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Abstract

This paper is concerned with the single-period portfolio that consists of
holdings in n risky assets. The goal is to choose the optimal portfolio to
maximize the expected value of the end of period wealth in the presence
of transaction costs, while satisfying a set of constraints on the portfolio.
The case of a portfolio optimization problem with fuzzy transaction costs
is also considered.
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1 Introduction

In this paper we consider an investment portfolio that consists of holdings in n
assets. This portfolio is to be adjusted by performing a number of transactions,
after which the portfolio will be held over a fixed time period. The investor’s goal
is to maximize the expected wealth at the end of period, while taking transaction
costs into account and satisfying a set of constraints on the portfolio which typi-
cally include limits on exposure to risk and bounds on the amount held in each
asset. The problem is also considered in a fuzzy context.

Recent years have seen a growing interest in portfolio optimization problem.
The paper of Best and Hlouskova [1] deals with the portfolio selection problem
of risky assets with a diagonal covariance matrix, upper bounds on all assets
and transactions costs. Blog et al. [2] consider the specific optimal selection
problem of small portfolios. Kellerer et al. [11] introduce mixed-integer linear
programming models dealing with fixed costs and minimum lots and propose
heuristic procedures based on the construction and optimal solution of mixed
integer subproblems. Konno and Wijayanayake [12] propose a branch and bound
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algorithm for calculating a globally optimal solution of a portfolio construc-
tion/rebalancing problem under concave transaction costs and minimal transac-
tion unit constraints. Schattman [19] develops an iterative heuristic for finding a
suboptimal solution for the portfolio problem. Meyer [14] proved the convergence
of a class of algorithms that includes the heuristic in this paper. If the portfo-
lio optimization problem is nounlinear, the algorithm presented in Fulga [7] that
combines penalty concepts and sequential quadratic programming techniques can
be used. The interest in exact penalty methods is due to their ability to han-
dle degenerate problems and inconsistent constraint linearizations, see also Chen
and Goldfarb [4], Coope and Price [5], Gould et al. [9]. In recent years, a large
amount of work has been devoted to the problem of solving nonlinear program-
ming problems with hypothesis of generalized convexity on the functions involved,
see Preda [17], Preda et al. [18], Fulga and Preda [8].

The rest of the paper goes as follows. In the next section we present a single-
period portfolio selection problem. Transaction cost functions and portfolio con-
straints are also described. In Section 3, fixed costs are included and it is shown
how to obtain a feasible suboptimal portfolio. Section 4 deals with the portfolio
optimization problem with fuzzy transaction costs.

2 The portfolio selection problem

We are concerned with the single-period portfolio that consists of holdings in n
risky assets. The portfolio is adjusted at the beginning of the time-period. The
goal is to choose the optimal portfolio to maximize the expected value of the end
of period wealth in the presence of transaction costs, while satisfying a set of
constraints on the portfolio.

2.1 The model

. . T

The current holdings in each asset are w = (wy,...,w,) . The total current
n

wealth is then E w;. The amount of money transacted in each asset i, i = 1, n, is
i=1

denoted by z;, with ;>0 for buying, x;<0 for selling and « = (zq, ..., xn)T e R"
is the vector of transactions. After transactions, the adjusted portfolio is w + .
Representing the sum of all transaction costs associated with = by f(x), the
budget, or self-financing constraint is

Z$i+f($):0- (1)

The adjusted portfolio w + x is then held for a fixed period of time. At the
end of that period, the return on asset i is the random variable 7;, i = 1,n. All
random variables are on a given probability space. We assume knowledge of the
first and second moments of the joint distribution of ¥ = (ry,...,7,), E (%) = r,

r=(r1,.,ry)’ € R" and E ((Ffr) ('Ffr)T> = C. A riskless asset can be
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included, in which case the corresponding r; is equal to its (certain) return, and
the ith row and column of C' are zero.
The end of period wealth is a random variable, w = 77 (w + x), with ex-

pected value and variance given by E(w) = rT(w + z), E ((@ - E(@))z) =

(w+2)TC(w+ z). The budget constraint 1 can also be written as an inequality,
D+ f(z) <0 (2)
i=1

With some obvious assumptions, solving an expected wealth maximization
problem with either form of the budget constraint yields the same result. The
inequality form is more appropriate for use with numerical optimization methods.
(For example, if f is convex, the inequality constraint 2 defines a convex set, while
the equality constraint 1 does not.)

We summarize the portfolio selection problem as

max 7T (w + x)
s.t.Zazi +f(z) <0 (3)
i=1
w4z e X,

where r = (rq, ...,rn)T € R™ is the vector of expected returns on each asset,
w = (wl,...,wn)T € R"™ is the vector of current holdings in each asset, z =
(1, ..., xn)T € R™ is the vector of amounts transacted in each asset, f : R* — R
is the transaction cost function, X C R"™ is the set of feasible portfolios.

A related problem is that of minimizing the total transaction costs subject
to portfolio constraints. Among all possible transactions that result in portfolios
achieving a given expected return and meeting the other portfolio constraints, we
would like to perform those transactions that incur the smallest total cost. This

problem is written as

)
rT(w+z)>r (4)

where r is the desired lower bound on the expected return. In this paper we focus
mostly on problem 3, but we will also consider problem 4 in Section 3.

Next, we describe a variety of transaction cost functions f and portfolio con-
straint sets X.

2.2 Transaction costs

Transaction costs can be used to model a number of costs, such as brokerage
fees, bid-ask spreads, taxes, or even fund loads. In this paper, we assume the
transaction costs to be separable, i.e., the sum of the transaction costs associated
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|

with each trade f (z) fi (z;), where f; is the transaction cost function for

=1

asset 7, i = 1,n.

The simplest model for transaction costs is that there are none, i.e., f () = 0.
In this case the original portfolio is irrelevant, except for its total value. We can
make whatever transactions are necessary to arrive at the optimal portfolio.

A better model of realistic transactions costs is a linear one, with the costs
for each transaction proportional to the amount traded:

fi(z) = { “ (Iig’wﬂ;l ’:xé 70 ,i=1,n. (5)

buy )
where a (z;) = { a4 o T>0 0 Hee a? > 0 and a** > 0 are the cost

—a3?!" z; <0
rates associated with buying and selling asset i, i = 1,n. Linear transaction
costs can be used, for example, to model the gap between bid and ask prices.
Since the linear transaction cost functions f; are convex, the budget constraint 2
can be handled by convex optimization. Specifically, linear costs can be handled
by introducing new variables u = (ul,...,un)T,v = (vl,...,vn)T € R", with
u; > 0,v; > 0 expressing the total transaction as x; = u; —v;,V i = 1,n.

The transaction cost function is then represented as f; (x;) = a?"yui—i—afdlvi7 A
i=1,n.

Any piecewise linear convex transaction cost function can be handled in a
similar way:.

In practice, transaction costs are not convex functions of the amount traded.
Indeed, the costs for either buying or selling are likely to be concave. For exam-
ple, a fixed charge for any nonzero trade is common, and there may be one or
more breakpoints above which the transaction costs per share decrease. We will
consider a simple model that includes fixed plus linear costs, but our method is
readily extended to handle more complex transaction cost functions.In this case,
the transaction cost function is given by

a(z;) |z +b(x;), x; #0 .
= { B A0
buy )
where b (z;) = bi @i >0 a8 5 0 and bl > 0 are the fixed costs
bfe”, x; <0 i i

associated with buying and selling asset 7, i = 1, n.
Evidently the function f; is not convex, unless the fixed costs are zero. There-
fore, the budget constraint 2 cannot be handled by convex optimization.
Constraints on portfolio diversification can be expressed in terms of linear
inequalities, and therefore are readily handled by convex optimization. Individual
diversification constraints limit the amount invested in each asset i to a maximum
of s;,

w; +x; <8, 1=1,n.
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Alternatively, we can limit the fraction 0 < a; < 1 of the total (post transac-
tion) wealth held in each asset:
n
i=1

These are linear, and therefore convex, inequality constraints on x. The re-
versed constraints (such as requiring a minimum position in an asset) are also
convex.

More sophisticated diversification constraints limit the amount of the total
wealth that can be concentrated in any small group of assets. Suppose, for exam-
ple, that we require that no more than a fraction of the total wealth be invested
in fewer than k assets. Letting (w + x)(j) denote the jth largest component of
the vector w + x, this constraint can be expressed as

k n
Sw+2)? <ad (i +) (6)
=1 i=1
where « is a given positive factor. To see that the constraint 6 is convex, we
can express it as a set of C,’f linear inequalities, one for each possible combination
of k assets chosen from the n assets. This representation is clearly impractical,
however, as this number of linear inequalities can be extremely large. The di-
versification constraint 6 can be far more efficiently represented by 2n + 1 linear
inequalities,

n n
kp+Zqi§ozZ(wi+:1:i)
i=1 i=1

wi+x; <p+gqi, i=1n
Qizoa izlvna

(7)

where p € R and ¢ = (¢1, ..., qn)T € R" are new variables.

2.3 Constraints

In practice, often shortselling constraints are imposed. This type of constraints
also leads to linear inequalities. Individual bounds ¢; on the maximum amount
of shortselling allowed on asset i are

w; +x; > —¢y 1= 1,n.

If it is the case of a riskless asset, ¢; is a credit line. If shortselling is not
permitted, the ¢; = 0, i = 1, n. If we denote by B the bound on total shortselling,

the costraint is
n

Z (wi +2;)_ < B,

i=1



322 Cristinca Fulga and Bogdana Pop

where (w; + x;)_ = max {— (w; + ;) ;0} . This can be rewritten as a set of linear

constraints by introducing an auxiliary variable z = (zq, ..., zn)T € R"™,

—(wi + ;) <z, i=1n

ZiZO, i=1,n

n
i=1

Another type of constraint that we mention for its practical interest is
n n

Z(wi +a;)_ < aZ(wi + ) |

i=1 i=1

which limits the total of short positions to a fraction of the total of long positions.
There are also constraints imposed on the variance. The standard deviation

of the end of period wealth W is constrained to be less than a chosen value & by

the (convex) quadratic inequality

(w4 z)T'C(w + z) <72

If any number of convex transaction costs and convex constraints are com-
bined, the resulting problem is convex. Linear transaction costs, as well as all the
portfolio constraints described above, are convex programs. Such problems can
be globally solved with great efficiency, even for problems with a large number of
assets and constraints.

3 Portfolio optimization problems with fixed transaction costs

We assume from now on equal costs for buying and selling, the extension for
nonsymmetric costs being straightforward. The transaction cost function is then

F@) =32 fi (:), with
i=1 a; |zi| +b;, 2 #0

In the general case, costs of this form lead to a hard combinatorial problem.

The simplest way to obtain an approximate solution is to ignore the fixed
costs, and solve with f; (z;) = a; |x;|. If the b; are very small, this may lead
to an acceptable approximation. In general, however, it will generate inefficient
solutions with too many transactions. Note that if this approach is taken and the
solution is computed disregarding the fixed costs, some margin must be added to
the budget constraint to allow for the payment of the fixed costs.

On the other hand, by considering the fixed costs, we discourage trading small
amounts of a large number of assets. Thus, we obtain a sparse vector of trades;
i.e., one that has many zero entries. This means most of the trading will be
concentrated in a few assets, which is a desirable property.

We will next propose a heuristic, which can be used to find approximate
solutions (and therefore lower bounds).
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We assume that lower and upper bounds for x; are known i.e., there exist mé
and m¥ such that m! < x; < m¥. We denote by f¢ the convex envelope of f;,
which is the largest convex function which is lower or equal to f; in the interval
[ml m;‘] For m! # 0 and m¥ # 0, the function f¢ is given by

i (x) = (m(zi) +al> il , @ # 0 ,i=1,n.
0, T =0

U ()
where m (x;) = My L -

my, x; <0
the sense that it enlarges the search set. Consider the portfolio selection problem

3, with ff replaced for f;,

. Using ff for f; relaxes the budget constraint, in

max 7! (w + x)
n
s.t. in + fe(x) <0 (8)
i=1
w4z e X,

n
where f¢(z) = 3 ff(x;). This corresponds to optimizing the same objective,
=1

the expected enci of period wealth, subject to the same portfolio constraints, but
with a looser budget constraint. Therefore the optimal value of 8 is an upper
bound on the optimal value of the unmodified problem 3. Since the problem 8 is
convex, we can compute its optimal solution, and hence the upper bound on the
optimal value of the original problem 3, very efficiently.
Note that in most cases the optimal transaction vector for the relaxed problem
8 will not be feasible for the original problem 3. The unmodified budget constraint
will not be satisfied by the solution of the modified program, except in the very
special case when each transaction amount z; is either ml, m¥ or 0.
This relaxation can also be used in problem 4, where the goal is to minimize
transaction costs. This results in the relaxed problem
min f¢ (x)
rf(w+z) >1 (9)
w+ze X
Here, compared to the original problem, the relaxed problem has the same
feasible set, but a different objective function.
Following the approach in Schattman [19], we describe a heuristic for finding
a feasible suboptimal portfolio. The iterative procedure uses a modified transac-
tion cost function f;* which, like the relaxed cost function, is convex. An iterated
reweighting is used. Since each of these modified functions is convex, each ite-
ration consists in solving a convex program. The feasibility of the portfolio is
obtained by ensuring that the modified transaction cost function f,* agrees with
the true f; at the solution transactions x}, i = 1,n.

Algorithm Step 1. Initialization
Initialize k = 0; « and 9.



324 Cristinca Fulga and Bogdana Pop

Step 2. Solving the problem (8)

Solve the convex relaxed problem (8) and let 2° = (m(l), ey x%) be the solution
to this problem.

Step 3. Solving the modified portfolio selection problem (M PP)

Set k=k+1..

Solve the modified (convex) portfolio selection problem

max 7 (w + x)
(MPP){ st.> xi+ fF(x)<0
i=1

7w+w€X,

where f * (z) = i f;% (x;) and
i=1
£ (@) = (bi + az’) || i =1, n.

‘xf_ly +

The optimal solution of this problem is denoted by z*¥ = (x’f, e xf;) .

Step 4. Checking stopping condition

If Hmk — xk_lHoo < 4, set x* = z*. Stop.

Otherwise, the algorithm proceeds to Step 3.

Remark We note that Meyer [14] established the convergence of a large class

of algorithms that includes the proposed algorithm.

4 Portfolio optimization problem with fuzzy transaction costs

In the classical problems of operations research generally, and in the optimization
models in particular, the coefficients of the problems are assumed to be exactly
known. However in practice this assumption is seldom satisfied by great majority
of real-life problems. The modeling of input data inaccuracy can be made by
means of the fuzzy set theory. Generally, two types of problems implying fuzzy
uncertainty are studied. Fuzzy approaches to solve deterministic problems could
be developed and also fuzzy models, implying fuzzy goals and fuzzy coefficients,
could be defined and solved.

In [22] two fuzzy portfolio selection models are presented. Models objective are
to minimize the downside risk constrained by a given expected return, the rates
of returns on securities are approximated as LR-fuzzy numbers of the same shape,
and the expected return and risk are evaluated by interval-valued means. The
portfolio selection problem is formulated as a linear program when the returns
on the assets are of trapezoidal form.

Tn [10] some fuzzy linear programming methods and techniques from a practi-
cal point of view are reviewed. Using a numerical example, some models of fuzzy
linear programming are described and advantages and disadvantages of fuzzy ma-
thematical programming approaches are exemplified in the setting of an optimal
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portfolio selection problem. Some newly developed ideas and techniques in fuzzy
mathematical programming are also briefly took into consideration.

In [13] a multistage stochastic soft constraints fuzzy program with recourse in
order to capture both uncertainty and imprecision as well as to solve a portfolio
management problem is developed.

In this section, the case of a portfolio optimization problem with fuzzy trans-
action costs is considered.

4.1 Fuzzy model

The model of a portfolio optimization problem with fuzzy transaction costs is
formally similar to (8) and it is presented below.

max 7T (w + x)
sty @i+ fo(z) <0 (10)
i=1
w+x € X,

where function ff is defined using fuzzy coefficients @; and b; respectively for each
i = 1,n. Moreover, the definition

- A N,
ff(xi)z{ (st @) el w0,

O, 1‘120

which describes fuzzy transaction costs has to be interpreted according to exten-
sion’s principle for aggregating fuzzy quantities. In the following triangular fuzzy
numbers will be used in order to describe fuzzy quantities.

4.2 Fuzzy arithmetic

Definitions for triangular fuzzy numbers and the way of applying extension’s
principle to add two triangular fuzzy numbers are inserted below.

Definition 4.1. [6] A triangular fuzzy number Y is a triplet (yl,yQ,y?’) € R>.
The membership function of Y is defined in connection with the real numbers
vyl % 2 as follows:

07 S (—OO,yl)
1
_ L zeyh
Y (z) = vy
m _yys’ z € (y*,y°]
0, z € (y*, 00)

Y (z) represents a number in [0, 1], which is the membership function of ¥’
evaluated in x. It can be easily verified that graph y = Y () of Y is a triangle
with base on [y, 4?] and vertex at x = y? for y' < y? <y



326 Cristinca Fulga and Bogdana Pop

The extension principle was formulated by Zadeh [23] in order to extend the
known models implying fuzzy elements to the case of fuzzy entities. Applying
this principle the following definition of the addition of triangular fuzzy numbers
results:

Definition 4.2. Being given two triangular fuzzy numbers A = (al,ag,a?’) ,B
= (b17b2,b3), a',a?,a®, b, b2, b € R, we have:

A+ B= (a1+b17a2+b2,a3+b3).

Multiplying a triangular fuzzy number by a positive real number consists
on multiplying each parameter of the fuzzy number by the real number. The
presence of these fuzzy numbers in problem’s constraints makes Problem (10) to
be an optimization problem with deterministic objective function subject to fuzzy
inequalities. Fuzzy sets theory has to be used to deal with fuzzy constraints in
optimization problems [21].

The inequality between two fuzzy numbers M, N having their membership
functions M (), and N () respectively, is defined by Kerre and presented by
Buckley and Feuring [3]. In the following, we apply this manner of defining an
inequality between fuzzy numbers to the triangular fuzzy numbers M si 0 =
(0,0,0). The inequality (my,mz2,m3) < (0,0,0) is equivalent (see [16]) to the
following system of disjunctive deterministic constraints:

m3§0

or (m1 S 0 S mg) n (m1 (m1 + mo + mg) 2 QOg) (].1)

or
(me <0 < mg) N (m3 (M1 +ma +ms) < mims) .

4.3 Solving method

In Section 2.2 it was assumed that transaction costs are separable. It means that
the transaction cost function is the sum of the transaction cost functions associ-
ated with each trade. Consequently, transaction cost function f (z) is computed

no___
c
as 35 fi (i)
i=1 L
In order to compute ff we can use fuzzy transaction costs a; = (al a? a3),

b = (b-1 b? 63) defined by real parameters a},a?, a3, b}, b?,b? € R.

10V Yq i 19717107

Considering f (x) = (f1 (z), f2 (z), f3 (x)) we have:

) = 3 (s el ) ol 20 =3 (s +at ) i

B = 3 (s +ad) ol z:
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Applying Kerre’s method to transform fuzzy inequalities in disjunctive deter-
ministic constraints the following equivalent Problem (12) is obtained.

maxr? (w + z)
s.t. R1 U (RQ n Rg) @]
w+zeX,

where N
Ry : Z$i+f3($) <0
i=1

R22f1 (l‘) < —in Sf?(x)

RB: sz"'_fl

sz+f2

3sz+f1
sz"i'fi’)

Ry: fa(x) < —in < f3(z)
i=1

Rs : Z$z+f3

sz""fl

3Z$1+f1
sz+f2

(R4N R5)

(12)

)+ f2 (@) + f3 () >

)+ f2(2) + f3(2)) <

According to the method described by Patkar and Stancu-Minasian in [15],

we shall consider the indicator variables &%, 2,

5% in order to eliminate the

disjunctivity and to obtain (13)-(21) which is a system of conjunctive constraints.

M,

<(1-s

(1-6*) M

sz+f3
+sz =

sz+f2
Zmz+f1

sz+f3
Zmz+f1

)+ f2(2) + f3 () <

(13)

(14)

(15)

(16)
(1-6*) M
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+le_ (1-8*)M (17)

+Zx_ (1-0*) M (18)

Z$,+f3 Z$z+f1 )+ fa(x) + f3(x))—

(19)

Z%Jrfl Zl’erfZ (1*53)M
o+ 6% +6%>1,6", 6% 6% € {0,1}, (20)
w+x e X. (21)

M represents an upper bounds for all expressions which appear in constraints.
Computing max (r¥ (w + x)) subject to (13)-(21) will allow us to obtain the
solution z* = (a7, ..., z}), 6, 62, 63, Components of z* represent the solution of
Problem (10).

An algorithm to solving Problem (10) will consist of the following steps:

Step 1. Define fuzzy transaction costs by choosing proper values for fuzzy
coefficients (@), and (b; )Z

i=1,n =1,n’

Step 2. Apply Kerr’s method to transform fuzzy constraints into deter-

ministic disjunctive system of constraints (12).

Step 3. Remove the disjunctivity of constraints system by using boolean
variables 0', 6%, 6% (as in (13)-(21)).

Step 4. Maximize 77 (w + z) subject to (13)-(21) using classical methods
for linear programming problems with quadratic constraints (see [20]).
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