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Abstra
t

We determine all arbitrary lexsegment ideals with linear quotients and
we des
ribe their minimal free resolutions, as well as, their Hilbert series,
Betti numbers and proje
tive dimension. We also give some algorithms
useful to study monomial ideals with linear quotients.
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Introdu
tion

Let R = k[x1, . . . , xn] be the ring of polynomials in n variables over a �eld k.
We view R as a graded algebra, where deg(xi) = 1. Let us denote by Md the

set of all monomials of degree d of R. We order the monomials lexi
ographi
ally

so that x1 > x2 > . . . > xn. Now a lexsegment of degree d is a subset of Md of

the form L(u, v) = {w ∈ Md : u ≥ w ≥ v}, for some u, v ∈ Md, with u ≥ v.
An ideal generated by a lexsegment is 
alled a lexsegment ideals. Lexsegment

ideals in this generality have �rst been introdu
ed by Hulett and Martin [8℄. In

the theory of Hilbert fun
tions or in extremal 
ombinatori
s usually one 
onsid-

ers initial lexsegment ideals. These are ideals whi
h are spanned by an initial

lexsegment Li(v) = {w ∈ Md : w ≥ v}. The initial lexsegments have the ni
e

property that their shadows are again initial lexsegments, a fa
t whi
h is not

true for arbitrary lexsegments. The shadow of a set S of monomials is the set

Shad(S) = {vxi : v ∈ S, i = 1, . . . , n}. We de�ne the i−th shadow re
ursively

by Shadi(S) = Shadi(Shadi−1(S)). Hulett and Martin 
all a lexsegment L 
om-

pletely lexsegment if all the iterated shadows of L are again lexsegments, that

is, if for ea
h i the set Shadi(L) is a lexsegment. Arbitrary lexsegment ideals

were studied in [1℄ and [4℄. In parti
ular, in [1℄ all lexsegment ideals with linear
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resolution are determined. However their expli
it minimal resolutions are only

known when the lexsegment ideals are initial or �nal. In fa
t if I is an initial

lexsegment ideal, I is stable and it has a resolution of Eliahou-Kervaire type [6℄.

The same is true if I is a �nal lexsegment ideal, be
ause it is stable with respe
t

to the order of the variables x1 > x2 > . . . > xn.
In the present paper we look at the 
lass of lexsegment ideals with linear quo-

tients. Let I = (L(u, v)) = (u = u1, u2, . . . , un−1, un = v), with u1 > . . . > un,

Ij = (u1, . . . , uj). We say that I has linear quotients with respe
t to the lex-

i
ographi
 order if the 
olon ideals Ij−1 : uj are generated by subsets of the

variables x1, . . . , xn. The aim of this paper is to 
onsider 
lasses of monomial

ideals with linear quotients sin
e this hypothesis is useful to 
onstru
t a free res-

olution as iterated mapping 
one [5℄, [7℄. In [7℄ Herzog and Takayama generalize

the theorem of Eliahou-Kervaire for stable ideals. Their 
onstru
tion is based

on de
omposition fun
tion and provides a minimal free resolution for the 
lass

of monomial ideals with linear quotients whose de
omposition fun
tion satis�es

a 
ertain additional property whi
h they 
all regular.

In the �rst se
tion we re
all the pro
edure determined in [1℄ 
hara
terizing all

lexsegment ideals with linear resolution whi
h we will use throughout the paper.

In the se
ond se
tion we 
hara
terize the 
lass of lexsegment ideals with linear

quotients with respe
t to the lexi
ographi
 order giving 
onditions on generators.

In the third se
tion we des
ribe the resolutions of these ideals. In parti
ular,

we show that all lexsegment ideals with linear quotients have a regular de
om-

position fun
tion, so that the Herzog-Takayama result expli
itly des
ribes their

resolutions. As an appli
ation, we 
ompute the Betti numbers, Hilbert series

and the proje
tive dimension of these ideals. In the fourth se
tion we give some

algorithms, designed and implemented with CoCoA, to test if an ideal has linear

quotients, to 
ompute the de
omposition fun
tion and to test its regularity.

1 Lexsegment ideals with linear resolution

We quote some results obtained in [1℄ and [4℄ whi
h we will use in the next se
tion.

In the following all 
ompletely lexsegment ideals are 
hara
terized:

Theorem 1.1. Let u = xa1

1 . . . xan
n and v = xb1

1 . . . xbn
n be monomials of degree

d in R and let u ≥ v and v 6= xd
n, and let I be the ideal generated by L(u, v).

Then I is 
ompletely lexsegment if and only if a1 6= 0 and one of the following


onditions holds:

(a) u = xa
1x

d−a
2 and v = xa

1x
d−a
n , for some a, 0 < a ≤ d;

(b) a1 6= b1, and for every w < v there exists an index i > 1 su
h that xi|w and

x1w/xi ≤ u.

Proof: See [4℄.
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Let w be a monomial in the polynomial ring R = k[x1, . . . , xn], let max(w) =
M(w) denote the largest index of the variables dividing w and w′ = w/xM(w).

The next theorem gives us the su�
ient and ne
essary 
onditions for 
ompletely

lexsegment ideals with linear resolution.

Theorem 1.2. Let u = xa1

1 . . . xan
n and v = xb1

1 . . . xbn
n be monomials of degree

d and let I = (L(u, v)) be a 
ompletely lexsegment ideal. Then I has linear

resolution if and only if one of the following 
onditions holds:

(a) u = xa
1x

d−a
2 and v = xa

1x
d−a
n , for some a, 0 < a ≤ d;

(b) b1 < a1 − 1;

(
) b1 = a1 − 1 and for the largest w < v, w ∈ Md one has x1w
′ ≤ u.

Proof: See [1℄.

The next theorem treats an essential 
ase in the 
hara
terization of the lexseg-

ment ideals with linear resolution.

Theorem 1.3. Let u = xa1

1 . . . xan
n , v = xb2

2 . . . xbn
n be two monomials of degree d

in k[x1, . . . , xn], with a1 6= 0. Suppose that the ideal I generated by L(u, v) is not


ompletely lexsegment. Then I has linear resolution if and only if u and v are of

the form

u = x1x
al+1

l+1 . . . xan
n , v = xlx

d−1
n

for some l, 2 ≤ l < n.

Proof: See [1℄.

Now, we are able to give the pro
edure des
ribed in [1℄ by Aramova, De Negri

and Herzog whi
h determines all lexsegment ideals with linear resolution. Let

I = (L(u, v)) be a lexsegment ideal with u = xa1

1 . . . xan
n , v = xb1

1 . . . xbn
n .

• If u = v, then I has linear resolution. In the next steps we may therefore

assume that u > v.

• If I is 
ompletely lexsegment, see Theorem 1.2.

• If I is not 
ompletely lexsegment, we let m ≥ 1 be su
h that ai = bi for

i = 1, . . . ,m − 1 and am > bm. Set f = xa1

1 . . . x
am−1

m−1 xbm
m , and let Ĩ be the

ideal in k[xm, . . . , xn] spanned by L(u/f, v/f). It is 
lear that I has linear

resolution if and only if Ĩ has linear resolution.

• If Ĩ is 
ompletely lexsegment, see 1.2, and if Ĩ is not 
ompletely lexsegment,

see 1.3.
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2 Lexsegment ideals with linear quotients

Let k be a �eld, R = k[x1, . . . , xn] be the polynomial ring in n indeterminates,

and I ⊂ R a monomial ideal. The unique minimal set of monomial generators

of I will be denoted by G(I). The ideal I is said to have linear quotients if for

some order of the elements u1, . . . , um of G(I) and j = 1, . . . ,m the 
olon ideals

(u1, . . . , uj−1) : uj are generated by a subset of {x1, . . . , xn}. We de�ne

set(uj) = {k ∈ [n] : xk ∈ (u1, . . . , uj−1) : uj}, for j = 1, . . . ,m.

A

ording to Eliahou-Kervaire [6℄ a monomial ideal I in R is stable if for every

monomial w ∈ I and for every index i < M(w), the monomial xiw/xM(w) again

belongs to I. In [7℄ J. Herzog and Y. Takayama proved that stable monomial

ideals have linear quotients with respe
t to the reverse lexi
ographi
al order. We

are interested in the lexsegment ideals with linear quotients with respe
t to the

lexi
ographi
 order. Let u = xa1

1 . . . xan
n and v = xb1

1 . . . xbn
n be monomials of the

same degree. We say that v > u in the lexi
ographi
 order if there exists an

integer i su
h that bk = ak for k = 1, . . . , i− 1 and bi > ai. We set νi(u) = ai for

i = 1, . . . , n. In the following we prove that stable monomial ideals have linear

quotients with respe
t to the lexi
ographi
 order.

Proposition 2.1. Let I be a stable monomial ideal. Let G(I) = {u1, . . . , um},
where u1 > u2 > . . . > um in the lexi
ographi
 order with regard to x1 > x2 >
. . . > xn. Then I has linear quotients for this order of generators.

Proof: Let u ∈ G(I) and let J be the ideal generated by all v ∈ G(I) with v > u
in the lexi
ographi
 order. Then J : u = (v/[v, u] : v ∈ J), where [v, u] denotes
the greatest 
ommon divisor of u and v. Thus in order to prove that J : u is

generated by monomials of degree 1, we have to show that for ea
h v > u there

exists xj ∈ J : u su
h that xj divides v/[v, u]. In fa
t, let u = xa1

1 . . . xan
n and

v = xb1
1 . . . xbn

n . Sin
e v > u, there exists an integer i su
h that bk = ak for k =
1, . . . , i− 1 and bi > ai. Obviously i < M(u). Sin
e I is stable then u = xiu

′ ∈ I.
Sin
e i < M(u) we see that u ∈ J and from the equation xM(u)u = xiu we dedu
e

that xi ∈ J : u. Finally sin
e νi(v/[u, v]) = bi − min{ai, bi} = bi − ai > 0 we

obtain that xj divides v/[v, u].

In the theory of monomial ideals, there is the following hierar
hy of ideals:

initial lexsegment ideals ⇒ strongly stable monomial ideals ⇒ stable monomial

ideals. Then, an immediate 
onsequen
e of 2.1 is the following:

Corollary 2.2. Let I = (Li(u)) be an initial lexsegment ideal. Then I has linear

quotients with respe
t to the lexi
ographi
 order.

Proposition 2.3. Let I be a stable ideal, G(I) = {u1, . . . , um}, with u1 > u2 >
. . . > um in the lexi
ographi
 order. Then

set(uj) = {1, . . . ,M(uj) − 1}

for all u ∈ G(I).
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Proof: Let uj ∈ G(I), k ∈ set(uj). Then xkuj ∈ (u1, . . . , uj−1), and this means

xkuj = xlui, with ui > uj , ui ∈ G(I). Sin
e ui > uj then k < l and sin
e

M(xkuj) = M(xlui), then k < M(uj). Then set(uj) ⊆ {1, . . . ,M(uj) − 1}.
Now let k ∈ {1, . . . ,M(uj)− 1}. Then from k < M(uj) it follows that xku′

j > uj .
Moreover sin
e I is stable xku′

j ∈ I. Then xku′

j ∈ (u1, . . . , uj−1) and this means

k ∈ set(uj). Then {1, . . . ,M(uj) − 1} ⊆ set(uj) and the assert follows.

In the general 
ase, �nal lexsegment ideals do not have a linear quotients.

Example 2.4. Let R = k[x1, x2, x3, x4] and I = (Lf (x2
2x4)). Then I = (x2

2x4, x2x
2
3,

x2x
2
4, x

3
3, x

2
3x4, x3x

2
4, x

3
4). The 
olon ideal (x2

2x4) : x2x
2
3 = (x2x4) is not generated

by a subset of {x1, x2, x3, x4}.

Lemma 2.5. If I is an ideal of R with linear quotients, su
h that all generators

of I have the same degree, then I has a linear resolution.

Proof: The assertion follows from Lemma 2.16 in [9℄.

In the following we 
hara
terize all �nal lexsegment ideals with linear quotients

in the lexi
ographi
 order.

Theorem 2.6. Let u be a monomial of degree d in k[x1, . . . , xn]. The following


onditions are equivalent:

(1) J = (Lf (u)) has linear quotients.

(2) (L(u, v)) has linear resolution for all v < u.

(3) u = xa
i xd−a

i+1 for some 1 ≤ i < n, 0 ≤ a ≤ d.

Proof: We prove that (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (1).

(1) ⇒ (2). Obviously if J has linear quotients respe
t to the lexi
ographi
 or-

der then (L(u, v)) has linear quotients for all v < u. It follows from Lemma 2.5

(L(u, v)) has linear resolution for all v < u.

(2) ⇒ (3). We prove that if u 6= xa
i xd−a

i+1 , for all 1 ≤ i < n, for all 0 ≤ a ≤ d,
then there exists a monomial v < u su
h that (L(u, v)) does not have a linear

resolution. Suppose that u = xa1

1 . . . xan
n . Let us 
onsider i = m(u) = min{i :

i ∈ supp(u)}. Note that i is the �rst index su
h that ai 6= 0. We may 
onsider

the monomial v = xai−1
i xd−ai+1

i+1 , v < u. If I = (L(u, v)) is 
ompletely lexseg-

ment, then from 1.1 a1 6= 0. Then v = xa1−1
1 xd−a1+1

2 . We 
onsider the monomial

w = xa1−1
1 xd−a1

2 x3, w < v and we show that 
ondition (c) of Theorem 1.2 is

not satis�ed. Sin
e a1 6= 0 and u 6= xa1

1 xd−a1

2 , then x1w
′ = xa1

1 xd−a1

2 > u.
Then (L(u, v)) does not have a linear resolution. Now suppose that I is not


ompletely lexsegment and 
onsider the ideal Ĩ = (L(u/f, v/f)), with f = xa1−1
1

in k[x1, . . . , xn]. In order to show that I does not have a linear resolution we
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show that Ĩ does not have a linear resolution. Suppose that Ĩ is 
ompletely

lexsegment and take the largest monomial w < v/f , w = xd−a1

2 x3. It follows

from u 6= xa1

1 xd−a1

2 that u/f 6= x1x
d−a1

2 and this implies a2 < d − a1. Then

x1w
′ > x1x

d−a1

2 > u/f and it follows from Theorem 1.2, 
ondition (c) that Ĩ
does not have a linear resolution. Now suppose that Ĩ is not 
ompletely lexseg-

ment. Then it follows from Theorem 1.3 that Ĩ = (L(x1x
a2

2 . . . xan
n , xd−a1+1

2 ))
does not have a linear resolution. Then I does not have a linear resolution.

(3) ⇒ (1). We prove that if u = xa
i xd−a

i+1 then J has linear quotients. Let

w ∈ G(J), i.e. w ≤ u, and let I be the ideal generated by all v ∈ G(J) with v > w
(in the lexi
ographi
 order). Then I : w = (v/[v, w] : v ∈ I). Let w = xb1

1 · · ·xbn
n ,

v = xa1

1 · · ·xan
n . Sin
e u = xa

i xd−a
i+1 ≥ v = xa1

1 · · ·xan
n > w = xb1

1 · · ·xbn
n then for all

k < i, ak = bk = 0 then v and w are of the following form:

v = xai

i · · ·xan
n , w = xbi

i . . . xbn
n .

Moreover sin
e v > w, in the lexi
ographi
 order, there exists an index j su
h

that ak = bk for every k = i, . . . , j − 1 and aj > bj .

From the inequality u = xa
i xd−a

i+1 > w = xbi

i · · ·xbn
n we obtain a ≥ bi. We distin-

guish two 
ases:

First Case: a > bi. We prove that in this 
ase the following inequalities hold:

u = xjw
′ ≤ xiw

′ ≤ xa
i xd−a

i+1 . (1)

The �rst inequality of (1) follows from j ≥ i. In order to prove the se
ond ine-

quality we note that sin
e w < u then M(w) ≥ i + 1. If M(w) > i + 1 then

xiw
′ < u. If M(w) = i + 1 and a = bi + 1 then xiw

′ = xbi+1
i xd−a+1

i+1 /xi+1 = u. If
M(w) = i + 1 and a > bi+1 then xiw

′ < u.
From (1) it follows u ∈ J and sin
e j < M(w) then u > w, i.e., u ∈ I.
Then it follows from equation xjw = uxM(w) that xj ∈ I : w. Finally, sin
e

νj(v/[v, w]) = aj − min{aj , bj} = aj − bj > 0, we have that xj divides v/[v, u].

Se
ond Case: a = bi. If a = bi then d − a > bi+1 and ai = a = bi. Sin
e

bi+1 < d − a and j ≥ i + 1 then û = xjw
′ ≤ xi+1w

′ ≤ u and this means that

û ∈ J . Moreover sin
e M(w) > j then û ∈ I. From equality xM(w)û = xjw it fol-

lows that xj ∈ I : w. Finally, sin
e νj(v/[v, w]) = aj − min{aj , bj} = aj − bj > 0
then xj divides v/[v, w].

Besides 
hara
terizing �nal lexsegment ideals with linear quotients Theorem

2.6 also determines a large 
lass of arbitrary lexsegment ideals with linear quo-

tients, as shows the following:

Corollary 2.7. If u = xa
i xd−a

i+1 for some 1 ≤ i ≤ n, 0 ≤ a ≤ d, then I = (L(u, v))
has linear quotients with respe
t to lexi
ographi
 order for every monomial v ≤ u.

In the following we 
hara
terize all arbitrary lexsegment ideals with linear

quotients in the lexi
ographi
 order.
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Theorem 2.8. Let u = xa1

1 · · ·xan
n , v = xb1

1 · · ·xbn
n be monomials of degree d in

k[x1, . . . , xn]. Let k = max(u) − 2. The following 
onditions are equivalent:

(1) I = (L(u, v)) has linear quotients.

(2) (L(u,w)) has linear resolution for all u > w ≥ v

(3) v ≥ xa1

1 · · ·xak

k x
d−(a1+a2+...+ak)
n .

Proof: We prove that (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (1).

(1) ⇒ (2). Obviously if I has linear quotients respe
t to the lexi
ographi
 or-

der then (L(u,w)) has linear quotients for all u > w ≥ v. It follows from Lemma

2.5 (L(u,w)) has linear resolution for all u > w ≥ v.

(2) ⇒ (3). We prove that if v < xa1

1 · · ·xak

k x
d−(a1+a2+...+ak)
n , then there exists

a monomial u > w ≥ v su
h that (L(u,w)) does not have a linear resolu-

tion. Let j = max{i ∈ supp(u), 1 ≤ i ≤ k : ai 6= 0}. Then u is of the form

u = xa1

1 · · ·x
aj

j x
ak+1

k+1 x
ak+2

k+2 . Take w = v = xa1

1 · · ·x
aj−1
j x

d−(a1+...+aj−1)
j+1 . We �rst

prove that (L(u,w)) is not 
ompletely lexsegment. In fa
t, suppose that (L(u, v))
is 
ompletely lexsegment, then from Theorem 1.1 it follows that a1 6= 0 and sin
e

a1 = b1 then (L(u, v)) is 
ompletely lexsegment if and only if 
ondition (a) of

1.1 is satis�ed, i.e., if and only if u = xa
1x

d−a
2 and v = xa

1x
d−a
n . But this is

a 
ontradi
tion be
ause v < xa1

1 · · ·xak

k x
d−(a1+a2+...+ak)
n . Then (L(u,w)) is not


ompletely lexsegment. Now we prove that (L(u,w)) does not have a linear res-

olution by applying the pro
edure des
ribed in se
tion 1. Take f = xa1

1 · · ·x
aj−1

j−1 .
The ideal (L(u,w)) has a linear resolution in k[x1, . . . xn] if and only if the ideal

(L(u/f, v/f)) has linear resolution in k[xj , . . . , xn]. Note that (L(u/f, v/f)) =

(L(xjx
ak+1

k+1 x
ak+2

k+2 , x
d−(a1+...+aj−1)
j+1 )). It follows from 1.3 that (L(u/f, v/f)) does

not have a linear resolution in k[xj , . . . , xn].

(3) ⇒ (1). We prove that if v ≥ xa1

1 · · ·xak

k x
d−(a1+a2+...+ak)
n then I has linear

quotients. Let w ∈ G(I), i.e, u ≥ w ≥ v and let J be the ideal generated by all

z ∈ G(I) with z > w (in the lexi
ographi
 order). Then J : w = (z/[z, w] : z ∈ J).
Let w = xc1

1 · · ·xcn
n , z = xr1

1 · · ·xrn
n . Sin
e u = xa1

1 · · ·xak

k x
ak+1

k+1 x
ak+2

k+2 ≥ z > w ≥

xa1

1 · · ·xak

k xd−a1+...+ak
n , then for all l = 1, . . . , k we have al = rl = cl. Moreover

sin
e z > w there exists an index j ∈ supp(z) su
h that rl = cl, ∀l = 1, . . . , j − 1
and rl > cl. From the inequality u > w we obtain ak+1 ≥ ck+1. We distinguish

two 
ases:

First 
ase. ak+1 > ck+1. We prove that in this 
ase the following inequalities

hold:

v ≤ w = xjw
′ ≤ xk+1w

′ ≤ u. (2)

We note that j ≥ k + 1. Then xjw
′ ≤ xk+1w

′. It follows from j < max(w) that

xjw
′ > w ≥ v and then we obtain the inequality xjw

′ ≥ v. Finally the inequality
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xk+1w
′ ≤ u follows from ak+1 > ck+1.

From (2) it follows that w ∈ I. Moreover sin
e w > w then w ∈ J. Then it follows

from equation

xjw = wxM(w)

that xj ∈ J : w. Finally sin
e νj(z/[z, w]) = rj − min{rj , cj} = rj − cj > 0 then

xj divides z/[z, w].

Se
ond Case. ak+1 = ck+1. If ak+1 = ck+1 then ak+2 > ck+2. Moreover sin
e

j ≥ k +2 then v ≤ ŵ = xjw
′ ≤ xk+2w

′ ≤ u and this means that ŵ ∈ I. Moreover

sin
e M(w) > j then ŵ > w and then ŵ ∈ J. From equality xM(w)ŵ = xjw it

follows that xj ∈ J : w. Finally, sin
e νj(z/[z, w]) = rj−min{cj , rj} = rj−cj > 0
then xj divides z/[z, w].

In the following we give an alternative proof of Corollary 2.7 using Theorem

2.8.

Another immediate 
onsequen
e of 2.8 gives us information on the �rst syzygy

module of lexsegment ideals. In fa
t a monomial ideal I has linear quotients if

and only if the �rst syzygy module of I has a quadrati
 Gröbner basis [7℄. Then

we have the following:

Corollary 2.9. Let u = xa1

1 · · ·xan
n , k = M(u) − 2, I = (L(u, v)) a lexsegment

ideal. Then the �rst syzygy module of I has a quadrati
 Gröbner basis if and only

if v ≥ xa1

1 · · ·xak

k x
d−(a1+a2+...+ak)
n .

3 The minimal free resolution of lexsegment ideals with linear quo-

tients

In the general 
ase, the problem of determining the resolutions of arbitrary lexseg-

ment ideals is open. Partial results are 
ontained in [8℄, where the basis of Koszul

homology and a formula for the lower degree Betti number are 
omputed, but a

des
ription of the maps is not known. In parti
ular it holds the following:

Theorem 3.1. Let I = (L(u, v)) be a lexsegment ideal in R. Then for i ≥ 2 the

lower degree Betti number is:

βi,d+i−1(R/I) =
∑

w∈G(I)

M(w)−i+1
∑

j=1

(

M(w) − j − sj(w) + lj(w) − 1
i − 2

)

(3)

where, for w ∈ G(I) lj(w) and sj(w) are de�ned as follows: if there exists a pair

of integers l and s su
h that j < l ≤ s ≤ M(w) and xiw
′xs

xl
∈ G(I), then lj is the

largest l satisfying this 
ondition, sj is the smallest s; if a pair of this kind does

not exist then lj(w) = j and sj(w) = M(w).

Proof: See [8℄.
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This se
tion 
ontains results des
ribing the resolutions of all lexsegment ide-

als with linear quotients. This des
ription is obtained from Herzog-Takayama's

results, based on iterated mapping 
ones [7℄. Re
all that the mapping 
one of

ϕ is the 
omplex C(ϕ) with C(ϕ)i = Bi ⊕ Ai−1 for all i, and 
hain map d with

di : C(ϕ)i → C(ϕ)i−1, di(b, a) = (ϕ(a) + ∂(b),−∂(a)). We re
all the following:

Lemma 3.2. Suppose deg u1 ≤ deg u2 ≤ . . . ≤ deg um. Then the iterated map-

ping 
one F , derived from the sequen
e u1, . . . , um, is a minimal graded free

resolution of R/I, and for all i > 0, the symbols

f(σ;u) with u ∈ G(I), σ ⊂ set(u), |σ| = i − 1

form a homogeneous basis of the R−module Fi. Moreover deg(f(σ;u)) = |σ| +
deg(u).

Proof: See [7℄, Lemma 1.5.

Let M(I) be the set of all monomials of I. The map g : M(I) → G(I) is

de�ned as follows: we set g(u) = uj if j is the smallest integer su
h that u ∈ Ij

and it is 
alled de
omposition fun
tion of I.

De�nition 3.3. We say that the de
omposition fun
tion g : M(I) → G(I) is

regular, if set(g(xsu)) ⊂ set(u) for all s ∈ set(u) and u ∈ G(I).

We note that the de
omposition fun
tion for an arbitrary monomial ideal

is not always regular. For example, 
onsider I = (x1x3, x1x5, x
2
5). Then, with

respe
t to the lexi
ographi
 order, I has linear quotients. It 
an be veri�ed that

set(x2
5) = {x1}, and set(g(x1x

2
5)) = {x3}.

We will show that lexsegment ideals with linear quotients always have a regular

de
omposition fun
tion.

In the following propositions we des
ribe the set and the de
omposition fun
tion

of a generator of I, in the 
ase that I is a lexsegment ideal with linear quotients.

Proposition 3.4. Let u = xa1

1 · · ·xan
n , v = xb1

1 · · ·xbn
n , I = (L(u, v)) with G(I) =

L(u, v) = {u1 = u, u2, · · · , um = v}. Let w ∈ G(I), w = xd1

1 · · ·xdn
n . Suppose I

has linear quotients. Then we have:

set(w) = {l, . . . ,M(w) − 1}

being l the smallest integer su
h that al > dl.

Proof: Let r ∈ set(w). We will show l ≤ r ≤ M(w) − 1. We have w = uj ,

1 ≤ j ≤ m. Then

xrw = xsui, (4)

ui > w. This means M(xrw) = M(xsui) and s > r. Then r < M(w).
Let ui = xc1

1 · · ·xcn
n . It follows from 2.8 that

u = xa1

1 · · ·xak

k x
ak+1

k+1 x
ak+2

k+2 ≥ ui > w ≥ v ≥ xa1

1 · · ·xak

k xd−(a1+...+ak),
n
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with k = M(u) − 2 and then r ≥ k + 1. With the notations of 2.8 we have

w = xa1

1 · · ·xak

k x
dk+1

k+1 x
dk+2

k+2 · · ·xdn
n , ui = xa1

1 · · ·xak

k x
ck+1

k+1 x
ck+2

k+2 · · ·xcn
n . It follows

that

x
ak+1

k+1 x
ak+2

k+2 ≥ x
ck+1

k+1 x
ck+2

k+2 · · ·xcn
n > x

dk+1

k+1 x
dk+2

k+2 · · ·xdn
n ≥ xd−(a1+...+ak)

n . (5)

We have al ≥ cl > dl. Note that k +1 ≤ l ≤ k +2. If l = k +1 then r ≥ k +1 = l.
Now suppose l = k + 2. Sin
e r ≥ k + 1, it su�
es to prove that r 6= k + 1. Let
r = k + 1. From (4) ui = xk+1w/xs and then

x
ck+1

k+1 x
ck+2

k+2 · · ·xcn
n = xk+1x

dk+1

k+1 x
dk+2

k+2 · · ·xdn
n /xs. (6)

By substituting (6) in the �rst inequality of (5) we obtain:

x
ak+1

k+1 x
ak+2

k+2 ≥ xk+1x
dk+1

k+1 x
dk+2

k+2 · · ·xdn
n /xs.

But l = k + 2, then ak+1 = dk+1 and we obtain:

x
ak+2

k+2 ≥ xk+1x
dk+2

k+2 · · ·xdn
n /xs,

with s > r = k + 1. But this is a 
ontradi
tion. Then r ≥ l. Now suppose

r ∈ {l, . . . ,M(w)−1}. We show that xrw = xtui, for some 1 ≤ t ≤ n, u ≥ ui > w.
Consider ui = xrw

′. Sin
e r < M(w) we have ui > w. Sin
e r ≥ l we have ui ≤ u.
We 
an write: xrw = xrw

′xM(w) = uixM(w) and then {l, . . . ,M(w)−1} ⊂ set(w).

Proposition 3.5. Let u = xa1

1 · · ·xan
n , v = xb1

1 · · ·xbn
n , I = (L(u, v)) with G(I) =

L(u, v) = {u1 = u, u2, . . . , um = v}. Let w ∈ G(I), w = xd1

1 · · ·xdn
n , g be the

de
omposition fun
tion of I. Suppose I has linear quotients. Then we have:

g(xsw) = xsw
′, for all w ∈ G(I), s ∈ set(w).

Proof: We have w = uj , with u ≥ uj ≥ v. From Proposition 3.4 it follows that

l ≤ s ≤ M(w) − 1, with l the �rst integer su
h that al > dl. Then xsu
′

j ∈
(u1, . . . , uj−1). Now suppose that there exists ui > w su
h that xsuj = xtui, for
some 1 ≤ t ≤ n. We prove ui ≥ xsu

′

j . But this is obvious be
ause ui = xsuj/xt ≥
xsuj/xM(uj), being M(uj) ≥ t > s.

Proposition 3.6. Let u = xa1

1 . . . xan
n , v = xb1

1 · · ·xbn
n , I = (L(u, v)) with G(I) =

L(u, v) = {u1 = u, u2, . . . , um = v}. Let w ∈ G(I), w = xd1

1 · · ·xdn
n . Suppose I

has linear quotients. Then I has a regular de
omposition fun
tion.

Proof: Let w ∈ G(I), s ∈ set(w). We prove that set(g(xsw)) ⊂ set(w). It follows
from 3.4 that

set(w) = {l, . . . ,M(w) − 1}, with l the �rst integer su
h that al > dl.
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Moreover from 3.5

set(g(xsw)) = set(xsw
′)

and again from 3.4 we obtain

set(g(xsw
′)) = {t, . . . ,M(xsw

′) − 1}.

Sin
e s ∈ set(w), then l ≤ s ≤ M(w′). In order to prove that set(g(xsw)) ⊂ set(w)
it su�
es to prove t ≥ l and M(xsw

′) ≤ M(w).
Suppose xsw

′ = xc1

1 . . . xcn
n , then t is the �rst integer su
h that at > ct and sin
e

s ≥ l then t ≥ l. Moreover sin
e s ≤ M(w′) we have M(xsw
′) = M(w′) < M(w)

and the assertion follows.

Now we are able to give the following:

Theorem 3.7. Let I be a lexsegment ideal with linear quotients, and F the graded

minimal free resolution of R/I. Then the 
hain map ∂ of F is given by

∂(f(σ;u)) = −
∑

t∈σ

(−1)α(σ,t)xtf(σ\t;u)+xM(u)
∑

t∈σ

f(σ\t;xtu
′), if σ 6= ∅, and

∂(f(∅;u)) = u, otherwise .

Here α(σ, t) = |{s ∈ σ : s < t}|.

Proof: Note that from 3.6 I has a regular de
omposition fun
tion. Then the

assertion follows from Theorem 1.12 in [7℄ and from the des
ription of the regular

de
omposition fun
tion given in 3.5.

An immediate 
onsequen
e of 3.2 and 3.6 is the following:

Corollary 3.8. Let I be a lexsegment ideal with linear quotients, G(I) = L(u, v)
its minimal system of generators, F. the minimal free resolution of R/I. Denote,

by iw, the smallest integer su
h that aiw
> diw

, if w 6= u and iu = M(u), where
w = xd1

1 . . . xdn
n , u = xa1

1 . . . xan
n . Then:

(a) βi(R/I) =
∑

w∈G(I)

(

M(w) − iw
i − 1

)

,

(b) proj dim(R/I) = max{M(w) − iw + 1, w ∈ G(I)},

(
) HFi
(t) = 1

(1−t)n

∑

w∈G(I)

(

M(w) − iw
i − 1

)

ti+d−1.

Proof: The assertions (a) and (b) follow from Lemma 3.2 and from Proposition

3.6. The assertion (c) follows from (a) and from the 
omputation of the Hilbert

series through free resolutions (see [2℄ pp. 153, Lemma 4.1.13).
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Remark 3.9. Let v ∈ Md, I = (Li(v)) be an initial lexsegment ideal. We 
an

write I = (L(u, v)), with u = xd
1. In this 
ase iw = 1 for all w ∈ G(I). From

Corollary 3.8 we obtain:

βi(A/I) =
∑

w∈G(I)

(

M(w) − 1
i − 1

)

,

that is the formula for Betti numbers of stable ideals (see [6℄).

Remark 3.10. If i ≥ 2 the formula obtained in Corollary 3.8 
an be dedu
ed by

Theorem 3.1. In fa
t let I be an arbitrary lexsegment ideal with linear quotients.

Then, it follows from 2.5 that I has a linear resolution. Then it follows from

formula (3) that:

βi(R/I) =
∑

w∈G(I)

M(w)−i+1
∑

j=1

(

M(w) − j − sj(w) + lj(w) − 1
i − 2

)

, (7)

But, in this 
ase, we obtain:

lj(w) = sj(w), j = iw. (8)

By substituting (8) in (7) we obtain the formula obtained in Corollary 3.8,

(a).

We 
on
lude this se
tion with a remark on arbitrary lexsegment ideals without

linear quotients.

We �rst quote a result of Herzog whi
h 
omputes a bound for Betti numbers of

the sum of a �nite number of ideals.

Corollary 3.11. Let I and J monomial ideals in R. Then:

βi(R/(I + J)) ≤
∑i

j=0 βj(R/I)βi−j(R/J).

Proof: See [10℄, Corollary 3.1.

Remark 3.12. Let I be an arbitrary lexsegment ideal. If I does not have linear

quotients, it follows from Theorem 2.8 that I 
an be written as sum of lexseg-

ment ideals with linear quotients, then, in su
h 
ases, by using Corollary 3.8 and

Corollary 3.11 we 
an obtain a bound for Betti numbers of I as the following

example shows.

Example 3.13. Let R = k[x1, . . . , x6], I = (L(u, v)), u = x3
1x2x4, v = x3

1x3x5.

It follows from Theorem 2.8 that I does not have linear quotients, be
ause

v < x3
1x2x6. We 
an write I = I1 + I2, with I1 = (L(x3

1x2x4, x
3
1x2x6)), I2 =

(L(x3
1x

2
3, x

3
1x3x5)). By applying Theorem 2.8 again we have that I1 and I2 have

linear quotients. By applying Corollary 3.8 we obtain:

β0(R/I1) = 1, β1(R/I1) = 3, β2(R/I1) = 3 , β3(R/I1) = 1,

β0(R/I2) = 1, β1(R/I2) = 3, β2(R/I2) = 3 , β3(R/I2) = 1.
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and from Corollary 3.11 we obtain:

β0(R/I) = 1, β1(R/I) = 6, β2(R/I) ≤ 15, β3(R/I) ≤ 20, β4(R/I) ≤ 13.

4 Algorithms to test the regularity of the de
omposition fun
tion

This se
tion 
ontains some algorithms, designed with CoCoA [3℄, whi
h have been

used to 
hara
terize all lexsegment ideals with linear quotients and to test that

su
h ideals have a regular de
omposition fun
tion.

The following algorithm allows us to establish if an ideal I has linear quotients.

Algorithm 4.1.

--Test: Has I linear quotients?

Define IsIdealQL(I);

GensI:=Gens(I);

For T := 2 To Len(GensI) Do

I
olon:=Ideal(First(GensI,T-1)):Ideal(GensI[T℄);

If Not IsSubSet(Gens(I
olon),Indets()) Then Return FALSE;

EndIf;

EndFor;

Return TRUE;

EndDefine;

The following algorithm returns the value of the de
omposition fun
tion. This

version of Algorithm 4.2, faster than the preliminary version, has been written

by professor A. Bigatti.

Algorithm 4.2.

Define FirstRedu
er(U,G);

For I := 1 To Len(G) Do

If Type(U/G[I℄)<>RATFUN Then Return I; EndIf;

EndFor;

Error("the monomial does not belong to the ideal"); EndDefine;

The previous fun
tions are used by the following:

Algorithm 4.3.

-- Is the de
omposition fun
tion of I regular?

Define IsDe
ompRegular(I);

If Not IsIdealQL(I) Then Error("I does not have linear quotients");

EndIf;

GensI:=Gens(I);

For T := 2 To Len(GensI) Do

L:=Ideal(First(GensI,T-1)):Ideal(GensI[T℄);
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Minimalize(L);

GensL:=Gens(L);

K:=GensL*GensI[T℄;

For S:=1 To Len(K) Do

De
omp:=FirstRedu
er(K[S℄,GensI);

M:=Min(De
omp);

W:=Ideal(First(GensI,M-1)):Ideal(GensI[M℄);

GensW:=Gens(W);

If GensW<>[0℄ And Not IsSubSet(GensW,GensL)

Then Return FALSE;

EndIf;

EndFor;

EndFor;

Return TRUE;

EndDefine;

The Algorithm 4.1 allows us to establish if an ideal I has linear quotients, but

it does not return the set of the generators. In order to obtain a des
ription of

the set one 
an use the following modi�ed version of 4.1.

Algorithm 4.4.

Define Quozients(I); GensI:=Gens(I);

For T := 2 To N Do

Ideal(First(I,T-1)):Ideal(I[T℄);

EndFor;

EndDefine;

We 
on
lude this se
tion giving the following open problem:

Problem 4.5. Determining other 
lasses of monomial ideals with linear quotients

and admitting a regular de
omposition fun
tion.

The previous 
onsiderations suggest that these 
lasses enlarge the 
lass of

monomial ideals whose resolution is known. Moreover, ex
luding the large 
lasses

of matroidal ideals, stable ideals and lexsegment ideals with linear quotients, no

other 
lass with this property is known.
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