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Abstract

We study the behavior of Stanley decompositions and of pretty clean
filtrations under reduction modulo a regular element.
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Introduction

Let K be a field and S = K|[z1,29,...,2,] be a polynomial ring in n variables
over the field K. Let I C S be a monomial ideal, and let u € S be a monomial
such that u is regular on S/I. The purpose of this paper is to investigate how
the Stanley depth and the property of S/I to be pretty clean behaves when we
pass from S/I to S/(I,u), and vice versa.

We denote by I¢ C S the K-linear subspace of S generated by all monomials
which do not belong to I. Then S = 1€ ¢ and S/I = I¢ as K-linear spaces.

If w € S is a monomial and Z C {x1,...,2,}, the K-subspace uK|[Z] whose
basis consists of all monomials wv, with v € K[Z], is called a Stanley space of
dimension |Z]. A decomposition D of I¢ as a finite direct sum of Stanley spaces
is called a Stanley decomposition of S/I. The minimal dimension of a Stanley
space in D is called the Stanley depth of D and it is denoted by sdepth(D). We
set

sdepth(S/I) := max{sdepth(D) : D is a Stanley decomposition of S/I}

and call this number the Stanley depth of S/I.
Stanley [4, Conjecture 5.1] made a conjecture on general Stanley decomposi-
tions of Z"-graded modules. In the special case that the Z"-graded module is S/1,
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where I is a monomial ideal, the conjecture says that sdepth(S/I) > depth(S/I).
A monomial ideal I is called Stanley ideal if it satisfies the Stanley’s conjecture.

A basic fact in commutative algebra says depth S/(I, f) = depth S/I — 1 for
any homogeneous element of positive degree f € S which is regular on S/I. In
this paper we show that a corresponding statement holds for the Stanley depth.
In fact, we show in Theorem 1.1 that sdepth(S/(I,u)) = sdepth S/I — 1 for any
monomial u € S which is regular on S/I.

Special Stanley decompositions arise from prime filtrations. Let

F:I=hychLcCc...CcIl,=8

be a prime filtration of S/I, i.e. I;/I;_1 = S/P; for any j = 1,...,7, where
P; C S are prime ideals. The support of F, is the set Supp(F) = {P1,..., P}
Tt is well known that Ass(S/I) C Supp(F). Recall that the prime filtration F
is called pretty clean, if for all i < j with P; C P; it follows that P; = P;. If
S/T has a pretty clean filtration then S/T is called pretty clean, see [2, Definition
3.3]. For the pretty clean filtration, Supp(F) = Ass(S/I), see |2, Corollary 3.6].
This condition implies, by [3, Proposition 2.2], that I is a Stanley ideal. The
prime filtration F is clean if Supp(F) = Min(S/I), where Min(S/I) is the set of
minimal prime ideals of S/I. Note that any clean filtration is pretty clean. If
S/I has a clean filtration, that S/I is called clean.

The main result (Theorem 2.1) of the second section is that if I C S is a
monomial ideal and v € S is a monomial which is regular on S/I, then S/I
has a pretty clean filtration if and ounly if S/(I,u) has a pretty clean filtration.
This result implies that an ideal generated by a regular sequence of monomials
is pretty clean. This fact was first proved in [1, Proposition 1.2] by a different
method.

I want to thank Professor Jiirgen Herzog for his advice during the preparation
of the paper.

1 Stanley decompositions and regular elements

The aim of this section is to show that the Stanley depth behaves like the ordinary
depth with respect to reduction modulo regular elements. Indeed we have the
following result:

Theorem 1.1. Let I C S be a monomial ideal of S = K[x1,...,2,] and u € S
be a monomial reqular on S/I. Then sdepth(S/(I,u)) = sdepth(S/I) — 1. In
particular, I is a Stanley ideal if and only if (I,u) is a Stanley ideal.

We first prove a special case of the theorem:

Lemma 1.2. Letm <n and J C S = K[x1,...,Zy] be a monomial ideal. Then
for the monomial ideal I = JS and for any x with m < k < n we have

sdepth(S/(I,x)) = sdepth(S/I) — 1.
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Proof: Let T = S'[xmi1,- - Th—1,Tkt1---,%,] and L C T be the monomial
ideal such that L = JT. Then we have S/(I,x;) =T/L. Let

i=1

be a Stanley decomposition of T//L such that sdepthD = sdepthT//L. Then
T T
Dy : S/1 = (T/L)[xx] = P uiK(Zi][xx] = @D wiK[Zi, ]
i=1 i=1

is a Stanley decomposition of S/I. It follows that
sdepth Dy = sdepthD + 1 = sdepthT/L + 1
and
sdepth Dy < sdepth S/I.
Hence
sdepthT/L 4+ 1 < sdepth S/I.

In order to prove the opposite inequality we consider a Stanley decomposition
S
Dy: S/1 =D viK([Wi]
i=1

of S/I with sdepth Dy = sdepth S/I.
Let Z={i € [s]: v,K[W;]NT # {0}}. We claim that

Dsy: T/L =L = PuKWi|NT. (1)
icT
and @, 7 v K[W;] N T is a direct sum decomposition of 7'/ L.

In order to prove (1), choose a monomial v € L°. We want to show that
there exists ¢ € 7 such that v € v, K[W;] NT. Suppose on the contrary that
v v K[W;NT for all i € Z. Since v € T, it implies that v & v; K[W;], for all
i. Hence we have v € I = JS. Since v € T and L = JT, it follows that v € L,
a contradiction. Conversely, choose a monomial w € v; K[W;] N T. This implies
that w € I = JS and since L = JT' C JS = I, we see that w € L.

Now we will show that D3 is a Stanley decomposition. Indeed, we have

v K[W; \ {xx}], if zp does not divide v;

UiK[WZ'] NT = .
0, otherwise.

Comparing the Stanley decomposition Dy of S/I with the Stanley decompo-
sition D3 of T'/L we see that sdepth(Ds) < sdepth(Ds) 4+ 1. Hence

sdepth S/I = sdepth Dy < sdepth(D3) + 1 < sdepthT/L + 1.



350 Asia Rauf

For the proof of Theorem 1.1 we also need the following simple fact:

Lemma 1.3. Let
I=)ychLcC...CcIl,=S8

be an ascending chain of monomial ideals of S such that each I;/I;_1 is a cyclic
module, and hence I;/I;_1 = S/Lj(—a;) for some monomial ideal L; and some
aj € Z". Then

sdepth(S/I) > min{sdepth(S/L;): j € {1,...,r}}.
Proof: We have the following decomposition of S/I as a K-vector space:
S/IIT=0L/Iy® /[ ®---®&S/I_1.
Since each I;/I;_1 = S/Lj(—a;) we get the isomorphism
S/T=S8/Li(—a1) ®S/La(—a2) ®---®S/L.(—a,). (2)

For each j let D; : S/L; = @, ujK[Z;] be a Stanley decomposition of S/L;
such that sdepthD; = sdepth S/L,. Then by the isomorphism (2) we obtain the
following Stanley decomposition

S/I = @@UJUij[ij],
j=1k=1

of S/I, where u; = x% for j =1,...,r. From this Stanley decomposition of S/I
the desired inequality follows. O

Proof: [Proof of Theorem 1.1] Without loss of generality we may assume that
I=JS where J C 8" = K[x1,...,7,] and that u =z}, ... Zn"~™ . We consider
an ascending chain of ideals of S between (I,u) and S where two successive
members of the chain are of the form
b b br—m b b —1 bn—m
(L yqoeaysevayrm) C (Lo gy )

n

and where b; < a; foralli=1,...,n—m.
Observe that

(L ay ™ eeeaber) (Ll e abeom) = S/(I, ).
Therefore Lemma 1.2 and Lemma 1.3 imply that
sdepth(S/(I,u)) > sdepth(S/(I,xx)) = sdepth(S/I) — 1.

In order to prove other inequality, we choose a Stanley decomposition

D' (Iu) = PuiK[Z]]
i=1
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of S/(I,u) with sdepth(D’) = sdepth(S/(I,u)). We obtain a direct sum of K-
vector subspaces @._, w; K[Z/] N S" of S’. We observe that

Je=PuK(Z]nS
1=1

and that @, u,K[Z]] N S’ is a Stanley decomposition of S’/J, where the sum
is taken over those i € {1,...,r} for which w;K[Z]] N S" # {0}, cf. proof of
Lemma 1.2.

We have

wK[Z] N {z1,...,xm}], if supp(u;) C {z1,...,Tm}

0, otherwise.

Hence if we set A = {i: supp(u;) C {@1,...,2m}}, then

D:S/I =P uiK[Z]

i€EA

is a Stanley decomposition of S/I, where Z; := {Z/N{z1, ..., @m } }U{Zm+1, ..., Tn}.
We claim that |Z;| > |Z/|]. Indeed, otherwise {z,+1,...,2n} C Z/, contra-

dicting the fact that (u)Nu; K[Z!] = {0}. Therefore, sdepth(D) > sdepth(D’)+1.
Hence or final conclusion is that

sdepth(S/(I,u)) = sdepth(S/I) — 1.
O

As an immediate consequence of our theorem we obtain the following result
first proved in [1, Proposition 1.2].

Corollary 1.4. Let I be a monomial ideal generated by regular sequence of mono-
mials. Then I is a Stanley ideal.

2 Pretty clean filtrations and regular elements

Theorem 2.1. Let S = Klz1,2a,...,2,] be a polynomial ring and I C S be a
monomial ideal and w a monomial in S such that u is regular on S/I. Then S/I
is pretty clean if and only if S/(I,u) is pretty clean.

Proof: Suppose S/I is pretty clean and let
F:I=IychLc...cl,=S

be a pretty clean filtration of S/I with I,;/I;_1 = S/P; for j = 1,2,...,r. It is
known from [2, Corollary 3.6] that Ass(S/I) ={Py,...,P.}.
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We have I; = (I;_1, z;) where z; is a monomial in S. The prime filtration F
induces the following filtration

G: (I,u) C (I1,u) C...C (Iy,u) =85,
where

(L, u)/(Li—1,u) = ((Li-1,u), 25) / (Lj—1,u) 2 S/(Lj—1,u) : z;.

Since u is regular on S/I, it follows that u is regular on S/I; for all j. Indeed,
since S/I is pretty clean it follows that S/I; is pretty clean. Hence Ass(S/I;) =
{Pj41,..., P} which is contained in Ass(S/I). Since ged(u,z;) = 1 it follows
that

(Lj—1,u) 2 = (-1 2 25), ) = (P, w).
Hence

(L, w)/(Ij—1,u) = S/(Pj,u).
Suppose, without loss of generality, that

n

a;

P;=(x1,...,x;) and wu= H ;%
i=t+1

Then S/(Pj,u) = K(zi41,.... 2]/ (W) K[xi41, ..., 5], which is clean by [3]. Hence
we see that (I;,u)/(Ij—1,u) is clean and

Ass((Lj,u)/(Lj—1,u)) = {(Pj, @) + x| u}.
Therefore our filtration G can be refined as follows
(ijl,u) =1j—10C Ij,1’1 c...C ijl,sj = (I]‘7’U,)

where
i k)i k1= S/Pi_1k

with ijl,k S {(Pj,l‘i) LT | U}

In the refined filtration of G if we have I; ;, C I;;, then either j < i or j = ¢ and
k < 1. Suppose j < i and P;j C P;;. We have P; ) = (Pjt+1,,) for some r and
P, = (Pit1,x,) for some s. Since u ¢ UpeASS(S/I) P it follows that ©, & Pjy1.
Therefore, Pj11 C P;1. However, since F is a pretty clean filtration it follows
that P; 1, = Pj;q, and hence P; = P; ;.

Next suppose that ¢ = j and £ < [ and suppose that P;; C P;;. Since
height P; j, = height P;; we conclude that P, = P;;, also in this case. Thus we
have shown that the refinement of G is a pretty clean filtration of S/(I,u), and
hence S/(I,u) is pretty clean.

Conversely, suppose that S/(I,u) is pretty clean. Since u is regular on S/I,
we may suppose that I = JS where J C §' = K[xy,...,x,] for m < n and
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supp(u) C {@m41,...,2n}. Since S/(I,u) is pretty clean there exist a pretty
clean filtration
M: (Luy=I,cljc...cIl; =8

such that I}/I;_, = S/P; where P; € Ass(S/(I,u)). Recall that
Ass(S/(I,u)) = {(P',z1): P' € Ass(S’/J) and @y, | u}.
By taking the intersection of above filtration M with S’, we get the filtration
N:JpChC...CJ. =5

of 8"/ Jo where J; = I; N S" for j = 0,...,r. We claim that Jo = J. Let I be
generated by the monomials uy,...,u;. Since I = JS with J C S’ it follows that
u; € S’ for all i. Choose a monomial v € Jy = (I,u) N S’. Then either v = eu;
where e € S/, or v = fu where f € S’. The second case cannot happen since
v € S’. This shows that Jy C J. The other inclusion is obvious.
Take an ideal I} € M. Then I} = (I;_;,w;) where w; € S and (I;_; : w;) =
(P’ xy) for some P’ € Ass(S’/J) and some xj, such that z; | u. Then we have
Iy NS =1I;NS"if and only if w; ¢ S".

Let {ro, ..., 7} be the subset of [r] for which we have J,, is properly contained
in J,., 11 in the filtration N. Set L; = J,, for i = 0,...,k and Lyy; = S’. Then
we obtain the filtration

L: J:LQCLlc...CLk+1:S/.

We note that L; = (J, Wyg1, Wey 41y -y Wr,_, 1) fori =0,..., k+1 with w,, 11 €
S’ for all .

Since Lz = (Li_l,wri_1+1), we have that Li/Li—l = S,/(Li_l LS wn_ﬁ_l)
and also we have that L; = I| NS’ So (Li—1 15 wr,_,41) = (I, NS s
wTi71+1)'

We claim that (I],_ NS :s0 wy,_,41) = (I],_, 5 wr,_,41) NS’ In fact, the
inclusion (1], NS :sr wy,_,41) C (I],_| 5 wp,_,41) N S" is obvious. In order
to prove the other inclusion we choose a monomial v € (I;. | s wyr,_,11)NS".
Then we have that v € (I, | :s wy,_,41) and v € S’. Hence vw,,_, 41 € I
and vw,,_,41 € ', since w,,_, 11 € . Therefore vw,,_, 1 € I NS which
implies that v € (I;,_ NS" 5 wy,_, 1), as desired.

Now we see that

(Lifl el w"‘ifl“l’l) = (‘[7/"1-,1 ns' el wri—1+1)
= (Il i 'S wri71+1) n S/ = (P/,$k> n Sl = f)/7

Ti—

where (P, zi) € Ass(S/(1,u)).

This shows that L is a prime filtration with the property that the prime ideals
in Supp(£) form a subsequence of Py, ..., P.. Therefore, since M is a pretty clean
filtration, the filtration £ is pretty clean as well. From this fact we will deduce
that S/I is pretty clean. This then will complete the proof of the theorem.
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Indeed, our filtration £ induces the filtration
K:l=JS=LSCLiSC---CLgt15=S5

with L;S/L; 1S =2 S/P’'S where L;/L;—1 =2 S5’ /P’ fori =1,...,k+1. This holds
because the extension S’ — S is flat. Now, since £ is a pretty clean filtration of
S’/ J, it is obvious that I is a pretty clean filtration of S/I. O

As an immediate consequence we obtain the following result from [1, Propo-
sition 1.2].

Corollary 2.2. Let uq,...,ur be a reqular sequence in the polynomial ring S.
Then S/(uy,...,ux) is pretty clean.

Proof: We use induction on k. For k = 1 the assertion follows from Theorem
2.1 applied to I = (0), or from [3]. By induction hypothesis we may now assume
that S/(u1,...,ur—_1) is pretty clean. Since uy is regular on S/(uq,...,ug_1) it
follows again from Theorem 2.1 that S/(uq,...,ux) is pretty clean.
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