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Existence and multiplicity of radial solutions for an elliptic
boundary value problem on an annulus

by
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Abstract

This paper deals with the study of the existence and multiplicity of
radial solutions for the problem —Au(z) = f(u(x)) when z € Q and u(z) =
0 when z € 99, where Q = {x € R"; a < |2] < b} with 0 < a < b
is an annulus in RY and f : R — R is a continuous function. We use as
main tools Schaeffer’s fixed point theorem and Leggett-Williams fixed point
theorem in order to obtain radial solutions for the above problem.
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1 Introduction

In this paper we are concerned with the study of the boundary value problems

—Au(z) = f(u(z)), if z€Q
{ u(z) = 0, it ze00. (1)

where Q C RY (N > 3)is the annulus Q = {x € RY; a < |z| < b} withO < a <b
and f:R — R is a continuous function which satisfies certain properties.

The study of such type of equations is motivated by the fact that they serve as
models for some phenomena which arise in fluid mechanics, such as the exothermic
chemical reactions or autocatalytic reactions (see [11], Section 5.11.1). More
exactly, if we denote by —VT the heat flux, then temperature T satisfies

V2T + f(T)=0
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according to the notations in [11].

We also point out the fact that problems of type (1) are connected with the
classical boundary value theory of Bernstein [4] (see also the studies of Granas,
Gunther and Lee [7] for some extensions to nonlinear problems).

The existence and uniqueness of positive radial solutions for equations of type
(1) were obtained in [3], [9], [12]. Wang [12] proved that if f : (0,00) — (0, 00)

satisfies
lim@:oo and lim M:O

z—0 Zz z—0o0 2

then problem (1) has a positive radial solution in 2. That result was extended
for the systems of elliptic equations by Ma [10].
Finally, we remember that in the particular case when

f(u(x)) = [u(z)|? sgn(u(z))

equation (1) becomes

—Au(z) = [u(z)|P sgn(u(z)), if zeQ (2)
u(z) =0, if xe€dN.

and is called Lane-Emden or Emden-Fowler equation. Using adequate variational
techniques Ambrosetti and Rabinowitz proved in [2]| the existence of infinitely
many solutions for equation (2) for p € (1,(N +2)/(IN —2)). Similar results were
obtained by Ambrosetti and Badiale in [1] for p € (0, 1).

In this paper we impose certain conditions on f in order to prove the existence
and multiplicity of radial solutions of problem (1). Our idea is to characterize the
solutions of the boundary value problem (1) as fixed points of some operators.
With that end in view we will use as main tools two classical fixed point theorems.
The first one is Schaeffer’s fixed point theorem (see Theorem 4.7 in [5]):

Theorem 1. (Schaeffer) Let X be a real normed linear space and let h : X — X
be a completely continuous map. Suppose that h satisfies the Leray-Schauder
boundary condition, i.e. there exists r > 0 such that ||z|| = r implies h(z) # Az
for all X\ > 1. Then h has a fized point.

Remark 1. We point out the fact that since ||A- x| = X - ||z]| for any x € X
and any A > 0 it follows that h satisfies the Leray-Schauder boundary condition
if ||z|| = r implies ||h(z)| < r.

The second fixed point theorem that will be used in our study is due to Leggett
and Williams [8].

Theorem 2. (Leggett-Williams) Let E be a real Banach space, P C E a cone
and o : P — [0,00) a nonnegative, continuous, concave functional. For any i, j
positive numbers we define

Py ={x e P; |lz| <i}
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Playiyj) ={x € P; i < a(z), [lz] <j}.

Assume that there exists 0 > 0 such that a(x) < ||z|| for all x € Py and let
S : Py — Py be a completely continuous operator. Suppose that there ezists
0<~v<qg<r<0 such that

(i) {z € P(a,q,7); a(z) > q} # 0 and a(Sz) > q for x € P(a,q,7);

(i) |Sz|| < for ||z <

(iii) a(Szx) > q for x € P(a,q,0) with ||Sx| > r.

Then S has at least three fived points x1, xa, x3 € Pg satisfying ||x1] < 7,
q < axa), ||zs|| >~ and azs) < q.

2 Main result

We are interested in finding radial solutions for problem (1), i.e. u(x) = u(|z|).
Therefore, we can write equation (1) in the form

{ (1)~ S (1) = flul), i e (a,h) -

u(a) = u(b) =0,
or, equivalently
{ —(tVN () = fu@)NL, i te (a,b) (1)
u(a) = u(b) = 0.

We point out that problem (4) is a Sturm-Liouville type problem. For that
problem we introduce the corresponding Green function by

N—2 N-—-2
1_(2) (P —1], if a<t<s<b
s t
N—2 N-—-2
[1_(a) } (b) ~1], if a<s<t<b,
t S

where C' = (N—2)(bN1*2—aN*2)’ see e.g. [6], Chapter 5.
The main results of this paper are given by the following theorems:

G(t,s)=C-

Theorem 3. Assume that f : R — R is a continuous function and there exists
A > 0 such that z - f(z) < 0 for any |z| > A. Then problem (1) has a radial
solution.

Theorem 4. Assume that f : [0,00) — R is a continuous function and that
there exist a1, by € (a,b) with a1 < by such that function f satisfies the following
properties:

(F1) there exist two real numbers § and &, 0 < § < & such that

f(z)<%, if 0<2<6,
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)

Q|

f(z>>5, if {<z<
m

b b
where M = maXte[a,b]/ G(t,s)sV 1 ds, m = minte[al,bl]/ G(t,s)s™" ! ds and

()07
max{(i) 11— (Z)N2}

(F2) for M defined in (F1) we have

. flz) 1
] )2
SR v

Then problem (1) has at least three radial solutions.

Example 1. We point out an ezample of function f which satisfies conditions

(F1) and (F2)

0/2M, if z€10,0]
[ - ) GDES+QemEL ¥ zebg

2§/m, if ze€l§¢/c]

In(z+1-¢/c) +2¢/m, if z€[¢/e,00)

where the notations are in accord to those used in Theorem /.

Remark 2. We point out the fact that Theorem J still remain valid if we replace
condition (F2) by the condition imposed in the hypotheses of Theorem 3, i.e. there
exists A > 0 such that f(z) <0 for any z > A. Thus, in that case, the ezistence
of a radial solution for problem (1) is already verified via Theorem 3.

3 Proof of Theorem 3

Let X = CZ[a,b] := {u € C?[a,b]; u(a) = u(b) = 0}. The set X endowed with
the norm ||ul|y = ||lul|+|ju|| + |||, where ||Jv]| = maxyciq,p [v(t)], becomes a real
normed linear space.

We consider the operator T : C3[a,b] — CZ[a, b] defined by

b
Tu(t) = / G(t,s) - f(u(s)) - sV ds,

for any u € C2[a,b]. That operator is well defined and completely continuous
(see e.g. Chapter 6 in [5]).
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We point out that u € X is a solution of equation (4) if and only if
u = Tu,

see e.g. Chapter 5 in [6]. Thus, we deduce that the fixed points of T are radial
solutions of equation (1). We show that we can apply Theorem 1 in order to
obtain a fixed point for operator T'.

We have to prove that there exists r > 0 such that if u € CZ[a, b] with [jullz =7
then Tuw # Au, for all A > 1. By Remark 1, it is enough to show that if Tu = Au
for some A > 1 then |lul|2 < r. We will verify an a priori estimate. Suppose that
we have u € C3[a, b] such that Au = T, for some A\ > 1. Then u is a solution of
the equation

%f(u(t))tNﬁl, if te(a,b) (5)

—(tN 1 (1)
u =
for some \ > 1.

We are looking for three positive constant Ag, A1, Ao such that |lu]| < Ao,
o] < Ay and [u”|| < As.

It is clear that |u(t)| can not attain its maximum at ¢ = a or ¢t = b, since we
must have u = 0, which contradict the assumptions on function f. Thus, the
maximum is attained in a point to € (a,b). The function 1u?(t) has also the
maximum at t = tg. It follows that

d (1, 2 (1,

On the other hand, since u verifies (7) we obtain

? (1 1
— | 5uP(t) ) [ty = v/ (t0)® + u(to)u” (to) = —< - u(to) - f(u(to)),
dt? \ 2 A

which implies u(to)- f(u(to)) < 0. It follows that |u(to)| < A and we may consider
Ao = A.

In order to find the bound A; for [|u|| we divide the interval [a, b] into a finite
number of subintervals [m,n] such that u is of constant nowhere-zero sign on
[m,n] and at least one of u'(m) and ' (n) is zero. There are four cases depending
on whether « (t) > 0 or u'(£) < 0 on [m,n] and whether « (m) = 0 or u (n) = 0.
We consider the case v (£) > 0 on (m,n) and v (n) = 0, the other three cases can
be treated similarly. Since w is a solution of (7) we get

WO = |5+ )
1 N -1 /
< Lo+ M
< o+ z (Fo) e @R
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for any ¢t € (a,b). Taking into account that u is continuous on [a,b] and f is
continuous on R we can found a positive constant C' > 0 such that

1" 1 7
lu (t)] < C+ 3 (u (t)%, Vte(a,b).
The above inequality implies

—u(t) < C + % (' ()%, Yte (ab),

| W () (1)
Cr i W)

Integrating the above inequality from m to n we obtain

> —u(t), Vte (ab).

’

I (C) — In (c + % (u (m))2) > u(m) — u(n),

In (c+ % - (ul(m))2> <In(C)+2- M.

We deduce that there exists A; > 0 such that ||u, || <Ay

Finally, since u” (t) = -1 flut)) — &2 - (t) for any t € (a,b) and —Aq <
u(t) < A, —A1 < u (t) < Ay for any t € [a,b] we infer the existence of a positive
constant Ay > 0 such that [|u”]| < As.

The a priori estimate proved above implies that T satisfies the hypotheses of
Schaeffer’s fixed point theorem. Thus, T has a fixed point. We conclude that
problem (1) has a radial solution.

The proof of Theorem 3 is complete. O

Remark 3. We point out the fact that similar arguments as those used in the
proof of Theorem 3 enable us to show the existence of a radial solution for pro-
blems involving more complicated nonlinearities than problem (1). Consider the
problem
{—Amngwuxwwm>,ﬁ ren “
u(x) =0, if xedf.

where @ C RN (N > 3) is the annulus Q = {x € RY; a < || < b} with0 <a <b

and g : RxR — R, g = g(z,w), is a conltinuous function satisfying the properties:

(G1) there exists A > 0 such that

z-g(2,0) <0, V|z| > A;
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(G2) there exist A, B > 0 such that

lg(z,w)| < A-w?+ B, YweR, |z <A.

Then problem (6) has a radial solution.

4 Proof of Theorem 4

Let E = C([a,b]) be the set of all real continuous functions defined on |a, b].
The set E endowed with the norm [|ul| = max;¢[q, |u(t)| becomes a real Banach
space. We define the cone

P {u € Biult) 20, 1€ [ab), min u(t) > cu||}.
€lay,by

For any u € P we introduce the operator

b
Su(t) = / Glt,s) - f(u(s)) - N ds,
and the functional o : P — R,

= min u(t).
a(u) teﬁlifiﬂ“()

We point out that S(P) C P. Indeed, for any u € P we have

min  Su(t) =
t€lay,b1] ( )

N wmw32aN%yﬁﬂﬂfP‘(gNj'KDNg‘q
faws»sN-lds+1[b{1—(j)N;2]-[(i)N2—1]f@ws»sN—lds}
uv—wwiﬂ—aN4>kéﬂ&ﬁltP(zywj'[<i>N21]
1(i>N2]~Kﬁ>N21]ﬂM$ﬁNldﬂ

Y

b
flu)s¥ " ds+ |
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~ [(b)N - 1] Fu(s))sN 1 ds

Futos s+ b GE [(b)N - 1] Fu(s)s¥ " ds)

(N —2)(bN—2 — qN—2
-

In other words, we find



Elliptic boundary value problem 339

Thus, we get that S : P — P is well defined. Moreover, it is easy to show that S
is completely continuous.

On the other hand, functional « is nonnegative, continuous, concave and
satisfies a(u) < ||lul| for any u € P.

We point out that u € F is a solution of equation (4) if and only if

u = Su,

see e.g. Chapter 5 in [6]. Thus, we deduce that the fixed points of operator S are
radial solutions of equation (1).

We show that we can apply Theorem 2 in order to obtain three fixed points
for operator S.

First, we prove that there exists a real number ¢, such that ¢ > &/c¢ and

S : P, — P,. Indeed, since by (F2) we have limsup,_, . @ < 1/M it follows
that there exist 7 > 0 and d < 1/M such that

flz)<d-z, Vz>r.
Consider ¢ = max_.¢o -] f(z). Then
flz)<d-z+v¢ ¥Yz>0.
Taking
—ET.

we find that for any u € P, the following inequalities hold

[Su]

b
f(u(s)) - sV ds
max]/a G(t,s) - f(u(s)) d

tela,b

b
< / G(t,s) (d-u(s)+1)-s" 1 ds

ab
< / Gt,s) - (d- [[uf + ) - ¥~ ds

d~q+w<

<
- M

q.

Thus, we found ¢ > £/c such that S(P,) C P,.
Second, we point out that the constant function

S ¢ fu € P(a,€,€/c); alu) > €}

Moreover, a(Su) > &, for any u € P(«,&,&/c). Indeed, for any u € P(«,&,¢/c)
we have

Q|

> lull > u(z) > min u(t) =alu) >, Vz¢Elar,bi].
te[al,bl]



340 Mihai Mihailescu and Ionel Roventa

That fact combined with condition (F1) implies

a(Su) = min /Gts (s))- N1d8> = min /Gts )-sN T ds = €.

t€lay,b1] m t€lai,b]

Thus, we have verified condition (i) from Theorem 2.
Next, we consider v € E with ||u|| < 6. Then condition (F1) yields

b
[[Sul| = max / G(t,s) - flu(s))-sNtds < o max / G(t,s) sV 1ds=a.
tela,b] J, M

t€[a,b]

Thus, we have verified condition (ii) from Theorem 2.
Finally, we consider u € P(«,&,q) with ||Sul| > &/c. Then it is clear that
§ < minyepq, b,y u(t), |lull < g and ||[Sul| > £/c. Using these facts and relation (7)
we deduce that
§

a(Su) ter[rCLlif})l]Su(t) >c-||Sull > ¢ . 13

and thus, we have verified condition (iii) from Theorem 2.

We remark that all the hypotheses of Theorem 2 are satisfied and thus ope-
rator S has three fixed points, i.e. problem (1) has three radial solutions.

The proof of Theorem 4 is complete. a
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