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Abstract

We determine all arbitrary lexsegment ideals with linear quotients and
we describe their minimal free resolutions, as well as, their Hilbert series,
Betti numbers and projective dimension. We also give some algorithms
useful to study monomial ideals with linear quotients.
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Introduction

Let R = k[x1,...,x,] be the ring of polynomials in n variables over a field k.
We view R as a graded algebra, where deg(z;) = 1. Let us denote by M, the
set of all monomials of degree d of R. We order the monomials lexicographically
so that 1 > zo > ... > z,. Now a lexsegment of degree d is a subset of M, of
the form L(u,v) = {w € My : v > w > v}, for some u, v € My, with u > v.
An ideal generated by a lexsegment is called a lexsegment ideals. Lexsegment
ideals in this generality have first been introduced by Hulett and Martin [8]. In
the theory of Hilbert functions or in extremal combinatorics usually one consid-
ers initial lexsegment ideals. These are ideals which are spanned by an initial
lexsegment Li(v) = {w € My : w > v}. The initial lexsegments have the nice
property that their shadows are again initial lexsegments, a fact which is not
true for arbitrary lexsegments. The shadow of a set S of monomials is the set
Shad(S) = {va; : v € S,i = 1,...,n}. We define the i—th shadow recursively
by Shad’(S) = Shad’(Shad’~*(S)). Hulett and Martin call a lexsegment L com-
pletely lexsegment if all the iterated shadows of L are again lexsegments, that
is, if for each i the set Shad’(L) is a lexsegment. Arbitrary lexsegment ideals
were studied in [1] and [4]. In particular, in [1] all lexsegment ideals with linear
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resolution are determined. However their explicit minimal resolutions are only
known when the lexsegment ideals are initial or final. In fact if I is an initial
lexsegment ideal, I is stable and it has a resolution of Eliahou-Kervaire type [6].
The same is true if I is a final lexsegment ideal, because it is stable with respect
to the order of the variables x1 > zo > ... > z,.

In the present paper we look at the class of lexsegment ideals with linear quo-
tients. Let I = (L(u,v)) = (v = u1, Uz, ..., Up—1, Uy, = V), With ug > ... > u,,
I; = (u1,...,u;). We say that I has linear quotients with respect to the lex-
icographic order if the colon ideals I;_; : u; are generated by subsets of the
variables x1,...,2z,. The aim of this paper is to consider classes of monomial
ideals with linear quotients since this hypothesis is useful to construct a free res-
olution as iterated mapping cone [5], [7]. In [7] Herzog and Takayama generalize
the theorem of Eliahou-Kervaire for stable ideals. Their construction is based
on decomposition function and provides a minimal free resolution for the class
of monomial ideals with linear quotients whose decomposition function satisfies
a certain additional property which they call regular.

In the first section we recall the procedure determined in [1] characterizing all
lexsegment ideals with linear resolution which we will use throughout the paper.
In the second section we characterize the class of lexsegment ideals with linear
quotients with respect to the lexicographic order giving conditions on generators.
In the third section we describe the resolutions of these ideals. In particular,
we show that all lexsegment ideals with linear quotients have a regular decom-
position function, so that the Herzog-Takayama result explicitly describes their
resolutions. As an application, we compute the Betti numbers, Hilbert series
and the projective dimension of these ideals. In the fourth section we give some
algorithms, designed and implemented with CoCoA, to test if an ideal has linear
quotients, to compute the decomposition function and to test its regularity.

1 Lexsegment ideals with linear resolution

We quote some results obtained in [1] and [4] which we will use in the next section.
In the following all completely lexsegment ideals are characterized:
Theorem 1.1. Let u = z{'...2% and v = x?l ...zt be monomials of degree
d in R and let uw > v and v # &, and let I be the ideal generated by L(u,v).
Then I is completely lexsegment if and only if ax # 0 and one of the following
conditions holds:

(a) u=2%x5"" and v = 2§, for some a, 0 < a < d;

(b) a1 # by, and for every w < v there exists an index i > 1 such that x;|w and

riw/x; < u.

Proof: See [4]. O
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Let w be a monomial in the polynomial ring R = k[z1,...,z,], let max(w) =
M (w) denote the largest index of the variables dividing w and w' = w/2 s (y)-
The next theorem gives us the sufficient and necessary conditions for completely
lexsegment ideals with linear resolution.
@ l{l ...zt be monomials of degree
d and let I = (L(u,v)) be a completely lexsegment ideal. Then I has linear
resolution if and only if one of the following conditions holds:

Theorem 1.2. Let u = 27" ... 2% and v = x

d—a

(a) u=x¢x5 * and v = zzd=2

a=a for some a, 0 < a <d;

(b) by <ap — 1;
(¢c) by = a1 — 1 and for the largest w < v, w € My one has r1w' < u.

Proof: See [1]. O

The next theorem treats an essential case in the characterization of the lexseg-
ment ideals with linear resolution.
Theorem 1.3. Letu =z{'...28", v = xg2 ...l be two monomials of degree d
in klxy, ..., x,], with ap # 0. Suppose that the ideal I generated by L(u,v) is not
completely lexsegment. Then I has linear resolution if and only if u and v are of
the form

a —
u=zyz o, v = zyrd?

N n

for somel, 2 <1 <n.
Proof: See [1]. O

Now, we are able to give the procedure described in [1] by Aramova, De Negri
and Herzog which determines all lexsegment ideals with linear resolution. Let
I = (L(u,v)) be a lexsegment ideal with v = z7* ... 2% v = .T,‘lil b

e If w = v, then [ has linear resolution. In the next steps we may therefore
assume that u > v.

e If I is completely lexsegment, see Theorem 1.2.

e If I is not completely lexsegment, we let m > 1 be such that a; = b; for
i=1,...,m—1and a, > by,. Set f =" ... 20" '2b= and let I be the

ideal in k[zy,,...,2,] spanned by L(u/f,v/f). It is clear that I has linear
resolution if and only if I has linear resolution.

e If ] is completely lexsegment, see 1.2, and if I is not completely lexsegment,
see 1.3.
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2 Lexsegment ideals with linear quotients

Let k be a field, R = k[z1,...,2z,] be the polynomial ring in n indeterminates,
and I C R a monomial ideal. The unique minimal set of monomial generators
of I will be denoted by G(I). The ideal I is said to have linear quotients if for

some order of the elements uy,...,u,, of G(I) and j = 1,...,m the colon ideals
(u1,...,uj_1) : u; are generated by a subset of {x1,...,z,}. We define
set(u;) ={k € [n]:ap € (w1,...,uj_1) 1y}, for j=1,... m.

According to Eliahou-Kervaire [6] a monomial ideal I in R is stable if for every
monomial w € I and for every index i < M(w), the monomial z;w/x (., again
belongs to I. In [7] J. Herzog and Y. Takayama proved that stable monomial
ideals have linear quotients with respect to the reverse lexicographical order. We
are interested in the lexsegment ideals with linear quotients with respect to the
lexicographic order. Let u = z{* ... 2% and v = x?l ... 2% be monomials of the
same degree. We say that v > wu in the lexicographic order if there exists an
integer i such that by = ay, for k=1,...,i—1 and b; > a;. We set v;(u) = a; for
i =1,...,n. In the following we prove that stable monomial ideals have linear
quotients with respect to the lexicographic order.

Proposition 2.1. Let I be a stable monomial ideal. Let G(I) = {u1,...,Um},
where uy > U > ... > Uy, in the lexicographic order with regard to x1 > xo >
... > xy. Then I has linear quotients for this order of generators.

Proof: Let u € G(I) and let .J be the ideal generated by all v € G(I) with v > u
in the lexicographic order. Then J : u = (v/[v,u] : v € J), where [v,u] denotes
the greatest common divisor of u and v. Thus in order to prove that J : u is
generated by monomials of degree 1, we have to show that for each v > wu there
exists x; € J : u such that z; divides v/[v,u]. In fact, let u = 2" ... 2% and
v = xlil ...zl Since v > u, there exists an integer i such that by = ay, for k =
1,...,i—1 and b; > a;. Obviously ¢ < M (u). Since I is stable then @ = z;u’ € I.
Since i < M (u) we see that @ € .J and from the equation /()@ = x;u we deduce
that z; € J : u. Finally since v;(v/[u,v]) = b; — min{a;,b;} = b; —a; > 0 we
obtain that x; divides v/[v,u]. O

In the theory of monomial ideals, there is the following hierarchy of ideals:
initial lexsegment ideals = strongly stable monomial ideals = stable monomial
ideals. Then, an immediate consequence of 2.1 is the following:

Corollary 2.2. Let I = (L' (u)) be an initial lexsegment ideal. Then I has linear
quotients with respect to the lexicographic order.

Proposition 2.3. Let I be a stable ideal, G(I) = {uy, ..., Uy}, with uy > ug >
oo > Uy 0 the lexicographic order. Then

set(u;) ={1,..., M(u;) — 1}
for all w € G(I).
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Proof: Let u; € G(I), k € set(u;). Then zpu; € (u1,...,uj—1), and this means
Tpu; = Tpu;, with u; > u;, u; € G(I). Since u; > u; then k < [ and since
M(zpuj) = M(xu;), then k < M(u;). Then set(u;) € {1,..., M(u;) —1}.

Now let k € {1,..., M(u;)—1}. Then from k < M(u;) it follows that zyu} > u;.
Moreover since I is stable zyu); € I. Then zyu}; € (u1,...,u;-1) and this means
k € set(u;). Then {1,...,M(u;) — 1} C set(u;) and the assert follows. O

In the general case, final lexsegment ideals do not have a linear quotients.

Example 2.4. Let R = k[x1, 22,73, 74) and [ = (L7 (2324)). Then I = (2324, w222,
wox3, 23, 23wy, 2322, 23). The colon ideal (z314) : w923 = (z274) is not generated
by a subset of {z1,z2, 3,24}

Lemma 2.5. If I is an ideal of R with linear quotients, such that all generators
of I have the same degree, then I has a linear resolution.

Proof: The assertion follows from Lemma 2.16 in [9]. O

In the following we characterize all final lexsegment ideals with linear quotients
in the lexicographic order.

Theorem 2.6. Let u be a monomial of degree d in k[x,...,x,]. The following
conditions are equivalent:

(1) J = (Lf(u)) has linear quotients.
(2) (L(u,v)) has linear resolution for all v < u.
(3) u= xfxf_:f forsomel<i<n,0<a<d.

Proof: We prove that (1) = (2), (2) = (3) and (3) = (1).

(1) = (2). Obviously if J has linear quotients respect to the lexicographic or-
der then (L(u,v)) has linear quotients for all v < w. Tt follows from Lemma 2.5
(L(u,v)) has linear resolution for all v < w.

(2) = (3). We prove that if u # zf:z:f_:f, forall 1 < i <mn, forall 0 < a <d,
then there exists a monomial v < u such that (L(u,v)) does not have a linear
resolution. Suppose that w = z{*...2%. Let us consider i = m(u) = min{i :
i € supp(u)}. Note that i is the first index such that a; # 0. We may consider

the monomial v = x?iilx?;fﬁl, v < w If I = (L(uv)) is completely lexseg-

ment, then from 1.1 a; # 0. Then v = z§* 24~ We consider the monomial
W = 2§29 " 2s, W < v and we show that condition (c) of Theorem 1.2 is
not satisfied. Since a; # 0 and u # z%z5 ', then ;@ = z'z3 " > u.
Then (L(u,v)) does not have a linear resolution. Now suppose that I is not
completely lexsegment and consider the ideal I = (L(u/f,v/f)), with f = 2!

in k[x1,...,2,]. In order to show that I does not have a linear resolution we
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show that I does not have a linear resolution. Suppose that I is completely
lexsegment and take the largest monomial w < v/f, W = xg_alx;;. Tt follows
from u # xglng'“ that u/f # z129 " and this implies az < d — a;. Then
@ > rxy ™ > u/f and it follows from Theorem 1.2, condition (c) that T
does not have a linear resolution. Now suppose that I is not completely lexseg-
ment. Then it follows from Theorem 1.3 that I = (L(z232... 2% z3-9T1))
does not have a linear resolution. Then I does not have a linear resolution.

(3) = (1). We prove that if u = xfxi:l“ then J has linear quotients. Let
w € G(J), i.e. w < wu, and let I be the ideal generated by all v € G(J) with v > w

(in the lexicographic order). Then I : w = (v/[v,w] : v € I). Let w = 2% - - gl
v=a{' -zl Since u = afal ! >v=af 2l >w= 28t - zbr then for all

k < i, ap = by = 0 then v and w are of the following form:

b
n -

IR 73 a _ b
v=ux;t Tyt w=x, ..o

Moreover since v > w, in the lexicographic order, there exists an index j such
that ay = by, for every k =4,...,j — 1 and a; > b;.

From the inequality u = xfxf;la >w = 332" -t we obtain a > b;. We distin-
guish two cases:

First Case: a > b;. We prove that in this case the following inequalities hold:

_ 1 / a,.d—a
U= zjw <zw <ziri . (1)

The first inequality of (1) follows from j > 4. In order to prove the second ine-
quality we note that since w < w then M(w) > i+ 1. If M(w) > i+ 1 then
zyw <wu. I M(w)=1i+1and a="b; +1 then z;uw’ = f?i+1$?;f+1/xi+1 =u. If
M(w) =i+ 1 and a > b;;1 then z;w" < u.

From (1) it follows w € J and since j < M(w) then ©w > w, ie., uw € I.
Then it follows from equation zjw = Uzps,) that z; € I @ w. Finally, since

vi(v/lv,w]) = aj — min{a;,b;} = a; —b; > 0, we have that z; divides v/[v,u].

Second Case: a = b;. If a = b; then d — a > b;41 and a; = a = b;. Since
biy1 <d—aand j > i+ 1 then & = z;w < x;11w" < u and this means that
@ € J. Moreover since M (w) > j then @ € I. From equality /()@ = x;w it fol-
lows that z; € I : w. Finally, since v;(v/[v, w]) = a;j — min{a;j,b;} =a; —b; >0
then x; divides v/[v, w]. O

Besides characterizing final lexsegment ideals with linear quotients Theorem

2.6 also determines a large class of arbitrary lexsegment ideals with linear quo-
tients, as shows the following:

Corollary 2.7. Ifu = zf:z:f_:la for somel <i<n,0<a<d, then I = (L(u,v))
has linear quotients with respect to lexicographic order for every monomial v < wu.

In the following we characterize all arbitrary lexsegment ideals with linear
quotients in the lexicographic order.
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Theorem 2.8. Let u = z{' -2, v = w?l -~ abn be monomials of degree d in
klx1,...,2n]. Let k = max(u) — 2. The following conditions are equivalent:

(1) T = (L(u,v)) has linear quotients.
(2) (L(u,w)) has linear resolution for all u > w > v
(3) v>at ~-~xz’°x(ff(al+a2+“'+ak).

Proof: We prove that (1) = (2), (2) = (3) and (3) = (1).

(1) = (2). Obviously if I has linear quotients respect to the lexicographic or-
der then (L(u,w)) has linear quotients for all u > w > v. It follows from Lemma
2.5 (L(u,w)) has linear resolution for all u > w > v.

(2) = (3). We prove that if v < z{* --~$Z’“mi7(al+a2+"'+a’“), then there exists
a monomial v > w > v such that (L(u,w)) does not have a linear resolu-
tion. Let j = max{i € supp(u),1 < i < k : a; # 0}. Then u is of the form

_ a1 J Ok ), Akt2 a;—1_d—(a1+...4+a;—1)
u = x w] xk+1xk+2 Take w = v = z{* cemytomiy . We first

prove that (L(u,w)) is not completely lexsegment. In fact, suppose that (L(u,v))
is completely lexsegment, then from Theorem 1.1 it follows that a; # 0 and since
a; = by then (L(u,v)) is completely lexsegment if and only if condition (a) of

1.1 is satisfied, i.e., if and only if u = x‘fxg “ and v = z{zd~% But this is

a contradiction because v < z{*---x}*x gd=lataztotar) ppey (L(u,w)) is not
completely lexsegment. Now we prove that (L(u,w)) does not have a linear res-
olution by applying the procedure described in section 1. Take f = z{" - -acjill
The ideal (L(u,w)) has a linear resolution in k[x1,...x,] if and only if the ideal

(L(u/f,v/f)) has linear resolution in k[zj,...,x,]. Note that (L(u/f,v/f)) =

(L(%xiiﬁlxiigz,xirrﬂr e ))) Tt follows from 1.3 that (L(u/f,v/f)) does
not have a linear resolution in k[xz;,. .., x,].

(3) = (1). We prove that if v > z{* ~~x2’“mz_(al+a2+”'+a’“) then I has linear
quotients. Let w € G(I), i.e, u > w > v and let J be the ideal generated by all
z € G(I) with z > w (in the lexicographic order). Then J : w = (z/[z,w] : z € J).

Let w = af" - a$r, z = af* -, Since u = 2f' - zpa ety > 2 > w >
ot aprgdmattak then for all [ = 1,...,k we have a; = r; = ¢;. Moreover
since z > w there exists an index j € supp(z) such that r, = ¢, Vi=1,...,5—1

and r; > ¢;. From the inequality v > w we obtain ax41 > cx41. We distinguish
two cases:

First case. apyq1 > cxs1. We prove that in this case the following inequalities
hold:

v<W=zjw <appw < (2)

We note that j > k + 1. Then z;w’ < xpiw’. It follows from j < max(w) that
zjw’ > w > v and then we obtain the inequality z;w’ > v. Finally the inequality
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Trr1w’ < u follows from ag1 > cpaq.
From (2) it follows that w € I. Moreover since w > w then w € J. Then it follows
from equation

TjW = W\ ()

that z; € J : w. Finally since v;(z/[z,w]) = r; — min{rj,¢;} = r; —¢; > 0 then
x; divides z/[z, w].

Second Case. agy1 = Cpy1. If apy1 = kg1 then apyo > cpio. Moreover since
Jj>k+2thenv < =zjw < zpiow’ < wuand this means that @ € I. Moreover
since M(w) > j then @ > w and then & € J. From equality /()0 = zjw it
follows that z; € J : w. Finally, since v;(z/[z, w]) = r; —min{c;,7;} =rj—c; >0
then z; divides z/[z, w]. O

In the following we give an alternative proof of Corollary 2.7 using Theorem
2.8.

Another immediate consequence of 2.8 gives us information on the first syzygy
module of lexsegment ideals. In fact a monomial ideal I has linear quotients if
and only if the first syzygy module of I has a quadratic Grébner basis [7]. Then
we have the following:

Corollary 2.9. Let u = af* -2, k= M(u) — 2, I = (L(u,v)) a lexsegment
ideal. Then the first syzygy module of I has a quadratic Gréobner basis if and only

. d—
ifv>a® ka-xn (a1taz+...+ax)

3 The minimal free resolution of lexsegment ideals with linear quo-
tients

In the general case, the problem of determining the resolutions of arbitrary lexseg-
ment ideals is open. Partial results are contained in [8], where the basis of Koszul
homology and a formula for the lower degree Betti number are computed, but a
description of the maps is not known. In particular it holds the following:

Theorem 3.1. Let I = (L(u,v)) be a lexsegment ideal in R. Then for i > 2 the
lower degree Betti number is:

M (w)—i+1

B (RID) = Z Z ( M(w) —j — ;_9351;) +lj(w) —1 > 3)

weG(I) Jj=1

where, for w € G(I) lj(w) and s;(w) are defined as follows: if there exists a pair
of integers | and s such that j <1 <s < M(w) and %;m* € G(I), thenl; is the
largest | satisfying this condition, s; is the smallest s; if a pair of this kind does
not exist then l;(w) = j and s;(w) = M(w).

Proof: See [8]. O
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This section contains results describing the resolutions of all lexsegment ide-
als with linear quotients. This description is obtained from Herzog-Takayama’s
results, based on iterated mapping cones [7]. Recall that the mapping cone of
¢ is the complex C'(¢) with C(¢); = B; @ A;_; for all i, and chain map d with
d; : C(¢); = C(9)i-1, di(b,a) = (¢(a) + I(b), —0(a)). We recall the following:

Lemma 3.2. Suppose degu; < degug < ... < degu,,. Then the iterated map-
ping cone F, derived from the sequence ui,...,Un, S a minimal graded free
resolution of R/I, and for all i > 0, the symbols

f(o;u) with w € G(I),0 C set(u),|o| =i—1

form a homogeneous basis of the R—module F;. Moreover deg(f(o;u)) = |o| +
deg(u).

Proof: See [7], Lemma 1.5. O

Let M(I) be the set of all monomials of I. The map g : M(I) — G(I) is
defined as follows: we set g(u) = u; if j is the smallest integer such that u € I;
and it is called decomposition function of I.

Definition 3.3. We say that the decomposition function g : M(I) — G(I) is
regular, if set(g(xsu)) C set(u) for all s € set(u) and u € G(I).

We note that the decomposition function for an arbitrary monomial ideal
is not always regular. For example, consider I = (z1x3,z175,22). Then, with
respect to the lexicographic order, I has linear quotients. It can be verified that
set(22) = {1}, and set(g(z122)) = {x3}.

We will show that lexsegment ideals with linear quotients always have a regular
decomposition function.

In the following propositions we describe the set and the decomposition function
of a generator of I, in the case that [ is a lexsegment ideal with linear quotients.

Proposition 3.4. Let u = 2" ---z%, v =28 ... 2t T = (L(u,v)) with G(I) =
L(u,v) = {ug = u,ug, - Uy, = v}. Let w € G(I), w = 2% - 2. Suppose I
has linear quotients. Then we have:

set(w) ={l,...,M(w) — 1}
being | the smallest integer such that a; > d.

Proof: Let r € set(w). We will show [ < r < M(w) — 1. We have w = u;,
1 < j <m. Then

TpW = Ty, (4)

u; > w. This means M (z,w) = M(xsu;) and s > r. Then r < M (w).
Let u; = xf' -+ - xtr. It follows from 2.8 that

— 01 Ok AL Ok ) ar | .ak.d—(a1+...4ag),
u = x xkxk+1zk+22uz>wzvle Ty T,
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with & = M(u) — 2 and then r > k + 1. With the notations of 2.8 we have

_ .a ay,de+1, diet2 dn _ .a ay ,.Ck+1, Ckt2 n
w =z apre N age u = 2t b i g NS ae . Tt follows
that
k41, Gkt2 Ckt1,Ckt2 . cp dry1 dev2 | dy d—(a1+...4+ar)
Tpy1 Tpya 2 Ty Tpyo Tt > Ty Ty Ty 2 Ty . (5)

We have a; > ¢; > d;. Note that k+1 <1< k+2. Ifl=k+1thenr > k+1=1.
Now suppose [ = k + 2. Since r > k + 1, it suffices to prove that r # k + 1. Let
r=k+1. From (4) u; = x541w/xs and then

Cht1 Cht2 | Cpn _ deyr dit2 | dy
T oSl = we L a a [, (6)

By substituting (6) in the first inequality of (5) we obtain:

Ak+1 QK42 dpt1, dkt2 d
v e A > e caen fx.

But I =k + 2, then ag41 = di41 and we obtain:
Qg2 di+2 dn
Tiyy 2 Thp1Tyyy o Ty [T,

with s > r = k 4+ 1. But this is a contradiction. Then r > [. Now suppose

ref{l,..., M(w)—1}. We show that z,w = z4u;, for some 1 <t <n, u > u; > w.
Consider u; = x,w'. Since r < M (w) we have u; > w. Since r > [ we have u; < u.
We can write: z,w = 2, T pp(w) = WiZar(w) and then {I,..., M(w)—1} C set(w).

O

Proposition 3.5. Let u = 2" - 2%, v =28 ... abn T = (L(u,v)) with G(I) =
L(u,v) = {u1 = u,ug,...,um = v}. Let w € G(I), w = z* - 2%, g be the
decomposition function of I. Suppose I has linear quotients. Then we have:

g(zsw) = zw', for allw € G(I),s € set(w).

Proof: We have w = u;, with « > u; > v. From Proposition 3.4 it follows that

I < s < M(w)—1, with [ the first integer such that a; > d;. Then xsug €

(ui,...,uj—1). Now suppose that there exists u; > w such that z,u; = zsu,, for
some 1 <t < n. We prove u; > xsu;-. But this is obvious because u; = xsuj/ggt >
Tsj /T pr(u,), Deing M(uj) >t > s. 0

Proposition 3.6. Let u = 2" ...z%, v =2ab .20 T = (L(u,v)) with G(I) =
L(u,v) = {uy = u,ug, ..., Uy, = v}. Let w e G(I), w =z - 2% Suppose I
has linear quotients. Then I has a regular decomposition function.

Proof: Let w € G(I), s € set(w). We prove that set(g(zsw)) C set(w). Tt follows
from 3.4 that

set(w) ={l,...,M(w) — 1}, with [ the first integer such that a; > d;.
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Moreover from 3.5

set(g(zsw)) = set(zsw’)

and again from 3.4 we obtain
set(g(zsw’)) = {t,..., M(zsw") — 1}.

Since s € set(w), thenl < s < M (w’). In order to prove that set(g(zsw)) C set(w)
it suffices to prove t > [ and M (z w’) < M(w).

Suppose xsw' = {' ... xtm, then t is the first integer such that a; > ¢; and since
s > [ then ¢t > I. Moreover since s < M (w') we have M (z w’) = M(w') < M(w)
and the assertion follows. O

Now we are able to give the following;:

Theorem 3.7. Let I be a lexsegment ideal with linear quotients, and F' the graded
minimal free resolution of R/I. Then the chain map O of F is given by

O(f(o;u) = =D _(=1)*Va, flo\t;u)+aM(u) Y f(o\t;zu'), if o # 0, and

teo teo

A(f(D;u)) = u, otherwise .

Here afo,t) = |[{s €0 : s <t}

Proof: Note that from 3.6 I has a regular decomposition function. Then the
assertion follows from Theorem 1.12 in [7] and from the description of the regular
decomposition function given in 3.5. O

An immediate consequence of 3.2 and 3.6 is the following;:

Corollary 3.8. Let I be a lexsegment ideal with linear quotients, G(I) = L(u,v)
its minimal system of generators, F. the minimal free resolution of R/I. Denote,
by iy, the smallest integer such that a;,, > d;,, if w # u and i, = M (u), where
w=af .z u=g$ .. % Then:

M (w) — iy,
() Bi(R/I) = X ean ( (i _) 1 ) :
(b) projdim(R/I) = max{M(w) — i, + 1,w € G(I)},

M w _iw i _
(¢) Hr,(t) = i Lwean (i 2 1 e

Proof: The assertions (a) and (b) follow from Lemma 3.2 and from Proposition
3.6. The assertion (c¢) follows from (a) and from the computation of the Hilbert
series through free resolutions (see [2] pp. 153, Lemma 4.1.13). O
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Remark 3.9. Let v € My, I = (L%(v)) be an initial lexsegment ideal. We can
write I = (L(u,v)), with u = z{. In this case 4, = 1 for all w € G(I). From
Corollary 3.8 we obtain:

sam= "y (M0,

weG(I)
that is the formula for Betti numbers of stable ideals (see [6]).

Remark 3.10. If ¢ > 2 the formula obtained in Corollary 3.8 can be deduced by
Theorem 3.1. In fact let I be an arbitrary lexsegment ideal with linear quotients.
Then, it follows from 2.5 that I has a linear resolution. Then it follows from
formula (3) that:

M(w)—i+1

GR/IH=3S % (MW%J—ﬁ?+mm—1) -

weG(I) Jj=1

But, in this case, we obtain:
Li(w) = sj(w),j = iw. (8)

By substituting (8) in (7) we obtain the formula obtained in Corollary 3.8,
().

We conclude this section with a remark on arbitrary lexsegment ideals without
linear quotients.
We first quote a result of Herzog which computes a bound for Betti numbers of
the sum of a finite number of ideals.

Corollary 3.11. Let I and J monomial ideals in R. Then:
Bi(R/(I+ 7)) < 50 B (R/1)Bi (R)]).
Proof: See [10], Corollary 3.1. O

Remark 3.12. Let I be an arbitrary lexsegment ideal. If I does not have linear
quotients, it follows from Theorem 2.8 that I can be written as sum of lexseg-
ment ideals with linear quotients, then, in such cases, by using Corollary 3.8 and
Corollary 3.11 we can obtain a bound for Betti numbers of I as the following
example shows.

Example 3.13. Let R = k[z1,...,76], I = (L(u,v)), u = 231274, v = T31375.
It follows from Theorem 2.8 that I does not have linear quotients, because
v < 23z9m6. We can write [ = Iy + Iy, with I} = (L(23z224, 237016)), Io =
(L(z322, 23x325)). By applying Theorem 2.8 again we have that I; and I, have
linear quotients. By applying Corollary 3.8 we obtain:

Bo(R/11) =1, p1(R/11) =3, B2(R/11) =3 ,B3(R/11) = 1,
Bo(R/12) =1, p1(R/12) =3, B2(R/I2) =3 ,B3(R/I2) = 1.
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and from Corollary 3.11 we obtain:

Bo(R/T) =1, Bi(R/I) =6, Bo(R/I) <15, Bs(R/I) <20, Ba(R/I) < 13.

4 Algorithms to test the regularity of the decomposition function

This section contains some algorithms, designed with CoCoA [3], which have been
used to characterize all lexsegment ideals with linear quotients and to test that
such ideals have a regular decomposition function.

The following algorithm allows us to establish if an ideal I has linear quotients.

Algorithm 4.1.

--Test: Has I linear quotients?
Define IsIdealQL(I);
GensI:=Gens(I);
For T := 2 To Len(GensI) Do
Icolon:=Ideal (First(GensI,T-1)):Ideal(GensI[T]);
If Not IsSubSet(Gens(Icolon),Indets()) Then Return FALSE;
EndIf;
EndFor;
Return TRUE;
EndDefine;

The following algorithm returns the value of the decomposition function. This
version of Algorithm 4.2, faster than the preliminary version, has been written
by professor A. Bigatti.

Algorithm 4.2.

Define FirstReducer (U,G);
For I := 1 To Len(G) Do
If Type(U/G[I])<>RATFUN Then Return I; EndIf;
EndFor;
Error("the monomial does not belong to the ideal"); EndDefine;

The previous functions are used by the following:
Algorithm 4.3.

-- Is the decomposition function of I regular?
Define IsDecompRegular(I);

If Not IsIdealQL(I) Then Error("I does not have linear quotients");
EndIf;
GensI:=Gens(I);

For T := 2 To Len(GensI) Do

L:=Ideal (First(GensI,T-1)):Ideal(GensI[T]);
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Minimalize (L) ;
GensL:=Gens (L) ;
K:=GensL*GensI[T];
For S:=1 To Len(K) Do
Decomp:=FirstReducer (K[S],GensI);
M:=Min(Decomp) ;
W:=Ideal (First (GensI,M-1)) :Ideal (GensI[M]);
GensW:=Gens (W) ;
If GensW<>[0] And Not IsSubSet(GensW,GensL)
Then Return FALSE;
EndIf;
EndFor;
EndFor;
Return TRUE;
EndDefine;

The Algorithm 4.1 allows us to establish if an ideal I has linear quotients, but
it does not return the set of the generators. In order to obtain a description of
the set one can use the following modified version of 4.1.

Algorithm 4.4.
Define Quozients(I); GensI:=Gens(I);
For T := 2 To N Do
Ideal (First(I,T-1)) :Ideal(I[T]);
EndFor;
EndDefine;

We conclude this section giving the following open problem:

Problem 4.5. Determining other classes of monomial ideals with linear quotients
and admitting a reqular decomposition function.

The previous considerations suggest that these classes enlarge the class of
monomial ideals whose resolution is known. Moreover, excluding the large classes
of matroidal ideals, stable ideals and lexsegment ideals with linear quotients, no
other class with this property is known.
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