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Abstra
t

This paper is 
on
erned with the single-period portfolio that 
onsists of
holdings in n risky assets. The goal is to 
hoose the optimal portfolio to
maximize the expe
ted value of the end of period wealth in the presen
e
of transa
tion 
osts, while satisfying a set of 
onstraints on the portfolio.
The 
ase of a portfolio optimization problem with fuzzy transa
tion 
osts
is also 
onsidered.
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1 Introdu
tion

In this paper we 
onsider an investment portfolio that 
onsists of holdings in n

assets. This portfolio is to be adjusted by performing a number of transa
tions,

after whi
h the portfolio will be held over a �xed time period. The investor's goal

is to maximize the expe
ted wealth at the end of period, while taking transa
tion


osts into a

ount and satisfying a set of 
onstraints on the portfolio whi
h typi-


ally in
lude limits on exposure to risk and bounds on the amount held in ea
h

asset. The problem is also 
onsidered in a fuzzy 
ontext.

Re
ent years have seen a growing interest in portfolio optimization problem.

The paper of Best and Hlouskova [1℄ deals with the portfolio sele
tion problem

of risky assets with a diagonal 
ovarian
e matrix, upper bounds on all assets

and transa
tions 
osts. Blog et al. [2℄ 
onsider the spe
i�
 optimal sele
tion

problem of small portfolios. Kellerer et al. [11℄ introdu
e mixed-integer linear

programming models dealing with �xed 
osts and minimum lots and propose

heuristi
 pro
edures based on the 
onstru
tion and optimal solution of mixed

integer subproblems. Konno and Wijayanayake [12℄ propose a bran
h and bound
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algorithm for 
al
ulating a globally optimal solution of a portfolio 
onstru
-

tion/rebalan
ing problem under 
on
ave transa
tion 
osts and minimal transa
-

tion unit 
onstraints. S
hattman [19℄ develops an iterative heuristi
 for �nding a

suboptimal solution for the portfolio problem. Meyer [14℄ proved the 
onvergen
e

of a 
lass of algorithms that in
ludes the heuristi
 in this paper. If the portfo-

lio optimization problem is nonlinear, the algorithm presented in Fulga [7℄ that


ombines penalty 
on
epts and sequential quadrati
 programming te
hniques 
an

be used. The interest in exa
t penalty methods is due to their ability to han-

dle degenerate problems and in
onsistent 
onstraint linearizations, see also Chen

and Goldfarb [4℄, Coope and Pri
e [5℄, Gould et al. [9℄. In re
ent years, a large

amount of work has been devoted to the problem of solving nonlinear program-

ming problems with hypothesis of generalized 
onvexity on the fun
tions involved,

see Preda [17℄, Preda et al. [18℄, Fulga and Preda [8℄.

The rest of the paper goes as follows. In the next se
tion we present a single-

period portfolio sele
tion problem. Transa
tion 
ost fun
tions and portfolio 
on-

straints are also des
ribed. In Se
tion 3, �xed 
osts are in
luded and it is shown

how to obtain a feasible suboptimal portfolio. Se
tion 4 deals with the portfolio

optimization problem with fuzzy transa
tion 
osts.

2 The portfolio sele
tion problem

We are 
on
erned with the single-period portfolio that 
onsists of holdings in n

risky assets. The portfolio is adjusted at the beginning of the time-period. The

goal is to 
hoose the optimal portfolio to maximize the expe
ted value of the end

of period wealth in the presen
e of transa
tion 
osts, while satisfying a set of


onstraints on the portfolio.

2.1 The model

The 
urrent holdings in ea
h asset are w = (w1, ..., wn)
T
. The total 
urrent

wealth is then

n∑

i=1

wi. The amount of money transa
ted in ea
h asset i, i = 1, n, is

denoted by xi, with xi>0 for buying, xi<0 for selling and x = (x1, ..., xn)
T
∈ Rn

is the ve
tor of transa
tions. After transa
tions, the adjusted portfolio is w + x.

Representing the sum of all transa
tion 
osts asso
iated with x by f (x), the
budget, or self-�nan
ing 
onstraint is

n∑

i=1

xi + f (x) = 0. (1)

The adjusted portfolio w + x is then held for a �xed period of time. At the

end of that period, the return on asset i is the random variable r̃i, i = 1, n. All

random variables are on a given probability spa
e. We assume knowledge of the

�rst and se
ond moments of the joint distribution of r̃ = (r̃1, ..., r̃n) , E (r̃) = r,

r = (r1, ..., rn)
T

∈ Rn and E
(
(r̃ − r) (r̃ − r)

T
)

= C. A riskless asset 
an be
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in
luded, in whi
h 
ase the 
orresponding ri is equal to its (
ertain) return, and

the ith row and 
olumn of C are zero.

The end of period wealth is a random variable, w̃ = r̃T (w + x), with ex-

pe
ted value and varian
e given by E (w̃) = rT (w + x), E
(
(w̃ − E (w̃))

2
)

=

(w +x)T C(w +x). The budget 
onstraint 1 
an also be written as an inequality,
n∑

i=1

xi + f (x) ≤ 0. (2)

With some obvious assumptions, solving an expe
ted wealth maximization

problem with either form of the budget 
onstraint yields the same result. The

inequality form is more appropriate for use with numeri
al optimization methods.

(For example, if f is 
onvex, the inequality 
onstraint 2 de�nes a 
onvex set, while

the equality 
onstraint 1 does not.)

We summarize the portfolio sele
tion problem as





max rT (w + x)

s.t.

n∑

i=1

xi + f (x) ≤ 0

w + x ∈ X,

(3)

where r = (r1, ..., rn)
T

∈ Rn is the ve
tor of expe
ted returns on ea
h asset,

w = (w1, ..., wn)
T

∈ Rn is the ve
tor of 
urrent holdings in ea
h asset, x =

(x1, ..., xn)
T
∈ Rn is the ve
tor of amounts transa
ted in ea
h asset, f : Rn → R

is the transa
tion 
ost fun
tion, X ⊂ Rn is the set of feasible portfolios.

A related problem is that of minimizing the total transa
tion 
osts subje
t

to portfolio 
onstraints. Among all possible transa
tions that result in portfolios

a
hieving a given expe
ted return and meeting the other portfolio 
onstraints, we

would like to perform those transa
tions that in
ur the smallest total 
ost. This

problem is written as 



min f (x)
rT (w + x) ≥ r

w + x ∈ X,

(4)

where r is the desired lower bound on the expe
ted return. In this paper we fo
us

mostly on problem 3, but we will also 
onsider problem 4 in Se
tion 3.

Next, we des
ribe a variety of transa
tion 
ost fun
tions f and portfolio 
on-

straint sets X.

2.2 Transa
tion 
osts

Transa
tion 
osts 
an be used to model a number of 
osts, su
h as brokerage

fees, bid-ask spreads, taxes, or even fund loads. In this paper, we assume the

transa
tion 
osts to be separable, i.e., the sum of the transa
tion 
osts asso
iated
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with ea
h trade f (x) =
n∑

i=1

fi (xi) , where fi is the transa
tion 
ost fun
tion for

asset i, i = 1, n.

The simplest model for transa
tion 
osts is that there are none, i.e., f (x) = 0.
In this 
ase the original portfolio is irrelevant, ex
ept for its total value. We 
an

make whatever transa
tions are ne
essary to arrive at the optimal portfolio.

A better model of realisti
 transa
tions 
osts is a linear one, with the 
osts

for ea
h transa
tion proportional to the amount traded:

fi (xi) =

{
a (xi) |xi| , xi 6= 0

0, xi = 0
, i = 1, n. (5)

where a (xi) =

{
a

buy
i , xi > 0

−asell
i , xi < 0

. Here a
buy
i > 0 and asell

i > 0 are the 
ost

rates asso
iated with buying and selling asset i, i = 1, n. Linear transa
tion


osts 
an be used, for example, to model the gap between bid and ask pri
es.

Sin
e the linear transa
tion 
ost fun
tions fi are 
onvex, the budget 
onstraint 2


an be handled by 
onvex optimization. Spe
i�
ally, linear 
osts 
an be handled

by introdu
ing new variables u = (u1, ..., un)
T

, v = (v1, ..., vn)
T

∈ Rn, with

ui ≥ 0, vi ≥ 0 expressing the total transa
tion as xi = ui − vi,∀ i = 1, n.

The transa
tion 
ost fun
tion is then represented as fi (xi) = a
buy
i ui+asell

i vi,∀
i = 1, n.

Any pie
ewise linear 
onvex transa
tion 
ost fun
tion 
an be handled in a

similar way.

In pra
ti
e, transa
tion 
osts are not 
onvex fun
tions of the amount traded.

Indeed, the 
osts for either buying or selling are likely to be 
on
ave. For exam-

ple, a �xed 
harge for any nonzero trade is 
ommon, and there may be one or

more breakpoints above whi
h the transa
tion 
osts per share de
rease. We will


onsider a simple model that in
ludes �xed plus linear 
osts, but our method is

readily extended to handle more 
omplex transa
tion 
ost fun
tions.In this 
ase,

the transa
tion 
ost fun
tion is given by

fi (xi) =

{
a (xi) |xi| + b (xi) , xi 6= 0

0, xi = 0
, i = 1, n.

where b (xi) =

{
b
buy
i , xi > 0

bsell
i , xi < 0

and b
buy
i > 0 and bsell

i > 0 are the �xed 
osts

asso
iated with buying and selling asset i, i = 1, n.

Evidently the fun
tion fi is not 
onvex, unless the �xed 
osts are zero. There-

fore, the budget 
onstraint 2 
annot be handled by 
onvex optimization.

Constraints on portfolio diversi�
ation 
an be expressed in terms of linear

inequalities, and therefore are readily handled by 
onvex optimization. Individual

diversi�
ation 
onstraints limit the amount invested in ea
h asset i to a maximum

of si,
wi + xi ≤ si, i = 1, n.
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Alternatively, we 
an limit the fra
tion 0 ≤ αi < 1 of the total (post transa
-

tion) wealth held in ea
h asset:

wi + xi ≤ αi

n∑

i=1

(wi + xi) , i = 1, n.

These are linear, and therefore 
onvex, inequality 
onstraints on x. The re-

versed 
onstraints (su
h as requiring a minimum position in an asset) are also


onvex.

More sophisti
ated diversi�
ation 
onstraints limit the amount of the total

wealth that 
an be 
on
entrated in any small group of assets. Suppose, for exam-

ple, that we require that no more than a fra
tion of the total wealth be invested

in fewer than k assets. Letting (w + x)(j) denote the jth largest 
omponent of

the ve
tor w + x, this 
onstraint 
an be expressed as

k∑

j=1

(w + x)(j) ≤ α

n∑

i=1

(wi + xi) (6)

where α is a given positive fa
tor. To see that the 
onstraint 6 is 
onvex, we


an express it as a set of Ck
n linear inequalities, one for ea
h possible 
ombination

of k assets 
hosen from the n assets. This representation is 
learly impra
ti
al,

however, as this number of linear inequalities 
an be extremely large. The di-

versi�
ation 
onstraint 6 
an be far more e�
iently represented by 2n + 1 linear

inequalities, 



kp +

n∑

i=1

qi ≤ α

n∑

i=1

(wi + xi)

wi + xi ≤ p + qi, i = 1, n

qi ≥ 0, i = 1, n,

(7)

where p ∈ R and q = (q1, ..., qn)
T
∈ Rn are new variables.

2.3 Constraints

In pra
ti
e, often shortselling 
onstraints are imposed. This type of 
onstraints

also leads to linear inequalities. Individual bounds ci on the maximum amount

of shortselling allowed on asset i are

wi + xi ≥ −ci, i = 1, n.

If it is the 
ase of a riskless asset, ci is a 
redit line. If shortselling is not

permitted, the ci = 0, i = 1, n. If we denote by B the bound on total shortselling,

the 
ostraint is
n∑

i=1

(wi + xi)− ≤ B,
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where (wi + xi)− = max {− (wi + xi) ; 0} . This 
an be rewritten as a set of linear


onstraints by introdu
ing an auxiliary variable z = (z1, ..., zn)
T
∈ Rn,





− (wi + xi) ≤ zi, i = 1, n

zi ≥ 0, i = 1, n
n∑

i=1

zi ≤ B.

Another type of 
onstraint that we mention for its pra
ti
al interest is
n∑

i=1

(wi + xi)− ≤ α

n∑

i=1

(wi + xi)+

whi
h limits the total of short positions to a fra
tion of the total of long positions.

There are also 
onstraints imposed on the varian
e. The standard deviation

of the end of period wealth W is 
onstrained to be less than a 
hosen value σ by

the (
onvex) quadrati
 inequality

(w + x)T C(w + x) ≤ σ2.

If any number of 
onvex transa
tion 
osts and 
onvex 
onstraints are 
om-

bined, the resulting problem is 
onvex. Linear transa
tion 
osts, as well as all the

portfolio 
onstraints des
ribed above, are 
onvex programs. Su
h problems 
an

be globally solved with great e�
ien
y, even for problems with a large number of

assets and 
onstraints.

3 Portfolio optimization problems with �xed transa
tion 
osts

We assume from now on equal 
osts for buying and selling, the extension for

nonsymmetri
 
osts being straightforward. The transa
tion 
ost fun
tion is then

f (x) =
n∑

i=1

fi (xi) , with

fi (xi) =

{
ai |xi| + bi, xi 6= 0

0, xi = 0
, i = 1, n.

In the general 
ase, 
osts of this form lead to a hard 
ombinatorial problem.

The simplest way to obtain an approximate solution is to ignore the �xed


osts, and solve with fi (xi) = ai |xi|. If the bi are very small, this may lead

to an a

eptable approximation. In general, however, it will generate ine�
ient

solutions with too many transa
tions. Note that if this approa
h is taken and the

solution is 
omputed disregarding the �xed 
osts, some margin must be added to

the budget 
onstraint to allow for the payment of the �xed 
osts.

On the other hand, by 
onsidering the �xed 
osts, we dis
ourage trading small

amounts of a large number of assets. Thus, we obtain a sparse ve
tor of trades;

i.e., one that has many zero entries. This means most of the trading will be


on
entrated in a few assets, whi
h is a desirable property.

We will next propose a heuristi
, whi
h 
an be used to �nd approximate

solutions (and therefore lower bounds).
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We assume that lower and upper bounds for xi are known i.e., there exist ml
i

and mu
i su
h that ml

i ≤ xi ≤ mu
i . We denote by fc

i the 
onvex envelope of fi,

whi
h is the largest 
onvex fun
tion whi
h is lower or equal to fi in the interval[
ml

i,m
u
i

]
. For ml

i 6= 0 and mu
i 6= 0, the fun
tion fc

i is given by

fc
i (xi) =

{ (
bi

m(xi)
+ ai

)
|xi| , xi 6= 0

0, xi = 0
, i = 1, n.

where m (xi) =

{
mu

i , xi > 0
ml

i, xi < 0
. Using fc

i for fi relaxes the budget 
onstraint, in

the sense that it enlarges the sear
h set. Consider the portfolio sele
tion problem

3, with fc
i repla
ed for fi, 




max rT (w + x)

s.t.

n∑

i=1

xi + fc (x) ≤ 0

w + x ∈ X,

(8)

where fc (x) =
n∑

i=1

fc
i (xi) . This 
orresponds to optimizing the same obje
tive,

the expe
ted end of period wealth, subje
t to the same portfolio 
onstraints, but

with a looser budget 
onstraint. Therefore the optimal value of 8 is an upper

bound on the optimal value of the unmodi�ed problem 3. Sin
e the problem 8 is


onvex, we 
an 
ompute its optimal solution, and hen
e the upper bound on the

optimal value of the original problem 3, very e�
iently.

Note that in most 
ases the optimal transa
tion ve
tor for the relaxed problem

8 will not be feasible for the original problem 3. The unmodi�ed budget 
onstraint

will not be satis�ed by the solution of the modi�ed program, ex
ept in the very

spe
ial 
ase when ea
h transa
tion amount xi is either ml
i, mu

i or 0.
This relaxation 
an also be used in problem 4, where the goal is to minimize

transa
tion 
osts. This results in the relaxed problem



min fc (x)
rT (w + x) ≥ r

w + x ∈ X.

(9)

Here, 
ompared to the original problem, the relaxed problem has the same

feasible set, but a di�erent obje
tive fun
tion.

Following the approa
h in S
hattman [19℄, we des
ribe a heuristi
 for �nding

a feasible suboptimal portfolio. The iterative pro
edure uses a modi�ed transa
-

tion 
ost fun
tion f k
i whi
h, like the relaxed 
ost fun
tion, is 
onvex. An iterated

reweighting is used. Sin
e ea
h of these modi�ed fun
tions is 
onvex, ea
h ite-

ration 
onsists in solving a 
onvex program. The feasibility of the portfolio is

obtained by ensuring that the modi�ed transa
tion 
ost fun
tion f k
i agrees with

the true fi at the solution transa
tions x∗

i , i = 1, n.

Algorithm Step 1. Initialization

Initialize k = 0; α and δ.
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Step 2. Solving the problem (8)

Solve the 
onvex relaxed problem (8) and let x0 =
(
x0

1, ..., x
0
n

)
be the solution

to this problem.

Step 3. Solving the modi�ed portfolio sele
tion problem (MPP )

Set k = k + 1..

Solve the modi�ed (
onvex) portfolio sele
tion problem

(MPP )





max rT (w + x)

s.t.

n∑

i=1

xi + f k
i (x) ≤ 0

w + x ∈ X,

where f k (x) =
n∑

i=1

f k
i (xi) and

f k
i (xi) =

(
bi∣∣xk−1

i

∣∣ + α
+ ai

)
|xi| , i = 1, n.

The optimal solution of this problem is denoted by xk =
(
xk

1 , ..., xk
n

)
.

Step 4. Che
king stopping 
ondition

If
∥∥xk − xk−1

∥∥
∞

< δ, set x∗ = xk. Stop.

Otherwise, the algorithm pro
eeds to Step 3.

Remark We note that Meyer [14℄ established the 
onvergen
e of a large 
lass

of algorithms that in
ludes the proposed algorithm.

4 Portfolio optimization problem with fuzzy transa
tion 
osts

In the 
lassi
al problems of operations resear
h generally, and in the optimization

models in parti
ular, the 
oe�
ients of the problems are assumed to be exa
tly

known. However in pra
ti
e this assumption is seldom satis�ed by great majority

of real-life problems. The modeling of input data ina

ura
y 
an be made by

means of the fuzzy set theory. Generally, two types of problems implying fuzzy

un
ertainty are studied. Fuzzy approa
hes to solve deterministi
 problems 
ould

be developed and also fuzzy models, implying fuzzy goals and fuzzy 
oe�
ients,


ould be de�ned and solved.

In [22℄ two fuzzy portfolio sele
tion models are presented. Models obje
tive are

to minimize the downside risk 
onstrained by a given expe
ted return, the rates

of returns on se
urities are approximated as LR-fuzzy numbers of the same shape,

and the expe
ted return and risk are evaluated by interval-valued means. The

portfolio sele
tion problem is formulated as a linear program when the returns

on the assets are of trapezoidal form.

In [10℄ some fuzzy linear programming methods and te
hniques from a pra
ti-


al point of view are reviewed. Using a numeri
al example, some models of fuzzy

linear programming are des
ribed and advantages and disadvantages of fuzzy ma-

themati
al programming approa
hes are exempli�ed in the setting of an optimal
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portfolio sele
tion problem. Some newly developed ideas and te
hniques in fuzzy

mathemati
al programming are also brie�y took into 
onsideration.

In [13℄ a multistage sto
hasti
 soft 
onstraints fuzzy program with re
ourse in

order to 
apture both un
ertainty and impre
ision as well as to solve a portfolio

management problem is developed.

In this se
tion, the 
ase of a portfolio optimization problem with fuzzy trans-

a
tion 
osts is 
onsidered.

4.1 Fuzzy model

The model of a portfolio optimization problem with fuzzy transa
tion 
osts is

formally similar to (8) and it is presented below.





max rT (w + x)

s.t.

n∑

i=1

xi + fc (x) ≤ 0

w + x ∈ X,

(10)

where fun
tion fc
i is de�ned using fuzzy 
oe�
ients ai and bi respe
tively for ea
h

i = 1, n. Moreover, the de�nition

fc
i (xi) =

{ (
bi

m(xi)
+ ai

)
|xi| , xi 6= 0

0, xi = 0
, i = 1, n

whi
h des
ribes fuzzy transa
tion 
osts has to be interpreted a

ording to exten-

sion's prin
iple for aggregating fuzzy quantities. In the following triangular fuzzy

numbers will be used in order to des
ribe fuzzy quantities.

4.2 Fuzzy arithmeti


De�nitions for triangular fuzzy numbers and the way of applying extension's

prin
iple to add two triangular fuzzy numbers are inserted below.

De�nition 4.1. [6℄ A triangular fuzzy number Y is a triplet
(
y1, y2, y3

)
∈ R3.

The membership fun
tion of Y is de�ned in 
onne
tion with the real numbers

y1, y2, y3 as follows:

Y (x) =





0, x ∈ (−∞, y1)
x − y1

y2 − y1 , x ∈ [y1, y2]

x − y3

y2 − y3 , x ∈ (y2, y3]

0, x ∈ (y3,∞)

Y (x) represents a number in [0, 1], whi
h is the membership fun
tion of Y

evaluated in x. It 
an be easily veri�ed that graph y = Y (x) of Y is a triangle

with base on
[
y1, y3

]
and vertex at x = y2 for y1 < y2 < y3.
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The extension prin
iple was formulated by Zadeh [23℄ in order to extend the

known models implying fuzzy elements to the 
ase of fuzzy entities. Applying

this prin
iple the following de�nition of the addition of triangular fuzzy numbers

results:

De�nition 4.2. Being given two triangular fuzzy numbers A =
(
a1, a2, a3

)
, B

=
(
b1, b2, b3

)
, a1, a2, a3, b1, b2, b3 ∈ R, we have:

A + B =
(
a1 + b1, a2 + b2, a3 + b3

)
.

Multiplying a triangular fuzzy number by a positive real number 
onsists

on multiplying ea
h parameter of the fuzzy number by the real number. The

presen
e of these fuzzy numbers in problem's 
onstraints makes Problem (10) to

be an optimization problem with deterministi
 obje
tive fun
tion subje
t to fuzzy

inequalities. Fuzzy sets theory has to be used to deal with fuzzy 
onstraints in

optimization problems [21℄.

The inequality between two fuzzy numbers M,N having their membership

fun
tions M (x) , and N (x) respe
tively, is de�ned by Kerre and presented by

Bu
kley and Feuring [3℄. In the following, we apply this manner of de�ning an

inequality between fuzzy numbers to the triangular fuzzy numbers M ³i 0 =
(0, 0, 0) . The inequality (m1,m2,m3) ≤ (0, 0, 0) is equivalent (see [16℄) to the

following system of disjun
tive deterministi
 
onstraints:

m3 ≤ 0

or
(m1 ≤ 0 ≤ m2) ∩ (m1 (m1 + m2 + m3) ≥ m2m3) (11)

or
(m2 ≤ 0 ≤ m3) ∩ (m3 (m1 + m2 + m3) ≤ m1m2) .

4.3 Solving method

In Se
tion 2.2 it was assumed that transa
tion 
osts are separable. It means that

the transa
tion 
ost fun
tion is the sum of the transa
tion 
ost fun
tions asso
i-

ated with ea
h trade. Consequently, transa
tion 
ost fun
tion f (x) is 
omputed

as
n∑

i=1

fc
i (xi) .

In order to 
ompute fc
i we 
an use fuzzy transa
tion 
osts ai =

(
a1

i , a
2
i , a

3
i

)
,

bi =
(
b1
i , b

2
i , b

3
i

)
de�ned by real parameters a1

i , a
2
i , a

3
i , b

1
i , b

2
i , b

3
i ∈ R.

Considering f (x) = (f1 (x) , f2 (x) , f3 (x)) we have:

f1 (x) =

n∑

i=1

(
b1
i

m (xi)
+ a1

i

)
|xi|, f2 (x) =

n∑

i=1

(
b2
i

m (xi)
+ a2

i

)
|xi|,

f3 (x) =

n∑

i=1

(
b3
i

m (xi)
+ a3

i

)
|xi|.
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Applying Kerre's method to transform fuzzy inequalities in disjun
tive deter-

ministi
 
onstraints the following equivalent Problem (12) is obtained.





max rT (w + x)
s.t. R1 ∪ (R2 ∩ R3) ∪ (R4 ∩ R5)

w + x ∈ X,

(12)

where

R1 :
n∑

i=1

xi + f3 (x) ≤ 0

R2 : f1 (x) ≤ −

n∑

i=1

xi ≤ f2 (x)

R3 : (

n∑

i=1

xi + f1 (x))(3

n∑

i=1

xi + f1 (x) + f2 (x) + f3 (x)) ≥

≥ (

n∑

i=1

xi + f2 (x))(

n∑

i=1

xi + f3 (x))

R4 : f2 (x) ≤ −
n∑

i=1

xi ≤ f3 (x)

R5 : (

n∑

i=1

xi + f3 (x))(3

n∑

i=1

xi + f1 (x) + f2 (x) + f3 (x)) ≤

≤ (
n∑

i=1

xi + f1 (x))(
n∑

i=1

xi + f2 (x))

A

ording to the method des
ribed by Patkar and Stan
u-Minasian in [15℄,

we shall 
onsider the indi
ator variables δ1, δ2, δ3 in order to eliminate the

disjun
tivity and to obtain (13)-(21) whi
h is a system of 
onjun
tive 
onstraints.

n∑

i=1

xi + f3 (x) ≤
(
1 − δ1

)
M, (13)

f1 (x) +
n∑

i=1

xi ≤
(
1 − δ2

)
M, (14)

f2 (x) +

n∑

i=1

xi ≥
(
1 − δ2

)
M, (15)

(

n∑

i=1

xi + f2 (x))(

n∑

i=1

xi + f3 (x))−

−(
n∑

i=1

xi + f1 (x))(3
n∑

i=1

xi + f1 (x) + f2 (x) + f3 (x)) ≤
(
1 − δ2

)
M,

(16)



328 Cristin
a Fulga and Bogdana Pop

f2 (x) +

n∑

i=1

xi ≤
(
1 − δ3

)
M, (17)

f3 (x) +

n∑

i=1

xi ≥
(
1 − δ3

)
M, (18)

(
n∑

i=1

xi + f3 (x))(3
n∑

i=1

xi + f1 (x) + f2 (x) + f3 (x))−

−(

n∑

i=1

xi + f1 (x))(

n∑

i=1

xi + f2 (x)) ≤
(
1 − δ3

)
M,

(19)

δ1 + δ2 + δ3 ≥ 1, δ1, δ2, δ3 ∈ {0, 1} , (20)

w + x ∈ X. (21)

M represents an upper bounds for all expressions whi
h appear in 
onstraints.

Computing max
(
rT (w + x)

)
subje
t to (13)-(21) will allow us to obtain the

solution x∗ = (x∗

1, ..., x
∗

n) , δ1, δ2, δ3. Components of x∗ represent the solution of

Problem (10).

An algorithm to solving Problem (10) will 
onsist of the following steps:

• Step 1. De�ne fuzzy transa
tion 
osts by 
hoosing proper values for fuzzy


oe�
ients (ai)i=1,n and
(
bi

)
i=1,n

.

• Step 2. Apply Kerr's method to transform fuzzy 
onstraints into deter-

ministi
 disjun
tive system of 
onstraints (12).

• Step 3. Remove the disjun
tivity of 
onstraints system by using boolean

variables δ1, δ2, δ3 (as in (13)-(21)).

• Step 4. Maximize rT (w + x) subje
t to (13)-(21) using 
lassi
al methods

for linear programming problems with quadrati
 
onstraints (see [20℄).
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