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Abstra
t

This paper deals with the study of the existen
e and multipli
ity of
radial solutions for the problem −∆u(x) = f(u(x)) when x ∈ Ω and u(x) =
0 when x ∈ ∂Ω, where Ω = {x ∈ R

N ; a < |x| < b} with 0 < a < b

is an annulus in R
N and f : R → R is a 
ontinuous fun
tion. We use as

main tools S
hae�er's �xed point theorem and Leggett-Williams �xed point
theorem in order to obtain radial solutions for the above problem.
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1 Introdu
tion

In this paper we are 
on
erned with the study of the boundary value problems

{

−∆u(x) = f(u(x)), if x ∈ Ω
u(x) = 0, if x ∈ ∂Ω .

(1)

where Ω ⊂ R
N (N ≥ 3) is the annulus Ω = {x ∈ R

N ; a < |x| < b} with 0 < a < b
and f : R → R is a 
ontinuous fun
tion whi
h satis�es 
ertain properties.

The study of su
h type of equations is motivated by the fa
t that they serve as

models for some phenomena whi
h arise in �uid me
hani
s, su
h as the exothermi



hemi
al rea
tions or auto
atalyti
 rea
tions (see [11℄, Se
tion 5.11.1). More

exa
tly, if we denote by −∇T the heat �ux, then temperature T satis�es

∇2T + f(T ) = 0
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a

ording to the notations in [11℄.

We also point out the fa
t that problems of type (1) are 
onne
ted with the


lassi
al boundary value theory of Bernstein [4℄ (see also the studies of Granas,

Gunther and Lee [7℄ for some extensions to nonlinear problems).

The existen
e and uniqueness of positive radial solutions for equations of type

(1) were obtained in [3℄, [9℄, [12℄. Wang [12℄ proved that if f : (0,∞) → (0,∞)
satis�es

lim
z→0

f(z)

z
= ∞ and lim

z→∞

f(z)

z
= 0

then problem (1) has a positive radial solution in Ω. That result was extended

for the systems of ellipti
 equations by Ma [10℄.

Finally, we remember that in the parti
ular 
ase when

f(u(x)) = |u(x)|p sgn(u(x))

equation (1) be
omes

{

−∆u(x) = |u(x)|p sgn(u(x)), if x ∈ Ω
u(x) = 0, if x ∈ ∂Ω .

(2)

and is 
alled Lane-Emden or Emden-Fowler equation. Using adequate variational

te
hniques Ambrosetti and Rabinowitz proved in [2℄ the existen
e of in�nitely

many solutions for equation (2) for p ∈ (1, (N +2)/(N −2)). Similar results were

obtained by Ambrosetti and Badiale in [1℄ for p ∈ (0, 1).
In this paper we impose 
ertain 
onditions on f in order to prove the existen
e

and multipli
ity of radial solutions of problem (1). Our idea is to 
hara
terize the

solutions of the boundary value problem (1) as �xed points of some operators.

With that end in view we will use as main tools two 
lassi
al �xed point theorems.

The �rst one is S
hae�er's �xed point theorem (see Theorem 4.7 in [5℄):

Theorem 1. (S
hae�er) Let X be a real normed linear spa
e and let h : X → X
be a 
ompletely 
ontinuous map. Suppose that h satis�es the Leray-S
hauder

boundary 
ondition, i.e. there exists r > 0 su
h that ‖x‖ = r implies h(x) 6= λx
for all λ > 1. Then h has a �xed point.

Remark 1. We point out the fa
t that sin
e ‖λ · x‖ = λ · ‖x‖ for any x ∈ X
and any λ > 0 it follows that h satis�es the Leray-S
hauder boundary 
ondition

if ‖x‖ = r implies ‖h(x)‖ ≤ r.

The se
ond �xed point theorem that will be used in our study is due to Leggett

and Williams [8℄.

Theorem 2. (Leggett-Williams) Let E be a real Bana
h spa
e, P ⊂ E a 
one

and α : P → [0,∞) a nonnegative, 
ontinuous, 
on
ave fun
tional. For any i, j
positive numbers we de�ne

Pi = {x ∈ P ; ‖x‖ < i}
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P (α, i, j) = {x ∈ P ; i ≤ α(x), ‖x‖ ≤ j}.

Assume that there exists θ ≥ 0 su
h that α(x) ≤ ‖x‖ for all x ∈ P θ and let

S : P θ → P θ be a 
ompletely 
ontinuous operator. Suppose that there exists

0 < γ < q < r ≤ θ su
h that

(i) {x ∈ P (α, q, r); α(x) > q} 6= ∅ and α(Sx) > q for x ∈ P (α, q, r);

(ii) ‖Sx‖ < γ for ‖x‖ ≤ γ;

(iii) α(Sx) > q for x ∈ P (α, q, θ) with ‖Sx‖ > r.

Then S has at least three �xed points x1, x2, x3 ∈ P θ satisfying ‖x1‖ < γ,
q < α(x2), ‖x3‖ > γ and α(x3) < q.

2 Main result

We are interested in �nding radial solutions for problem (1), i.e. u(x) = u(|x|).
Therefore, we 
an write equation (1) in the form

{

−u
′′

(t) −
N − 1

t
u

′

(t) = f(u(t)), if t ∈ (a, b)

u(a) = u(b) = 0,
(3)

or, equivalently

{

−(tN−1u
′

(t))
′

= f(u(t))tN−1, if t ∈ (a, b)
u(a) = u(b) = 0.

(4)

We point out that problem (4) is a Sturm-Liouville type problem. For that

problem we introdu
e the 
orresponding Green fun
tion by

G(t, s) = C ·























[

1 −
(a

s

)N−2
]

·

[

(

b

t

)N−2

− 1

]

, if a ≤ t ≤ s ≤ b

[

1 −
(a

t

)N−2
]

·

[

(

b

s

)N−2

− 1

]

, if a ≤ s ≤ t ≤ b,

where C = 1
(N−2)(bN−2−aN−2)

, see e.g. [6℄, Chapter 5.

The main results of this paper are given by the following theorems:

Theorem 3. Assume that f : R → R is a 
ontinuous fun
tion and there exists

Λ > 0 su
h that z · f(z) < 0 for any |z| > Λ. Then problem (1) has a radial

solution.

Theorem 4. Assume that f : [0,∞) → R is a 
ontinuous fun
tion and that

there exist a1, b1 ∈ (a, b) with a1 < b1 su
h that fun
tion f satis�es the following

properties:

(F1) there exist two real numbers δ and ξ, 0 < δ < ξ su
h that

f(z) <
δ

M
, if 0 ≤ z ≤ δ,
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f(z) >
ξ

m
, if ξ ≤ z ≤

ξ

c
,

where M = maxt∈[a,b]

∫ b

a

G(t, s)sN−1 ds, m = mint∈[a1,b1]

∫ b

a

G(t, s)sN−1 ds and

c =

min

{

(

b

b1

)N−2

− 1 , 1 −

(

a

a1

)N−2
}

max

{

(

b

a

)N−2

− 1 , 1 −
(a

b

)N−2
} ;

(F2) for M de�ned in (F1) we have

lim sup
z→∞

f(z)

z
<

1

M
.

Then problem (1) has at least three radial solutions.

Example 1. We point out an example of fun
tion f whi
h satis�es 
onditions

(F1) and (F2)

f(z) =















δ/2M, if z ∈ [0, δ]

(δ/2M) z−ξ
δ−ξ + (2ξ/m) z−δ

ξ−δ , if z ∈ [δ, ξ]

2ξ/m, if z ∈ [ξ, ξ/c]
ln(z + 1 − ξ/c) + 2ξ/m, if z ∈ [ξ/c,∞)

where the notations are in a

ord to those used in Theorem 4.

Remark 2. We point out the fa
t that Theorem 4 still remain valid if we repla
e


ondition (F2) by the 
ondition imposed in the hypotheses of Theorem 3, i.e. there

exists Λ > 0 su
h that f(z) < 0 for any z > Λ. Thus, in that 
ase, the existen
e

of a radial solution for problem (1) is already veri�ed via Theorem 3.

3 Proof of Theorem 3

Let X = C2
0 [a, b] := {u ∈ C2[a, b]; u(a) = u(b) = 0}. The set X endowed with

the norm ‖u‖2 = ‖u‖+‖u
′

‖+‖u
′′

‖, where ‖v‖ = maxt∈[a,b] |v(t)|, be
omes a real

normed linear spa
e.

We 
onsider the operator T : C2
0 [a, b] → C2

0 [a, b] de�ned by

Tu(t) =

∫ b

a

G(t, s) · f(u(s)) · sN−1 ds,

for any u ∈ C2
0 [a, b]. That operator is well de�ned and 
ompletely 
ontinuous

(see e.g. Chapter 6 in [5℄).
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We point out that u ∈ X is a solution of equation (4) if and only if

u = Tu,

see e.g. Chapter 5 in [6℄. Thus, we dedu
e that the �xed points of T are radial

solutions of equation (1). We show that we 
an apply Theorem 1 in order to

obtain a �xed point for operator T .
We have to prove that there exists r > 0 su
h that if u ∈ C2

0 [a, b] with ‖u‖2 = r
then Tu 6= λu, for all λ > 1. By Remark 1, it is enough to show that if Tu = λu
for some λ > 1 then ‖u‖2 ≤ r. We will verify an a priori estimate. Suppose that

we have u ∈ C2
0 [a, b] su
h that λu = Tu, for some λ > 1. Then u is a solution of

the equation

{

−(tN−1u
′

(t))
′

= 1
λf(u(t))tN−1, if t ∈ (a, b)

u(a) = u(b) = 0,
(5)

for some λ > 1.
We are looking for three positive 
onstant Λ0,Λ1,Λ2 su
h that ‖u‖ < Λ0,

‖u
′

‖ < Λ1 and ‖u
′′

‖ < Λ2.

It is 
lear that |u(t)| 
an not attain its maximum at t = a or t = b, sin
e we

must have u ≡ 0, whi
h 
ontradi
t the assumptions on fun
tion f . Thus, the

maximum is attained in a point t0 ∈ (a, b). The fun
tion 1
2u2(t) has also the

maximum at t = t0. It follows that

d

dt

(

1

2
u2(t)

)

|t0 = 0 and
d2

dt2

(

1

2
u2(t)

)

|t0 ≤ 0.

On the other hand, sin
e u veri�es (7) we obtain

d2

dt2

(

1

2
u2(t)

)

|t0 = u′(t0)
2 + u(t0)u

′′(t0) = −
1

λ
· u(t0) · f(u(t0)),

whi
h implies u(t0) ·f(u(t0)) ≤ 0. It follows that |u(t0)| ≤ Λ and we may 
onsider

Λ0 = Λ.
In order to �nd the bound Λ1 for ‖u

′

‖ we divide the interval [a, b] into a �nite

number of subintervals [m,n] su
h that u
′

is of 
onstant nowhere-zero sign on

[m,n] and at least one of u
′

(m) and u
′

(n) is zero. There are four 
ases depending
on whether u

′

(t) > 0 or u
′

(t) < 0 on [m,n] and whether u
′

(m) = 0 or u
′

(n) = 0.
We 
onsider the 
ase u

′

(t) > 0 on (m,n) and u
′

(n) = 0, the other three 
ases 
an
be treated similarly. Sin
e u is a solution of (7) we get

|u
′′

(t)| =

∣

∣

∣

∣

1

λ
· f(u(t)) +

N − 1

t
· u

′

(t)

∣

∣

∣

∣

≤
1

λ
· |f(u(t))| +

N − 1

t
· |u

′

(t)|

≤
1

λ
· |f(u(t))| +

1

2
·

(

N − 1

a

)2

+
1

2
· (u

′

(t))2,
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for any t ∈ (a, b). Taking into a

ount that u is 
ontinuous on [a, b] and f is


ontinuous on R we 
an found a positive 
onstant C > 0 su
h that

|u
′′

(t)| < C +
1

2
· (u

′

(t))2, ∀ t ∈ (a, b).

The above inequality implies

−u
′′

(t) < C +
1

2
· (u

′

(t))2, ∀ t ∈ (a, b),

or,

u
′′

(t) · u
′

(t)

C + 1
2 · (u′(t))2

> −u
′

(t), ∀ t ∈ (a, b).

Integrating the above inequality from m to n we obtain

ln (C) − ln

(

C +
1

2
· (u

′

(m))2
)

≥ u(m) − u(n),

or,

ln

(

C +
1

2
· (u

′

(m))2
)

≤ ln (C) + 2 · M.

We dedu
e that there exists Λ1 > 0 su
h that ‖u
′

‖ ≤ Λ1.

Finally, sin
e u
′′

(t) = − 1
λ · f(u(t)) − N−1

t · u
′

(t) for any t ∈ (a, b) and −Λ0 ≤

u(t) ≤ Λ0, −Λ1 ≤ u
′

(t) ≤ Λ1 for any t ∈ [a, b] we infer the existen
e of a positive


onstant Λ2 > 0 su
h that ‖u
′′

‖ ≤ Λ2.

The a priori estimate proved above implies that T satis�es the hypotheses of

S
hae�er's �xed point theorem. Thus, T has a �xed point. We 
on
lude that

problem (1) has a radial solution.

The proof of Theorem 3 is 
omplete. 2

Remark 3. We point out the fa
t that similar arguments as those used in the

proof of Theorem 3 enable us to show the existen
e of a radial solution for pro-

blems involving more 
ompli
ated nonlinearities than problem (1). Consider the

problem
{

−∆u(x) = g(u(x), |∇u(x)|), if x ∈ Ω
u(x) = 0, if x ∈ ∂Ω .

(6)

where Ω ⊂ R
N (N ≥ 3) is the annulus Ω = {x ∈ R

N ; a < |x| < b} with 0 < a < b
and g : R×R → R, g = g(z, w), is a 
ontinuous fun
tion satisfying the properties:

(G1) there exists Λ > 0 su
h that

z · g(z, 0) < 0, ∀ |z| > Λ;
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(G2) there exist A, B > 0 su
h that

|g(z, w)| < A · w2 + B, ∀ w ∈ R, |z| ≤ Λ.

Then problem (6) has a radial solution.

4 Proof of Theorem 4

Let E = C([a, b]) be the set of all real 
ontinuous fun
tions de�ned on [a, b].
The set E endowed with the norm ‖u‖ = maxt∈[a,b] |u(t)| be
omes a real Bana
h

spa
e. We de�ne the 
one

P =

{

u ∈ E; u(t) ≥ 0, t ∈ [a, b], min
t∈[a1,b1]

u(t) ≥ c‖u‖

}

.

For any u ∈ P we introdu
e the operator

Su(t) =

∫ b

a

G(t, s) · f(u(s)) · sN−1 ds,

and the fun
tional α : P → R,

α(u) = min
t∈[a1,b1]

u(t).

We point out that S(P ) ⊂ P . Indeed, for any u ∈ P we have

min
t∈[a1,b1]

Su(t) =

=
1

(N − 2)(bN−2 − aN−2)
· min

t∈[a1,b1]
{

∫ t

a

[

1 −
(a

s

)N−2
]

·

[

(

b

t

)N−2

− 1

]

f(u(s))sN−1 ds +

∫ b

t

[

1 −
(a

t

)N−2
]

·

[

(

b

s

)N−2

− 1

]

f(u(s))sN−1 ds}

≥
1

(N − 2)(bN−2 − aN−2)
· min

t∈[a1,b1]
{

∫ t

a

[

1 −
(a

s

)N−2
]

·

[

(

b

b1

)N−2

− 1

]

f(u(s))sN−1 ds +

∫ b

t

[

1 −

(

a

a1

)N−2
]

·

[

(

b

s

)N−2

− 1

]

f(u(s))sN−1 ds}
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≥

min

{

(

b

b1

)N−2

− 1 , 1 −

(

a

a1

)N−2
}

(N − 2)(bN−2 − aN−2)
·

· min
t∈[a1,b1]

{

∫ t

a

[

1 −
(a

s

)N−2
]

f(u(s))sN−1 ds +

+

∫ b

t

[

(

b

s

)N−2

− 1

]

f(u(s))sN−1 ds}

≥

min

{

(

b

b1

)N−2

− 1 , 1 −

(

a

a1

)N−2
}

(N − 2)(bN−2 − aN−2)
·

min
t∈[a1,b1]

{

∫ t

a

( b
s )N−2 − 1

( b
a )N−2 − 1

·

[

1 −
(a

s

)N−2
]

f(u(s))sN−1 ds +

∫ b

t

1 − (a
s )N−2

1 − (a
b )N−2

[

(

b

s

)N−2

− 1

]

f(u(s))sN−1 ds}

≥
c

(N − 2)(bN−2 − aN−2)
·

·

∫ b

a

[

1 −
(a

s

)N−2
]

·

[

(

b

s

)N−2

− 1

]

f(u(s))sN−1 ds

=
c

(N − 2)(bN−2 − aN−2)
· max

t∈[a,b]
{

∫ t

a

[

1 −
(a

s

)N−2
]

·

[

(

b

s

)N−2

− 1

]

f(u(s))sN−1 ds +

∫ b

t

[

1 −
(a

s

)N−2
]

·

[

(

b

s

)N−2

− 1

]

f(u(s))sN−1 ds}

≥
c

(N − 2)(bN−2 − aN−2)
·

· max
t∈[a,b]

{

∫ t

a

[

1 −
(a

s

)N−2
]

·

[

(

b

t

)N−2

− 1

]

f(u(s))sN−1 ds +

∫ b

t

[

1 −
(a

t

)N−2
]

·

[

(

b

s

)N−2

− 1

]

f(u(s))sN−1 ds}

= c max
t∈[a,b]

Su(t) = c‖Su‖.

In other words, we �nd

min
t∈[a1,b1]

Su(t) ≥ c‖Su‖, ∀ u ∈ P. (7)
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Thus, we get that S : P → P is well de�ned. Moreover, it is easy to show that S
is 
ompletely 
ontinuous.

On the other hand, fun
tional α is nonnegative, 
ontinuous, 
on
ave and

satis�es α(u) ≤ ‖u‖ for any u ∈ P .

We point out that u ∈ E is a solution of equation (4) if and only if

u = Su,

see e.g. Chapter 5 in [6℄. Thus, we dedu
e that the �xed points of operator S are

radial solutions of equation (1).

We show that we 
an apply Theorem 2 in order to obtain three �xed points

for operator S.
First, we prove that there exists a real number q, su
h that q > ξ/c and

S : P q → Pq. Indeed, sin
e by (F2) we have lim supz→∞
f(z)

z < 1/M it follows

that there exist τ > 0 and d < 1/M su
h that

f(z) < d · z, ∀ z > τ.

Consider ψ = maxz∈[0,τ ] f(z). Then

f(z) < d · z + ψ ∀ z ≥ 0.

Taking

q > max

{

ψ/M

1 − d/M
,

ξ

c

}

we �nd that for any u ∈ P q the following inequalities hold

‖Su‖ = max
t∈[a,b]

∫ b

a

G(t, s) · f(u(s)) · sN−1 ds

≤

∫ b

a

G(t, s) · (d · u(s) + ψ) · sN−1 ds

≤

∫ b

a

G(t, s) · (d · ‖u‖ + ψ) · sN−1 ds

≤
d · q + ψ

M
< q.

Thus, we found q > ξ/c su
h that S(P q) ⊂ Pq.

Se
ond, we point out that the 
onstant fun
tion

ξ+ξ/c
2 ∈ {u ∈ P (α, ξ, ξ/c); α(u) > ξ}.

Moreover, α(Su) > ξ, for any u ∈ P (α, ξ, ξ/c). Indeed, for any u ∈ P (α, ξ, ξ/c)
we have

ξ

c
≥ ‖u‖ ≥ u(z) ≥ min

t∈[a1,b1]
u(t) = α(u) ≥ ξ, ∀ z ∈ [a1, b1].
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That fa
t 
ombined with 
ondition (F1) implies

α(Su) = min
t∈[a1,b1]

∫ b

a

G(t, s)·f(u(s))·sN−1 ds >
ξ

m
· min
t∈[a1,b1]

∫ b

a

G(t, s)·sN−1 ds = ξ.

Thus, we have veri�ed 
ondition (i) from Theorem 2.

Next, we 
onsider u ∈ E with ‖u‖ < δ. Then 
ondition (F1) yields

‖Su‖ = max
t∈[a,b]

∫ b

a

G(t, s) · f(u(s)) · sN−1 ds <
δ

M
· max

t∈[a,b]

∫ b

a

G(t, s) · sN−1 ds = δ.

Thus, we have veri�ed 
ondition (ii) from Theorem 2.

Finally, we 
onsider u ∈ P (α, ξ, q) with ‖Su‖ > ξ/c. Then it is 
lear that

ξ ≤ mint∈[a1,b1] u(t), ‖u‖ < q and ‖Su‖ > ξ/c. Using these fa
ts and relation (7)

we dedu
e that

α(Su) = min
t∈[a1,b1]

Su(t) ≥ c · ‖Su‖ > c ·
ξ

c
= ξ

and thus, we have veri�ed 
ondition (iii) from Theorem 2.

We remark that all the hypotheses of Theorem 2 are satis�ed and thus ope-

rator S has three �xed points, i.e. problem (1) has three radial solutions.

The proof of Theorem 4 is 
omplete. 2
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