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Abstra
t

This paper 
on
erns the investigation of a 
lass of nonlinear singular
integral equations with Cau
hy kernel under 
ertain 
onditions. The te
h-
nique being based on the appli
ation of S
hauder's �xed point theorem.
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1 Introdu
tion

The theory of nonlinear singular integral equations has been developed during

the last years. Many engineering problems of applied me
hani
s and applied

mathemati
s 
hara
ter, are redu
ed to the solution of su
h types of nonlinear

equations. The existen
e of the solutions of nonlinear singular integral equations

with Hilbert and Cau
hy kernel and its related Riemann- Hilbert problems have

been developed by many authors (see [3,5,10,11,14,15,16℄ ) and others . Other

appli
ations may be found in aerodynami
s, �uid me
hani
s and theory of elasti
-

ity are found in [8℄. The S
hauder's �xed point theorem is one of the basi
 tools

to investigate the existen
e results of many 
lasses of nonlinear singular integral

equations (see [1,2,4,6,15,16℄).

The goal of this paper is to study of nonlinear singular integral equations of

the following form:

F (x, u(x)) = [Su](x) + c, −1 ≤ x ≤ 1 (1)

where

[Su](x) =
1

π

∫ 1

−1

u(y)

y − x
dy
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c is a real number satisfying equation (1) and the 
ondition

u(−1) = u(1) = 0, (2)

the fun
tion F (., u(.))has a 
ontinuous partial derivative

Fu : [−1, 1] × R −→ R, −m ≤ Fu(x, u(x)) ≤ n,

mn < 1, (3)

and a partial derivative Fx(., u(.)) whi
h is 
ontinuous with respe
t to u ∈ R for

almost all x and measurable with respe
t to x ∈ [−1, 1] for all u ∈ R .

Furthermore, satis�es the inequality:

|Fx(x, u)| ≤ l(1 − x2)−δ, (4)

where l ≥ 0 is a 
onstant and

δ <
3

4
+ (2π)−1 (arctan m + arctan n). (5)

From (3) we have

δ <
3

4
+ (2π)−1 (arctanm + arctann) =

3

4
+ (2π)−1 arctan

m + n

1 − mn
>

3

4

The related nonlinear Riemann-Hilbert problem of the 
lass (1),(2) has been

studied in [15℄.

In [6,16℄, existen
e of solution of equation (1),(2) has been studied for some 
ases

of 
onstantδ: 0 < δ < 1
2 and δ < 3

4 − (2π)−1(arctanm + arctann).
In the present paper we show that the existen
e of solution of equation (1),(2)


an be proved when the restri
tion on the 
onstant δ in (4) 
an be given by (5).

2 Preliminaries

In this se
tion we introdu
e some materials for our results.

De�nition 2.1 [7,9℄

a) Let Lp[−1, 1], p > 1 be the Bana
h spa
e of all measurable fun
tions u, for
whi
h |u|p is summable.

b) We denote by C0[−1, 1] the Bana
h spa
e of all 
ontinuous fun
tions u on

[−1, 1] satisfying the boundary 
ondition u(±1) = 0 .


) We denote by W 1
0 [−1, 1] the set of all fun
tions u whi
h belong to C0[−1, 1]

and its derivative v(x) = ú(x) belong to Lp[−1, 1] su
h that
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u(x) =
∫ x

−1
v(y)dy, u(−1) = 0.

Lemma 2.1. (De le Vallee-Poussin, [13℄ , Chapt. VI )

Let Ψ : [0,∞] −→ [0,∞] be monotone in
reasing , limu−→∞ Ψ(u) = ∞ and V
be a set of measurable fun
tions on [−1, 1]. If there exist a 
onstant M su
h that

∫ 1

−1

|φ(x)|ψ(|φ(x)|)dx ≤ M, φ ∈ V.

Then V ⊂ L1, and the integral of all φ ∈ V are uniformly absolutely 
ontinuous.

Lemma 2.2. ( Vitali , [13℄ , Chapt. VI )

Let {φn} ⊂ L1 and φn −→ φ in measure . If the integrals of {φn} are

uniformly absolutely 
ontinuous, then φ ∈ L1 and

lim
n−→∞

∫ 1

−1

φn(y)dy =

∫ 1

−1

φ(y)dy.

Lemma 2.3[9℄.

A sequen
e {φn} ⊂ Lp 
onverges weakly to φn ∈ Lp if and only if the sequen
e

{||φn||p}is bounded and

lim
n−→∞

∫ x

−1

φ(y)dy =

∫ x

−1

φ(y)dy, −1 ≤ x ≤ 1.

Lemma 2.4 [7℄.

Let p > 1, {φn} ⊂ Lp, and φ ∈ Lp. Then 
onverges to φ in Lp if and only if

φn 
onverges weakly to φ in Lp and ||φn||p −→ ||φ||p.

Lemma 2.5 [16℄.

Let γ be 
ontinuous fun
tion on [−1, 1], µ be a positive number su
h that

|γ(x)| ≤ µ, −1 ≤ x ≤ 1. Then

||(1 − x2)
−1
2ǫ exp{±(Sγ)(x)}||ǫ ≤ (π(cos(ǫµ))−1)

1
ǫ

for ea
h ǫ ∈ (0, π(2µ)−1).

Lemma 2.6 [10℄. If p > 1, 1
p + 1

q = 1, −1
q < α < 1

p , j = 1, ..., r,

−1 ≤ x1 ≤ x2 ≤ ... ≤ xr ≤ 1,

and

(S̃φ)(x) =

r∏

j=1

|x − xj |
−αj{S(

r∏

j=1

|y − xj |
αj (φ(y)))}(x),

then the operator S̃ is a 
ontinuous operator in the spa
e Lp.
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3 The Fixed Point Equation

By di�erentiate equation (1) ([10℄,Chapt. II , Lemma 6.1) and by using the 
ondi-

tion (2) we obtain the following quasi-linear singular integro-di�erential equation

c(x)ν(x) − (Sν)(x) = f(x) (6)

∫ 1

−1

ν(y)dy = 0 (7)

where

c = Fu(., u(.)), f = −Fx(., u(.)) and ν(x) is the solution of equation (6) su
h that

u(x) =
∫ x

−1
ν(y)dy.

The equation (6) , (7) 
an be written in the equivalent form (see [10℄ ):

Aν = [P (c − i) + Q(c + i)]ν = f(x),

where the operators P and Q are de�ned by

P =
1

2
(I − iS) Q =

1

2
(I + iS),

and I denotes the identity operator.

Putting:

B(x) =
c(x) − i

c(x) − i
= exp(−2πα(x)),

where α : [−1, 1] −→ (0, 1) is a 
ontinuous fun
tion.

The generalized Lp -fa
torization for the fun
tion B is de�ned by

B(x) = B−(x)(x − i)−1B+(x),

where

B−(x) =
x − i

1 − x
exp(−iπα(x) +

∫ 1

−1

α(y)

y − x
dy) =

(x − i)(c(x) − i)

(1 − x)ρ(x)
exp(π(Sα)(x))

and

B+(x) = (1 − x)exp(−iπα(x) +

∫ 1

−1

α(y)

y − x
dy) =

(1 − x)

ρ(x)
(c(x) − i)exp(−π(Sα)(x)),

ρ : [−1, 1] −→ R su
h that c(x) + i = ρ(x) exp(iπ(α)(x)).
Hen
e the index of the operator A is equal 1 in the spa
e Lp.
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From [10℄ the right inverse of A is given by

A−1 =
B−1

+

c(x) + i
[P (c(x) + i) + Q(c(x) − i)]

B+

c(x) − i
I = Z−1(c(x)I + S)

Z

ρ2
I,

where

Z(x) = (1 − x)ρ(x) exp[−π(Sα)(x)],

The solution of the problem (6), (7) is given by the form

ν = A−1f. (8)

Integrating the equation (8), we obtain the �xed point equation

u(x) = (Tu)(x) =

∫ x

−1

H(y, u(y))dy, (9)

where

H(x, u(x)) =
c(x)

ρ2(x)
f(x) +

Z−1

π

∫ 1

−1

Z(y)f(y)

ρ2(y)

dy

y − x
.

We 
an write

H(x, u(x)) = sin[θ(x)]d(x) + cos[θ(x)]R(x, u(x)), (10)

where

θ(x) = tan−1c(x) =
π

2
− πα(x) d(x) = cos(θ(x))f(x)

and

R(x, u(x)) = (1 − x)
−1
2 exp[(−Sθ)(x)]S{(1 − y2)

1
2 d(y)exp[(Sθ)(y)]}(x).

Lemma 3.1. Let {un} a sequen
e 
onverges uniformly to u in C0[−1, 1]. Then

the fun
tion d ∈ Lp and the sequen
e of fun
tions {dnsin(θn)} 
onverges to

dsin(θ) in Lp for 1 < p < 1
δ .

Proof: From the inequality (4) we have

||d||p =
( ∫ 1

−1
|d(x)|pdx

) 1
p

≤ l
( ∫ 1

−1
(1 − x2)−δpdx

) 1
p

= k(δ, p)
1
p . (11)

Then d ∈ Lp.

We use the notations

c = Fu(., u(.)), cn = Fu(., un(.))



288 S.M.Amer and A.S.Nagdy

and

f = Fx(., u(.)), fn = Fx(., un(.)).

From the 
onditions of the derivatives of the fun
tion F (., u(.)) , if un −→ u as

n −→ ∞ we have

cn −→ c , fn −→ f. (12)

From here we obtain dnsin(θn) −→ sin(θ)and

∫ 1

−1

|dn(x)sin(θn(x)) − d(x)sin(θ(x))|pdx −→ 0.

Hen
e the Lemma is valid.

Let us introdu
e the parameters

2β = arctan m − arctan n

and

2λ = arctan m − arctan n.

From (5) we have

|β| <
π

4
, 0 ≤ 2λ ≤

π

2
(13)

from here there exist 3
2 ≤ χ < 2 su
h that 0 < 3 − 2δχ.

Suppose that

η(x) = θ(x) − β,

therefore

|η(x)| ≤ λ, −1 ≤ x ≤ 1,

(Sθ)(x) = (Sη)(x) + (
β

π
) ln

1 − x

1 + x
.

The fun
tion R(x, u) 
an be written in the form:

R(x, u) = A(x) exp[−Sη)(x)]S{A−1(y)dy exp[−Sη)(y)]}(x),

where

A(x) = (1 − x)
−1
2 −

β
π (1 + x)

−1
2 + β

π .
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For pχ−1 = 3
2 , 3ζ = 4χ and by using Young's inequality [12℄ we have

||R||p = ||(1 − x2)
−1
2ζ exp[−(Sη)(x)]||ζ

||A(x)(1 − x)
−1
2ζ S(A−1(y)d(y)exp[(Sη)(y)])(x)||ζ

≤ ||h||ζ ||S̃ψ||ζ (14)

where

h(x) = (1 − x2)
−1
2ζ exp[−(Sη)(x)],

(S̃ψ)(x) = A(x)(1 − x2)
1
2ζ S[A−1(y)(1 − y2)

−1
2ζ ψ(y)](x),

and

ψ(x) = (1 − x2)
1
2ζ d(x) exp[(Sη)(x)].

From the relation (13) we have ζ < π
2λ , then from Lemma 2.5 we obtain

≤ ||h(x)||ζ ≤ [(cos(ζλ))−1]
1
ζ = k(λ, ζ) (15)

Lemma 3.2. The sequen
e hn 
onverges to h in the spa
e Lζ [−1, 1], ζ = 4χ
3 .

Proof: Suppose e > 0, 0 < w < e−1
e , eζ(1 + w) < π

2λ , the fun
tion Ψ(φ) = φw

and

E(x) = |h|ζ . (16)

Then
∫ 1

−1

|En(x)|Ψ(|En(x)|)dx =

∫ 1

−1

(1 − x2)−( 1
2+ w

2 ) exp[−ζ(1 + w)(Sηn)(x)]dx

=

∫ 1

−1

(1 − x2)
1−e
2e

−
w
2 (1 − x2)

−1
2e

exp[−ζ(1 + w)(Sηn)(x)]dx (17)

= {

∫ 1

−1

(1 − x2)(
1−e
2e

−
w
2 )( e

e−1 )dx}
e−1

e

{

∫ 1

−1

(1 − x2)
−1
2 exp[−eζ(1 + w)(Sηn)(x)]dx}

1
e

= {

∫ 1

−1

(1 − x2)
−1
2 −

we
2(e−1) dx}

e−1
e

{

∫ 1

−1

(1 − x2)
−1
2 exp[−w0(Sηn)(x)]dx}

1
e

≤ const.{||(1 − x2)
−1
2w0 exp[−(Sηn)(x)||}

w0
e .
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From Lemma 2.5, we have

∫ 1

−1

|En(x)|Ψ(|En(x)|)dx ≤ const.(π[cos(w0λ)]−1)
1
e = k(λ, e) (18)

where w0 = eζ(1 + w) and k(λ, e) is a 
onstant depends on λ and e. From here

{En} ⊂ L1, and the integral of all elements of {En} are uniformly absolutely


ontinuous. From the relation (12) we have

lim
n−→∞

‖ηn − η‖ = 0.

From the 
ontinuity of the operator S in Lp for p > 1, then Sηn tends to Sη as

n −→ ∞ . Sin
e the exponential fun
tion is monoton in
reasing and En tends to

E in measure then from Lemma 2.2 we obtain E ∈ L1 and

lim
n−→∞

∫ 1

−1

En(Z)dZ =

∫ 1

−1

E(Z)dZ.

Therefore from the equation (16) we have

‖hn‖ζ −→ ‖h‖ζ as n −→ ∞ (19)

From the inequality (15) and Lemma 2.3 hn ⊂ Lζ 
onverges weakly to h ⊂
Lζ .Hen
e by using the relation (19) and Lemma 2.4 the sequen
e hn 
onverges

to h. Hen
e the lemma is proved.

Lemma 3.3. The fun
tions ψn, ψ, whi
h are represented above, satisfy

‖Ψn − Ψ‖ζ −→ 0

Proof: Let k > 0, 4χ
9−8χδ < k > π

2λ .

Sin
e

ψ(x) = (1 − x2)
1
2ζ d(x)exp[(Sη)(x)],

‖ψ(x)‖ζ ≤ ‖(1 − x2)
−1
2k exp[(Sη)(x)]‖k‖(1 − x2)

k+ζ
2kζ d(x)‖ kζ

k−ζ

≤ lk(λ, k)(

∫ 1

−1

(1 − x2)
k+ζ−2kζδ

2(k−ζ) dx)
k−ζ
kζ ≤ σ(λ, k)

where σ(λ, k) is a 
onstant depends on λ and k. Similar to Lemma 3.2, we 
an

prove that ψn −→ ψ in Lζ .
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Lemma 3.4. The operator S̃ is 
ontinuous in the spa
e Lζ .

Proof: From the de�nition of S̃ we have S̃ = r−1Sr,
where

r(x) = (1 + x)α1(1 − x)α2 ,

α1 =
1

2
−

β

π
−

1

2ζ
, α2 =

1

2
+

β

π
−

1

2ζ
.

From the inequality (13) we have 3

1+2(
|β|
π

)
> 2, therefore

−1 +
1

ζ
< αi < 1 +

1

ζ
, i = 1, 2.

From Lemma 2.6 the operator S̃ is 
ontinuous in the spa
e Lζ .

Lemma 3.5. By applying Lemma 3.3 and Lemma 3.4 we have S̃ψn −→ S̃ψ in

Lζ .

4 Existen
e Theorem.

We de�ne the 
onvex and 
ompa
t set:

K0,µ
A1,A2

= {u ∈ C0[−1, 1] : ‖u‖∞ ≤ A1, |u(x1) − u(x2)| ≤ A2|x1 − x2|
µ},

where A1, A2 are positive 
onstants and µ ∈ (0, 1). Now we �nd the 
onditions for

the image T (u) belongs to the set K0,µ
A1,A2

. From (10),(11),(14),(15) and Lemma

3.3 we 
an estimate the norm of H(x, u(x)) in the spa
e Lp, p = 3χ
2 , 3ζ = 4χ as

follows

‖H(., u(.))‖p ≤ ‖d‖p + ‖R(., u(.))‖p

≤ ‖d‖p + ‖h‖ζ‖S̃‖ζ‖ψ‖ζ

≤ k(δ, p)
1
p + k(λ, χ)‖S̃‖ζ [σ(λ, k)] = A2, (20)

where ‖S̃‖p denotes to the norm of the operator S̃ in Lζ .

Sin
e

‖T (u)‖C0
≤ (

∫ 1

−1

dx)
1
q ‖H(., u(.))‖p = A2(2)

1
q , (21)

|T (u)(x1) − T (u)(x2)| ≤ (

∫ x2

x1

dy)
1
q ‖H(., u(.))‖p ≤ A2|x1 − x2|

1
q . (22)

If we 
hoose A1 = A2(2)
1
q and µ = 1

q , then all the transformed fun
tions T (u)

belong to the set K0,u
A1,A2

. This means that the fun
tions T (u) are uniformly

bounded and equi
ontinuous, [4,9℄ . Therefore the following lemma is valid.
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Lemma 4.1. Let the fun
tion F (., u(.) has a 
ontinuous partial derivative

Fu : [−1, 1] × R −→ R , −m ≤ Fu(x, u(x)) ≤ n, mn < 1,

and a partial derivative Fx(., u(.)) 
ontinuous with respe
t to u ∈ R for almost

all x and measurable on [−1, 1] for all u ∈ R, satis�es the inequality

|Fx(x, u)| ≤ l(1 − x2)−σ

σ <
3

4
+ (2π)−1(arctan m + arctan n).

If we 
hoose 2β = arctan m − arctan n, 2λ = arctan m + arctan n,

θ(x) = tan−1Fu(x, u(x)) =
π

2
− πα(x)

and

η(x) = θ(x) − β, |η(x)| ≤ λ, −1 ≤ x ≤ 1

where

|β| <
π

4
, 0 ≤ 2λ ≤

π

2
.

Then for any 3/2 ≤ χ < 2 su
h that, 0 < 3 − 2δχ, 4χ
9−8χδ < π

2λ ,

χ ≤ min(
3

2δ
,
3π

8λ
,

9/4

1 + 2(|β|/π)
),

4

3
eχ(1 + w) <

π

2λ
, 0 < w <

e − 1

e
, e > 0

and by 
hoosing A1 = A2(2)1/q, µ = 1/q, the transformed points Tu belong to

the set k0,µ
A1,A2

.

Lemma 4.2. The operator T whi
h transforms the set k0,µ
A1,A2

into itself is 
on-

tinuous.

Proof: Let {un}
∞

n=1 be a sequen
es of elements of the set k0,µ
A1,A2

whi
h 
onverges

uniformly to the element u ∈ k0,µ
A1,A2

. The assertion is proved if we 
an show that

lim
n−→∞

‖H(., u(.)) − H(., u(.))‖p = 0.

From equation (10) we have

‖H(., un(.)) − H(., u(.))‖p ≤ ‖sin(θn)dn − sin(θ)d‖p+

+‖cos(θn)R(., un(.)) − cos(θ)R(., u(.))‖p.

From Lemma 3.1 the �rst norm of the right hand side of the above estimation

tends to zero, also from the relation (12), Lemma 3.2 and Lemma 3.5 the se
ond

norm tends to zero . Therefore the operator T is 
ontinuous.
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From the pre
eding Lemmas and Arzela's theorem [4,9℄ the image of the set

k
0,µ
A1,A2

is 
ompa
t , therefore we 
an use S
hauder's �xed point theorem . Hen
e

the operator T has at least one �xed point. Thus we 
an state the following

theorem.

Theorem 4.3. If the 
onditions of Lemmas 4.1 and 4.2 are satis�ed , then the

problem (1), (2) has at least one solution in the set W 1
0 [−1, 1].

Referen
es

[1℄ Amer S. M., Existen
e results for a 
lass of nonlinear singular integral

equations with shift; Il Nuovo Cimento B Vol.120 issue 03 (2005)313-333

[2℄ Amer S.M. and Dardery S., Existen
e theorem for nonlinear singular

integral equations with shift on a 
losed Lyapunov 
ontour , Pro
 . Math .

Phys . So
. Egypt , No . 79 , (2003) 103-119 .

[3℄ Amer S.M. and Nagdy A.S., On the modi�ed Newton's approximation

method for the solution of nonlinear singular integral equations, Hokkaido

Mathemati
al Journal , vol . 29 (2000) 59-72.

[4℄ Amer S.M. and Nagdy A.S., On the solvability of nonlinear singular

integral and integro-di�erential equation of Cau
hy type , Pro
 . Math .

Phys . So
. Egypt , No . 74 , (1999) 115-128 .

[5℄ Gakhov F.D., Boundary Value Problems; Dover Publ. N.Y.1990.

[6℄ Junghanns P. and Weber U., On the solvability of nonlinear singular

integral equations , ZAA , 12 (1993) , 683-693 .

[7℄ Kantorovitsch L.v.and Akilov G.P., Fun
tional Analysis , Pergamon

,Press. Oxford. 1982 .

[8℄ Ladopoulos E.G., Singular Integral Equations, Linear and Non-linear

Theory and its Appli
ation in S
ien
e and Engineering: Springer-Verlag,

2000.

[9℄ Lusternik L.A. and Sobolev, V.I., Element of Fun
tional Analysis. En-

glish transl. Gordan and Brea
h S
ien
e Publishers . New York 1985 .

[10℄ Mikhlin S.G. and Prossdorf S., Singular Integral Operators , Akademie-

Verlag , Berlin 1986 .

[11℄ Muskhelishvili N. I., Singular Integral Equations; 2nd Ed. Dover 1992.

[12℄ Nasser-Eddine T., On an integral inequality with a kernel singular in

time and spa
e , J. of Inequalities in Pure and Applied. Math. Vol. 4 Issue

4. Arti
le 82 , (2003) .



294 S.M.Amer and A.S.Nagdy

[13℄ Natanson I. P., Theory of Fun
tions of Real Variables , Vol. I . Frederi
k

ungor Publishing Co. In
. 1974 .

[14℄ Wegert E., Nonlinear Boundary Value Problems for Holomorphi
 Fun
-

tions and Singular Integral Equations , Akademie Verlage (1992).

[15℄ Wolfersdorf L.V., A 
lass of nonlinear Riemann- Hilbert problems for

holomorphi
 fun
tions , Math . Na
hr .,116 (1984) 89- 107 .

[16℄ Wolfersdorf L.V., On the theory of nonlinear singular integralequations

of Cau
hy type, Math. Meth. Appl. S
i., 7(1985) 493-517.

Re
eived: 14.06.2006.

Revised: 09.10.2006

Revised: 04.03.2007

Mathemati
s Department, Fa
ulty of S
ien
e,
Zagazig University, Zagazig, Egypt.

E-mail: amrsammer�hotmail.
om

Mathemati
s Department, Fa
ulty of S
ien
e,
Zagazig University, Zagazig, Egypt.


