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Introdu
tion

Let K be a �eld and S = K[x1, x2, . . . , xn] be a polynomial ring in n variables

over the �eld K. Let I ⊂ S be a monomial ideal, and let u ∈ S be a monomial

su
h that u is regular on S/I. The purpose of this paper is to investigate how

the Stanley depth and the property of S/I to be pretty 
lean behaves when we

pass from S/I to S/(I, u), and vi
e versa.

We denote by Ic ⊂ S the K-linear subspa
e of S generated by all monomials

whi
h do not belong to I. Then S = I
⊕

Ic and S/I ∼= Ic as K-linear spa
es.

If u ∈ S is a monomial and Z ⊂ {x1, . . . , xn}, the K-subspa
e uK[Z] whose
basis 
onsists of all monomials uv, with v ∈ K[Z], is 
alled a Stanley spa
e of

dimension |Z|. A de
omposition D of Ic as a �nite dire
t sum of Stanley spa
es

is 
alled a Stanley de
omposition of S/I. The minimal dimension of a Stanley

spa
e in D is 
alled the Stanley depth of D and it is denoted by sdepth(D). We

set

sdepth(S/I) := max{sdepth(D) : D is a Stanley de
omposition of S/I}

and 
all this number the Stanley depth of S/I.
Stanley [4, Conje
ture 5.1℄ made a 
onje
ture on general Stanley de
omposi-

tions of Z
n-graded modules. In the spe
ial 
ase that the Z

n-graded module is S/I,
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where I is a monomial ideal, the 
onje
ture says that sdepth(S/I) ≥ depth(S/I).
A monomial ideal I is 
alled Stanley ideal if it satis�es the Stanley's 
onje
ture.

A basi
 fa
t in 
ommutative algebra says depthS/(I, f) = depthS/I − 1 for

any homogeneous element of positive degree f ∈ S whi
h is regular on S/I. In

this paper we show that a 
orresponding statement holds for the Stanley depth.

In fa
t, we show in Theorem 1.1 that sdepth(S/(I, u)) = sdepthS/I − 1 for any

monomial u ∈ S whi
h is regular on S/I.
Spe
ial Stanley de
ompositions arise from prime �ltrations. Let

F : I = I0 ⊂ I1 ⊂ . . . ⊂ Ir = S

be a prime �ltration of S/I, i.e. Ij/Ij−1
∼= S/Pj for any j = 1, . . . , r, where

Pj ⊂ S are prime ideals. The support of F , is the set Supp(F) = {P1, . . . , Pr}.
It is well known that Ass(S/I) ⊂ Supp(F). Re
all that the prime �ltration F
is 
alled pretty 
lean, if for all i < j with Pi ⊂ Pj it follows that Pi = Pj . If

S/I has a pretty 
lean �ltration then S/I is 
alled pretty 
lean, see [2, De�nition

3.3℄. For the pretty 
lean �ltration, Supp(F) = Ass(S/I), see [2, Corollary 3.6℄.

This 
ondition implies, by [3, Proposition 2.2℄, that I is a Stanley ideal. The

prime �ltration F is 
lean if Supp(F) = Min(S/I), where Min(S/I) is the set of

minimal prime ideals of S/I. Note that any 
lean �ltration is pretty 
lean. If

S/I has a 
lean �ltration, that S/I is 
alled 
lean.

The main result (Theorem 2.1) of the se
ond se
tion is that if I ⊂ S is a

monomial ideal and u ∈ S is a monomial whi
h is regular on S/I, then S/I
has a pretty 
lean �ltration if and only if S/(I, u) has a pretty 
lean �ltration.

This result implies that an ideal generated by a regular sequen
e of monomials

is pretty 
lean. This fa
t was �rst proved in [1, Proposition 1.2℄ by a di�erent

method.

I want to thank Professor Jürgen Herzog for his advi
e during the preparation

of the paper.

1 Stanley de
ompositions and regular elements

The aim of this se
tion is to show that the Stanley depth behaves like the ordinary

depth with respe
t to redu
tion modulo regular elements. Indeed we have the

following result:

Theorem 1.1. Let I ⊂ S be a monomial ideal of S = K[x1, . . . , xn] and u ∈ S
be a monomial regular on S/I. Then sdepth(S/(I, u)) = sdepth(S/I) − 1. In

parti
ular, I is a Stanley ideal if and only if (I, u) is a Stanley ideal.

We �rst prove a spe
ial 
ase of the theorem:

Lemma 1.2. Let m < n and J ⊂ S′ = K[x1, . . . , xm] be a monomial ideal. Then

for the monomial ideal I = JS and for any xk with m < k ≤ n we have

sdepth(S/(I, xk)) = sdepth(S/I) − 1.
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Proof: Let T = S′[xm+1, . . . , xk−1, xk+1 . . . , xn] and L ⊂ T be the monomial

ideal su
h that L = JT . Then we have S/(I, xk) = T/L. Let

D : T/L =
r

⊕

i=1

uiK[Zi]

be a Stanley de
omposition of T/L su
h that sdepthD = sdepthT/L. Then

D1 : S/I = (T/L)[xk] =
r

⊕

i=1

uiK[Zi][xk] =
r

⊕

i=1

uiK[Zi, xk]

is a Stanley de
omposition of S/I. It follows that

sdepthD1 = sdepthD + 1 = sdepthT/L + 1

and

sdepthD1 ≤ sdepthS/I.

Hen
e

sdepth T/L + 1 ≤ sdepthS/I.

In order to prove the opposite inequality we 
onsider a Stanley de
omposition

D2 : S/I =

s
⊕

i=1

viK[Wi]

of S/I with sdepthD2 = sdepthS/I.
Let I = {i ∈ [s] : viK[Wi] ∩ T 6= {0}}. We 
laim that

D3 : T/L = Lc =
⊕

i∈I

viK[Wi] ∩ T. (1)

and
⊕

i∈I
viK[Wi] ∩ T is a dire
t sum de
omposition of T/L.

In order to prove (1), 
hoose a monomial v ∈ Lc. We want to show that

there exists i ∈ I su
h that v ∈ viK[Wi] ∩ T . Suppose on the 
ontrary that

v 6∈ viK[Wi] ∩ T for all i ∈ I. Sin
e v ∈ T , it implies that v 6∈ viK[Wi], for all
i. Hen
e we have v ∈ I = JS. Sin
e v ∈ T and L = JT , it follows that v ∈ L,
a 
ontradi
tion. Conversely, 
hoose a monomial w ∈ viK[Wi] ∩ T . This implies

that w 6∈ I = JS and sin
e L = JT ⊂ JS = I, we see that w ∈ Lc.

Now we will show that D3 is a Stanley de
omposition. Indeed, we have

viK[Wi] ∩ T =

{

viK[Wi \ {xk}], if xk does not divide vi

0, otherwise.

Comparing the Stanley de
omposition D2 of S/I with the Stanley de
ompo-

sition D3 of T/L we see that sdepth(D2) ≤ sdepth(D3) + 1. Hen
e

sdepthS/I = sdepthD2 ≤ sdepth(D3) + 1 ≤ sdepth T/L + 1.
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For the proof of Theorem 1.1 we also need the following simple fa
t:

Lemma 1.3. Let

I = I0 ⊂ I1 ⊂ . . . ⊂ Ir = S

be an as
ending 
hain of monomial ideals of S su
h that ea
h Ij/Ij−1 is a 
y
li


module, and hen
e Ij/Ij−1
∼= S/Lj(−aj) for some monomial ideal Lj and some

aj ∈ Z
n. Then

sdepth(S/I) ≥ min{sdepth(S/Lj) : j ∈ {1, . . . , r}}.

Proof: We have the following de
omposition of S/I as a K-ve
tor spa
e:

S/I = I1/I0 ⊕ I2/I1 ⊕ · · · ⊕ S/Ir−1.

Sin
e ea
h Ij/Ij−1
∼= S/Lj(−aj) we get the isomorphism

S/I ∼= S/L1(−a1) ⊕ S/L2(−a2) ⊕ · · · ⊕ S/Lr(−ar). (2)

For ea
h j let Dj : S/Lj =
⊕rj

k=1 ujkK[Zjk] be a Stanley de
omposition of S/Lj

su
h that sdepthDj = sdepthS/Lj . Then by the isomorphism (2) we obtain the

following Stanley de
omposition

S/I =
r

⊕

j=1

rj
⊕

k=1

ujujkK[Zjk],

of S/I, where uj = xaj for j = 1, . . . , r. From this Stanley de
omposition of S/I
the desired inequality follows.

Proof: [Proof of Theorem 1.1℄ Without loss of generality we may assume that

I = JS where J ⊂ S′ = K[x1, . . . , xm] and that u = xa1

m+1 . . . x
an−m
n . We 
onsider

an as
ending 
hain of ideals of S between (I, u) and S where two su

essive

members of the 
hain are of the form

(I, xb1
m+1 · · ·x

bk

k · · ·xbn−m
n ) ⊂ (I, xb1

m+1 · · ·x
bk−1
k · · ·xbn−m

n )

and where bi ≤ ai for all i = 1, . . . , n − m.

Observe that

(I, xb1
m+1 · · ·x

bk−1

k · · ·xbn−m
n )/(I, xb1

m+1 · · ·x
bk

k · · ·xbn−m
n ) ≃ S/(I, xk).

Therefore Lemma 1.2 and Lemma 1.3 imply that

sdepth(S/(I, u)) ≥ sdepth(S/(I, xk)) = sdepth(S/I) − 1.

In order to prove other inequality, we 
hoose a Stanley de
omposition

D′ : (I, u)c =

r
⊕

i=1

uiK[Z ′
i]
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of S/(I, u) with sdepth(D′) = sdepth(S/(I, u)). We obtain a dire
t sum of K-

ve
tor subspa
es
⊕r

i=1 uiK[Z ′
i] ∩ S′ of S′. We observe that

Jc =

r
⊕

i=1

uiK[Z ′
i] ∩ S′

and that
⊕

i uiK[Z ′
i] ∩ S′ is a Stanley de
omposition of S′/J , where the sum

is taken over those i ∈ {1, . . . , r} for whi
h uiK[Z ′
i] ∩ S′ 6= {0}, 
f. proof of

Lemma 1.2.

We have

uiK[Z ′
i] ∩ S′ =

{

uiK[Z ′
i ∩ {x1, . . . , xm}], if supp(ui) ⊂ {x1, . . . , xm}

0, otherwise.

Hen
e if we set Λ = {i : supp(ui) ⊂ {x1, . . . , xm}}, then

D : S/I =
⊕

i∈Λ

uiK[Zi]

is a Stanley de
omposition of S/I, where Zi := {Z ′
i∩{x1, . . . , xm}}∪{xm+1, . . . , xn}.

We 
laim that |Zi| > |Z ′
i|. Indeed, otherwise {xm+1, . . . , xn} ⊂ Z ′

i, 
ontra-

di
ting the fa
t that (u)∩uiK[Z ′
i] = {0}. Therefore, sdepth(D) ≥ sdepth(D′)+1.

Hen
e or �nal 
on
lusion is that

sdepth(S/(I, u)) = sdepth(S/I) − 1.

As an immediate 
onsequen
e of our theorem we obtain the following result

�rst proved in [1, Proposition 1.2℄.

Corollary 1.4. Let I be a monomial ideal generated by regular sequen
e of mono-

mials. Then I is a Stanley ideal.

2 Pretty 
lean �ltrations and regular elements

Theorem 2.1. Let S = K[x1, x2, ..., xn] be a polynomial ring and I ⊂ S be a

monomial ideal and u a monomial in S su
h that u is regular on S/I. Then S/I
is pretty 
lean if and only if S/(I, u) is pretty 
lean.

Proof: Suppose S/I is pretty 
lean and let

F : I = I0 ⊂ I1 ⊂ . . . ⊂ Ir = S

be a pretty 
lean �ltration of S/I with Ij/Ij−1
∼= S/Pj for j = 1, 2, ..., r. It is

known from [2, Corollary 3.6℄ that Ass(S/I) = {P1, . . . , Pr}.
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We have Ij = (Ij−1, zj) where zj is a monomial in S. The prime �ltration F
indu
es the following �ltration

G : (I, u) ⊂ (I1, u) ⊂ . . . ⊂ (Ir, u) = S,

where

(Ij , u)/(Ij−1, u) = ((Ij−1, u), zj)/(Ij−1, u) ∼= S/(Ij−1, u) : zj .

Sin
e u is regular on S/I, it follows that u is regular on S/Ij for all j. Indeed,

sin
e S/I is pretty 
lean it follows that S/Ij is pretty 
lean. Hen
e Ass(S/Ij) =
{Pj+1, . . . , Pr} whi
h is 
ontained in Ass(S/I). Sin
e gcd(u, zj) = 1 it follows

that

(Ij−1, u) : zj = ((Ij−1 : zj), u) = (Pj , u).

Hen
e

(Ij , u)/(Ij−1, u) ∼= S/(Pj , u).

Suppose, without loss of generality, that

Pj = (x1, ..., xt) and u =

n
∏

i=t+1

xi
ai .

Then S/(Pj , u) ∼= K[xt+1, ..., xn]/(u)K[xt+1, ..., xn], whi
h is 
lean by [3℄. Hen
e

we see that (Ij , u)/(Ij−1, u) is 
lean and

Ass((Ij , u)/(Ij−1, u)) = {(Pj , xi) : xi | u}.

Therefore our �ltration G 
an be re�ned as follows

(Ij−1, u) = Ij−1,0 ⊂ Ij−1,1 ⊂ . . . ⊂ Ij−1,sj
= (Ij , u)

where

Ij−1,k/Ij−1,k−1
∼= S/Pj−1,k

with Pj−1,k ∈ {(Pj , xi) : xi | u}.
In the re�ned �ltration of G if we have Ij,k ⊂ Ii,l, then either j < i or j = i and

k < l. Suppose j < i and Pj,k ⊂ Pi,l. We have Pj,k = (Pj+1, xr) for some r and

Pi,l = (Pi+1, xs) for some s. Sin
e u 6∈
⋃

P∈Ass(S/I) P it follows that xs 6∈ Pj+1.

Therefore, Pj+1 ⊆ Pi+1. However, sin
e F is a pretty 
lean �ltration it follows

that Pj+1 = Pi+1, and hen
e Pj,k = Pi,l.

Next suppose that i = j and k < l and suppose that Pi,k ⊆ Pi,l. Sin
e

height Pi,k = height Pi,l we 
on
lude that Pj,k = Pi,l, also in this 
ase. Thus we

have shown that the re�nement of G is a pretty 
lean �ltration of S/(I, u), and
hen
e S/(I, u) is pretty 
lean.

Conversely, suppose that S/(I, u) is pretty 
lean. Sin
e u is regular on S/I,
we may suppose that I = JS where J ⊂ S′ = K[x1, . . . , xm] for m < n and
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supp(u) ⊂ {xm+1, . . . , xn}. Sin
e S/(I, u) is pretty 
lean there exist a pretty


lean �ltration

M : (I, u) = I ′0 ⊂ I ′1 ⊂ . . . ⊂ I ′r = S

su
h that I ′j/I ′j−1
∼= S/Pj where Pj ∈ Ass(S/(I, u)). Re
all that

Ass(S/(I, u)) = {(P ′, xk) : P ′ ∈ Ass(S′/J) and xk | u}.

By taking the interse
tion of above �ltration M with S′, we get the �ltration

N : J0 ⊆ J1 ⊆ . . . ⊆ Jr = S′

of S′/J0 where Jj = I ′j ∩ S′ for j = 0, . . . , r. We 
laim that J0 = J . Let I be

generated by the monomials u1, . . . , ul. Sin
e I = JS with J ⊂ S′ it follows that

ui ∈ S′ for all i. Choose a monomial v ∈ J0 = (I, u) ∩ S′. Then either v = eui

where e ∈ S′, or v = fu where f ∈ S′. The se
ond 
ase 
annot happen sin
e

v ∈ S′. This shows that J0 ⊂ J . The other in
lusion is obvious.

Take an ideal I ′j ∈ M. Then I ′j = (I ′j−1, wj) where wj ∈ S and (I ′j−1 : wj) =
(P ′, xk) for some P ′ ∈ Ass(S′/J) and some xk su
h that xk | u. Then we have

I ′j−1 ∩ S′ = I ′j ∩ S′ if and only if wj 6∈ S′.

Let {r0, . . . , rk} be the subset of [r] for whi
h we have Jri
is properly 
ontained

in Jri+1 in the �ltration N . Set Li = Jri
for i = 0, . . . , k and Lk+1 = S′. Then

we obtain the �ltration

L : J = L0 ⊂ L1 ⊂ . . . ⊂ Lk+1 = S′.

We note that Li = (J,wr0+1, wr1+1, . . . , wri−1+1) for i = 0, . . . , k+1 with wri+1 ∈
S′ for all i.

Sin
e Li = (Li−1, wri−1+1), we have that Li/Li−1
∼= S′/(Li−1 :S′ wri−1+1)

and also we have that Li = I ′ri
∩ S′. So (Li−1 :S′ wri−1+1) = (I ′ri−1

∩ S′ :S′

wri−1+1).
We 
laim that (I ′ri−1

∩ S′ :S′ wri−1+1) = (I ′ri−1
:S wri−1+1) ∩ S′. In fa
t, the

in
lusion (I ′ri−1
∩ S′ :S′ wri−1+1) ⊂ (I ′ri−1

:S wri−1+1) ∩ S′ is obvious. In order

to prove the other in
lusion we 
hoose a monomial v ∈ (I ′ri−1
:S wri−1+1) ∩ S′.

Then we have that v ∈ (I ′ri−1
:S wri−1+1) and v ∈ S′. Hen
e vwri−1+1 ∈ I ′ri−1

and vwri−1+1 ∈ S′, sin
e wri−1+1 ∈ S′. Therefore vwri−1+1 ∈ I ′ri−1
∩ S′ whi
h

implies that v ∈ (I ′ri−1
∩ S′ :S′ wri−1+1), as desired.

Now we see that

(Li−1 :S′ wri−1+1) = (I ′ri−1
∩ S′ :S′ wri−1+1)

= (I ′ri−1
:S wri−1+1) ∩ S′ = (P ′, xk) ∩ S′ = P ′,

where (P ′, xk) ∈ Ass(S/(I, u)).
This shows that L is a prime �ltration with the property that the prime ideals

in Supp(L) form a subsequen
e of P1, . . . , Pr. Therefore, sin
eM is a pretty 
lean

�ltration, the �ltration L is pretty 
lean as well. From this fa
t we will dedu
e

that S/I is pretty 
lean. This then will 
omplete the proof of the theorem.
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Indeed, our �ltration L indu
es the �ltration

K : I = JS = L0S ⊂ L1S ⊂ · · · ⊂ Lk+1S = S

with LiS/Li−1S ∼= S/P ′S where Li/Li−1
∼= S′/P ′ for i = 1, . . . , k+1. This holds

be
ause the extension S′ → S is �at. Now, sin
e L is a pretty 
lean �ltration of

S′/J , it is obvious that K is a pretty 
lean �ltration of S/I.

As an immediate 
onsequen
e we obtain the following result from [1, Propo-

sition 1.2℄.

Corollary 2.2. Let u1, . . . , uk be a regular sequen
e in the polynomial ring S.
Then S/(u1, . . . , uk) is pretty 
lean.

Proof: We use indu
tion on k. For k = 1 the assertion follows from Theorem

2.1 applied to I = (0), or from [3℄. By indu
tion hypothesis we may now assume

that S/(u1, . . . , uk−1) is pretty 
lean. Sin
e uk is regular on S/(u1, . . . , uk−1) it

follows again from Theorem 2.1 that S/(u1, . . . , uk) is pretty 
lean.
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