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On the Solvability of Nonlinear Singular Integral Equations
with Cauchy Kernel on an Interval
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Abstract

This paper concerns the investigation of a class of nonlinear singular
integral equations with Cauchy kernel under certain conditions. The tech-
nique being based on the application of Schauder’s fixed point theorem.
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1 Introduction

The theory of nonlinear singular integral equations has been developed during
the last years. Many engineering problems of applied mechanics and applied
mathematics character, are reduced to the solution of such types of nonlinear
equations. The existence of the solutions of nonlinear singular integral equations
with Hilbert and Cauchy kernel and its related Riemann- Hilbert problems have
been developed by many authors (see [3,5,10,11,14,15,16] ) and others . Other
applications may be found in aerodynamics, fluid mechanics and theory of elastic-
ity are found in [8]. The Schauder’s fixed point theorem is one of the basic tools
to investigate the existence results of many classes of nonlinear singular integral
equations (see [1,2,4,6,15,16]).

The goal of this paper is to study of nonlinear singular integral equations of
the following form:

F(z,u(x)) = [Sul(z) +¢, -1 <z <1 (1)

where

suw) = [ ) g

T) 1Yy—x
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¢ is a real number satisfying equation (1) and the condition
u(=1) = u(1) =0, (2)
the function F(.,u(.))has a continuous partial derivative

F,:[-,1] xR — R, —m < F,(z,u(z)) <n,
mn < 1, (3)
and a partial derivative F,(.,u(.)) which is continuous with respect to u € R for

almost all x and measurable with respect to z € [-1,1] for all u € R .
Furthermore, satisfies the inequality:

|Fy (2, u)] < 1(1—2?)7°, (4)
where [ > 0 is a constant and
3 —1
0 < 1 + (2m)7" (arctan m + arctan n). (5)

From (3) we have

m-+n

6 < 3 + (27) 7! (arctanm + arctann) = Z + (27) 7! arctan > %

4 1—mn

The related nonlinear Riemann-Hilbert problem of the class (1),(2) has been
studied in [15].
In [6,16], existence of solution of equation (1),(2) has been studied for some cases
of constantd: 0 < 6 < 3 and § < 2 — (2m) ! (arctanm + arctann).

In the present paper we show that the existence of solution of equation (1),(2)
can be proved when the restriction on the constant § in (4) can be given by (5).

2 Preliminaries

In this section we introduce some materials for our results.
Definition 2.1 [7,9]

a) Let L,[—1,1],p > 1 be the Banach space of all measurable functions u, for
which |u[P is summable.

b) We denote by Cy[—1,1] the Banach space of all continuous functions u on
[—1, 1] satisfying the boundary condition u(+1) =0 .

c) We denote by W [—1,1] the set of all functions u which belong to Cy[—1,1]
and its derivative v(x) = 4(x) belong to L,[—1, 1] such that
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u(@) = [Z, v(y)dy, u(-1) = 0.

Lemma 2.1. (De le Vallee-Poussin, [13] , Chapt. VI )
Let U : [0, 00] — [0, 00] be monotone increasing , lim, o, ¥(u) = oo and V
be a set of measurable functions on [—1, 1]. If there exist a constant M such that

1
[ [o@(lo())de < M, o€ V.

Then V' C L1, and the integral of all ¢ € V' are uniformly absolutely continuous.

Lemma 2.2. ( Vitali , [13] , Chapt. VI )
Let {¢pn} C Ly and ¢n — ¢ in measure . If the integrals of {¢,} are
uniformly absolutely continuous, then ¢ € L and

lim ¢n dy—/ oy

n—~o0

Lemma 2.3[9].
A sequence {¢, } C L, converges weakly to ¢, € L, if and only if the sequence
{||¢n|]p }is bounded and

lim (b dy—/(b )dy, —1 < x <1.

n—-o0

Lemma 2.4 [7].
Let p> 1, {¢n} C L,, and ¢ € L,. Then converges to ¢ in L, if and only if
¢n, converges weakly to ¢ in L, and ||d,|l, — ||9||,-

Lemma 2.5 [16].
Let ~ be continuous function on [—1,1], p be a positive number such that
|v(z)] < p, =1 <z < 1. Then

11— 2%) 7 eap{(S7)(@)} ] < (w(cos(em)) ™)
for each € € (0,7(2u)~1).

o=

Lemma 2.6 [10]. pr>1,%+%:1,_—1<a<l,j:1,...,r,
1< < <. <z, <1

and
2) =[]z =z~ {S(I ] v — 21% (6 () } (),
j=1 j=1

then the operator S is a continuous operator in the space L.
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3 The Fixed Point Equation

By differentiate equation (1) ([10],Chapt. II , Lemma 6.1) and by using the condi-
tion (2) we obtain the following quasi-linear singular integro-differential equation

c(@)v(z) = (Sv)(z) = f(z) (6)

1
/ v(y)dy = 0 (7)

where

c=F.(,u(.), f=
u(z) = [*, v(y)dy.
(6) ,

The equatlon

F,(.,u(.)) and v(z) is the solution of equation (6) such that

(7) can be written in the equivalent form (see [10] ):

Av = [P(c—i) + Qe +i)v = f(x),
where the operators P and @ are defined by
1

P:i( —-i5)Q =< (I+ZS)
and I denotes the identity operator.
Putting:
B(z) = zg; :2 = exp(—2ma(x)),
where a : [-1,1] — (0,1) is a continuous function.

The generalized L,, -factorization for the function B is defined by

B(x) = B_(¢)(x — i) By (a),

B_(x) = 33 _;exp(—iﬂ'a(x) + /_1 ;(y)x dy) = (x(—l l)(si;;;zx_ Z')ear;p(W(Soz)(av))

and

Bow) = (1= aeapl-ima(e) + [ ay) = Co0 o)~ eap(—n(5a)(w),

-1Yy—x p(z)

p:[—1,1] — R such that c¢(x) + i = p(z) exp(in(a)(x)).
Hence the index of the operator A is equal 1 in the space L.
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From [10] the right inverse of A is given by

-1
By
c(z) +1

c(x) —1i

where
Z(x) = (1 = 2)p(x) exp[-m(Sa)(z)],
The solution of the problem (6), (7) is given by the form
v=A"1f

Integrating the equation (8), we obtain the fixed point equation

ua) = (M) = [ H(y,uly))dy,

where

We can write
H(e,u(x)) = sinl6(2)|d(x) + cos[8(a)] R(x, u(x)),

where
T

0(x) = tan"'c(z) = 5 ma(z) d(x) = cos(0(x)) f(x)

and

R(w,u(w)) = (1 - 2) 7 exp[(=S6)(2)]S{(1 — y*) 2 d(y)exp|(S6) ()]} (x).

[P(c(z) + 1) + Qe(x) — )| —2t—T = 2= (e(a)T + 5)7

287

(10)

Lemma 3.1. Let {u,} a sequence converges uniformly to w in Co[—1,1]. Then
the function d € L, and the sequence of functions {d,sin(0,)} converges to

dsin(0) in Ly for 1 <p < %.

Proof: From the inequality (4) we have

lally = (1 ld@pds ) <t( [ 00— o) orde ) = kG,

Then d € L.
We use the notations

c=Ful,ul), en=Fu(un(.)

=

(11)
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and

f = Fw(?”())’ fn = Fw(7un())

From the conditions of the derivatives of the function F'(.,u(.)) , if w, — u as
n — oo we have

Cn_>cvfn—>f- (12)

From here we obtain d, sin(6,) — sin(f)and

/ |dp, (z)sin(0,(x)) — d(z)sin(0(z))|Pde — 0.

—1

Hence the Lemma is valid. 0O

Let us introduce the parameters
23 = arctan m — arctan n
and
2\ = arctan m — arctan n.

From (5) we have

™ ™
—,0<22 < - 13
Bl<F 0s2ns? (13

from here there exist % < x < 2 such that 0 < 3 — 2§y.
Suppose that

therefore

(50)(@) = (S)@) + (2 1.

The function R(x,u) can be written in the form:
R(z,u) = A(x) exp[—Sn)(x)]S{A™ (y)dy exp[~Sn)(y)]}(x),
where

A@)=(1—2)7 *(1+z)= T+
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For pxy~! = %, 3¢ = 4x and by using Young’s inequality [12] we have
-1
1R]lp = (1 — 2*) > eap[—(Sn)(2)]ll¢

[A@)(1—2)% S(A™ (y)d(y)expl(Sn)))()]|¢

< [|AllclISwlle (14)
where
h(z) = (1 - 2°) = exp[—(Sn) (),
(Sv)(x) = A(z)(1 — 22)% S[A™L(y) (1 — y*) = ¥ (y)] (@),
and

U(z) = (1 - 2?)%d(z) exp|(Sn)(z)].

From the relation (13) we have ( < Z, then from Lemma 2.5 we obtain

X’
1
< lh(@)ll¢ < [(cos(CN) 1T = k(X Q) (15)
Lemma 3.2. The sequence h,, converges to h in the space L¢:[—1,1], ( = %X.

Proof: Suppose e > 0, 0 < w < <+, e((1+ w) < 35, the function ¥(¢) = ¢»
and

E(z) = [h|*. (16)
Then

| BB @)

/_1(1 —a?) "8 eap[—((1+ w)(Snn) (@))de
- /_1(1 AR (1)
expl—C(1 -+ w)(Sn)(2))da ()

1
_ {/ (1= ?) 5~ )20 g}
—1

{ / (1) T eploeC(1 +u)(Sn, ) (@)da}

e—1

1 —1 we
= ([ a-ahF g
—1

1
{ / (1) caplowo(Sn) (o)ds}

)

const.{||(1 — xZ)ﬁexp[—(Snn)(x)H}T.

IN
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From Lemma 2.5, we have

o=

/ |E, (2)| U (| B, (x)])da < const.(n[cos(woN)] 1) e = k() e) (18)

-1

where wy = e((1 + w) and k() e) is a constant depends on A and e. From here
{E,} C Ly, and the integral of all elements of {E,} are uniformly absolutely
continuous. From the relation (12) we have

im [ =[] = 0.

From the continuity of the operator S in L, for p > 1, then S, tends to Sn as
n — oo . Since the exponential function is monoton increasing and E,, tends to
FE in measure then from Lemma 2.2 we obtain F € L; and

1 1
lim [ E.(2)dZ = / E(Z)dZ.
-1

n—oo J_4
Therefore from the equation (16) we have
[Bnlle — lIAllc as n — oo (19)

From the inequality (15) and Lemma 2.3 h, C L¢ converges weakly to h C
L: Hence by using the relation (19) and Lemma 2.4 the sequence h,, converges
to h. Hence the lemma is proved. 0

Lemma 3.3. The functions v, ¥, which are represented above, satisfy
Wy — Wl — 0
Proof: Let k > 0, 9747{?)(5 <k> 5.

Since

L

U(@) = (1 - a?)2d(x)exp|(Sn)(2)],

[e(@)llc < 111 = 22) % eap[(Sn)(@)]ll4]l(1 — w2)%‘<§d($)ll%

1 s -~
< lk:()\,k)(/ (1 — 22) 5252 40) "= < o (A, )

-1

where (), k) is a constant depends on A and k. Similar to Lemma 3.2, we can
prove that i, — 1 in L¢. 0
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Lemma 3.4. The operator S is continuous in the space L.

Proof: From the definition of S we have S = r~157,
where

r(z) = (1 +2)™ (1 —x)%,

1 8 1 1 8 1
ol =-—— — — QAo = — —_— =
YT T 2 T ¢
From the inequality (13) we have ﬁ > 2, therefore

1 1
lt-<a<l4-,i=12
¢ ¢

From Lemma 2.6 the operator S is continuous in the space L¢. 0

Lemma 3.5. By applying Lemma 3.3 and Lemma 3.4 we have gz/)n — §w n
L.

4 Existence Theorem.

We define the convex and compact set:
K3" o, = {u € Co[-1,1] : ulloo < Av, [u(@r) — u(w2)| < Aglzr — ]},

where Aj, Ay are positive constants and p € (0,1). Now we find the conditions for
the image T'(u) belongs to the set Kg’fA2. From (10),(11),(14),(15) and Lemma

3.3 we can estimate the norm of H(x,u(z)) in the space L,, p = ‘%X, 3¢ =4y as
follows

IH (Dl < lldly + 1RC ()l
< dlly + RllcISlc el
< k(6,p)7 + kOIS clo(A k)] = As, (20)

where ||S||,, denotes to the norm of the operator S in L.
Since

ITWe, < ( / ldxﬁnH(.,u(.))np = Ay(2)7, (21)

T - T < ([ G, < Adder - ol f. (22

1

If we choose A; = A2(2)% and p = %, then all the transformed functions T'(u)

belong to the set K%:LAz' This means that the functions T'(u) are uniformly
bounded and equicontinuous, [4,9] . Therefore the following lemma is valid.
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Lemma 4.1. Let the function F(.,u(.) has a continuous partial derivative
F,:[-1,]]xR— R , —m<F,(z,u(x)) <n, mn<1,

and a partial derivative Fp(.,u(.)) continuous with respect to uw € R for almost
all x and measurable on [—1,1] for all uw € R, satisfies the inequality

|Fu(w,u)] <11 —a?)~7
3
o<y + (2m) " H(arctan m + arctan n).
If we choose 208 = arctan m — arctan n, 2\ = arctan m + arctan n,

0(z) = tan ' F,(z,u(z)) = g — ma(zx)

and
n(@)=0(z) =B, In(z)| <A, —-1<z<1
where
T T
— 0<22 < —.
o< 0<aa<?
Then for any 3/2 < x < 2 such that, 0 < 3 — 20, gfg‘xé < 35

3 9/4

UK -
20" 8A" 1+ 2(|8]/7)”"

X < min(

4 -1
gex(1+w)<%, 0<w<eT7 e>0
and by choosing A; = A5(2)'/9, p = 1/q, the transformed points Tu belong to
the set k%ﬁAz.

Lemma 4.2. The operator T which transforms the set kB"fAz into itself is con-
tinuous.

Proof: Let {u,}22, be a sequences of elements of the set k?{f_h which converges

uniformly to the element u € kg’f’ 4,- The assertion is proved if we can show that
lim [|H (. u()) — H(.u()], = 0.
n—-oo
From equation (10) we have

(s un () = H(su())lp < llsin(n)dy — sin(0)d||p+

+llcos(n)R(., un(.)) — cos(@)R(.,u(.))]lp-

From Lemma 3.1 the first norm of the right hand side of the above estimation
tends to zero, also from the relation (12), Lemma 3.2 and Lemma 3.5 the second
norm tends to zero . Therefore the operator T is continuous. 0
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From the preceding Lemmas and Arzela’s theorem [4,9] the image of the set
k%’ﬁ 4, 18 compact , therefore we can use Schauder’s fixed point theorem . Hence
the operator T' has at least one fixed point. Thus we can state the following
theorem.

Theorem 4.3. If the conditions of Lemmas 4.1 and 4.2 are satisfied , then the
problem (1), (2) has at least one solution in the set Wi[—1,1].
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