ν − 2
θ

and

θ∗∗ =
w2Xθ̂1 + w3θθ̂2

w2X + w3θ
.

Obviously,

E (LWB (θ∗∗, θ)) = 1 −

(
w1 +

w2X + w3θ

θ∗∗

)
.

We note that the posterior mean, 
ould be written as

θ =
n

n + ν − 1
X +

(
1 −

n

n + ν − 1

)
θ0

where θ0 = a
ν−1 is the prior mean, so

θ = cX + (1 − c) θ0,

where c = n
n+ν−1 ∈ (0, 1).

If w2 = w3 and θ0 > X (leading to θ > X), then θ̂2 has a greater weight in

expression of θ∗∗ than θ̂1. The opposite is true for θ0 < X.
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5 Con
lusions

The three-parts weighted balan
ed loss fun
tion re�e
ts goodness-of-�t and pre
i-

sion of estimation. Traditional loss fun
tions su
h as the sum of weighted squared

residuals and mean-squared error of estimation as well as the weighted balan
ed

loss fun
tion introdu
ed by Rodrigues and Zellner [7℄ 
an be obtained from the

three-parts (weighted) balan
ed loss fun
tion introdu
ed in Ciumara et al. [3℄,

taking 
ertain values for weights.

For example, if we analyze a three-parts weighted balan
ed loss fun
tion of

the type presented here,

LWB

(
θ̂, θ

)
= w1

2s2

θ̂2
+ w2

2
(
θ̂ − X

)2

θ̂2
+ w3

(
θ̂ − θ

)2

θ̂2
,

we get

θ∗∗ =
2w2Xθ̂1 + w3θθ̂2

2w2X + w3θ

and

E (LWB (θ∗∗, θ)) = 2w2 + w3 −
2w2X + w3θ

θ∗∗
.

For w1 = w2 = w
2 , w3 = 1 − w, where w ∈ [0, 1], we get exa
tly the weighted

balan
ed loss fun
tion proposed by Rodrigues and Zellner [7℄.

The use of a weighted-balan
ed loss fun
tion 
reates a balan
e between Bayesian

and non-Bayesian pro
edures, that is, it leads to an estimate that is a linear 
om-

bination of a non-Bayesian and a Bayesian estimate.
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