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The Stanley conjecture on monomial almost complete
intersection ideals
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Abstract

Let I be a monomial almost complete intersection ideal of a polynomial
algebra S over a field. Then Stanley’s Conjecture holds for S/I and I.
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Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K. Let M
be a Zn-graded S-module. A Stanley decomposition of M is a direct sum
D : M =

⊕r
i=1 miK[Zi] as K-vector space, where mi ∈ M , Zi ⊂ {x1, . . . , xn}

such that miK[Zi] is a free K[Zi]-module. We define sdepth(D) = minr
i=1 |Zi|

and sdepthS(M) = max{sdepth(D)| D is a Stanley decomposition of M}. The
number sdepthS(M) is called the Stanley depth of M . It is conjectured by Stan-
ley [7] that depthS(M) ≤ sdepthS(M) for all Zn-graded S-modules M . Herzog,
Vladoiu and Zheng show in [5] that this invariant can be computed in a finite
number of steps if M = I/J , where J ⊂ I ⊂ S are monomial ideals. In this
paper, we prove that if I ⊂ S is a monomial ideal generated by m monomials,
then, there exists a variable xj which appears in at least

⌈
m
k

⌉
generators, where

k = max{|P | : P ∈ Ass(S/I)}, see Lemma 1.5. Using this lemma, we prove that
Stanley’s Conjecture holds for S/I and I, when I has a small number of genera-
tors, with respect to depth(S/I) and k, see Theorem 1.8, in particular this is the
case when I is a monomial almost complete intersection ideal (see Corollary 1.9).
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1 Stanley depth

Firstly, we recall several results.

Proposition 1.1. [3, Proposition 1.2] Let I ⊂ S be a monomial ideal, minimally
generated by m monomials. Then sdepth(S/I) ≥ n−m.

Theorem 1.2. [6, Theorem 2.3] Let I ⊂ S be a monomial ideal, minimally
generated by m monomials. Then sdepth(I) ≥ n− bm/2c.

Proposition 1.3. [3, Theorem 1.4] Let I ⊂ S be a monomial ideal such that
I = v(I : v), for a monomial v ∈ S. Then sdepth(S/I) = sdepth(S/(I : v)),
sdepth(I) = sdepth(I : v).

If v ∈ S is a monomial, we define the support of v, to be supp(v) := {xj :
xj |v}. Also, we denote degxj

(v) := max{t : xt
j |v}. Let I = (v1, . . . , vm) ⊂ S,

I 6= S be a monomial ideal, where G(I) = {v1, . . . , vm} is a minimal system of
monomial generators of I. We denote tj := |{i : xj |vi}| and V :=

⋃m
i=1 supp(vi).

Remark 1.4. It is well known that depth(S/I) ≤ min{dim(S/P ) : P ∈
Ass(S/I)} = min{n − |P | : P ∈ Ass(S/I)} by [2, Proposition 1.2.13]. De-
note k = max{|P | : P ∈ Ass(S/I)}. In particular, we get k ≤ n − depth(S/I).
We have k ≤ m because a prime ideal P ∈ Ass(S/I) has the form I : u for some
monomial u 6∈ I.

With these notations, we have the following lemma:

Lemma 1.5. There exists a j ∈ [n] := {1, . . . , n} such that tj ≥ dm/ke.

Proof: We use induction on k ≥ 1 and ε(I) =
∑m

i=1 deg(vi). If k = 1, it follows
that I is principal, and therefore, we can assume that I = (v1) and m = 1. If
we chose xj ∈ supp(v1), it follows that tj = 1 = dm/1e and thus we are done. If
ε(I) = k, it follows ε(I) = k ≤ m ≤ ε(I) by Remark 1.4. Thus I is generated by
m = k variables, and there is nothing to prove. Assume k ≥ 2 and ε(I) > k.

Assume that (V) ⊂
√
I. Since, for any monomial v ∈ G(

√
I) we have

supp(v) ⊂ V it follows that the prime ideal P := (V) contains also
√
I. Thus

P =
√
I is a prime ideal and P = (V). Therefore, I is P -primary. Since

k = |P |, by reordering the variables, we may assume that P = (x1, . . . , xk).
We may also assume that v1 = xa1

1 , . . . , vr = xak

k for some positive integers
al, where l ∈ [k]. Since V = {x1, . . . , xk}, it follows that tj = 0 for all j > k.

Note that
∑m

i=1 | supp(vi)| =
∑k

j=1 tj . Indeed, each variable xj appear in the
supports of exactly tj monomials from the set {v1, . . . , vm}. Now, we claim
that there exists a tj ≥ dm/ke. Indeed, if this is not the case, then we get

m ≤
∑m

i=1 | supp(vi)| =
∑k

j=1 tj <
∑k

j=1(m/k) = m, a contradiction.

If there exists a variable, let us say xn, such that xn ∈ V and xn /∈
√
I, we

consider the ideal I ′ = (I : xn). Obviously, I ′ = (v′1, . . . , v
′
m), where v′i = vi/xn

if xn|vi and v′i = vi otherwise. For all j ∈ [n], we denote t′j = |{i : xj |v′i}|. Note



The Stanley conjecture on monomial almost complete intersection ideals 37

that tj = t′j for all j ∈ [n− 1], and tn ≥ t′n. If we denote V ′ =
⋃m

i=1 supp(v′i), we
have V ′ ⊂ V. Note that Ass(S/I ′) ⊂ Ass(S/I) because of the injection S/I ′ →
S/I induced by the multiplication with xn. It follows that k′ = max{|P ′| : P ′ ∈
Ass(S/I ′)} ≤ k. Since ε(I ′) =

∑m
i=1 deg(v′i) < ε(I), by induction hypothesis,

there exists a j ∈ [n], such that tj ≥ t′j ≥ dm/k′e ≥ dm/ke.

Example 1.6. Let I = (x3
1, x1x2, x2x3, x3x4, x

2
4) ⊂ S := K[x1, x2, x3, x4]. Then

I = (x3
1, x2, x4) ∩ (x3

1, x2, x3, x
2
4) ∩ (x1, x3, x

2
4) is the primary decomposition of I.

Therefore Ass(S/I) = {(x1, x2, x4), (x1, x3, x4), (x1, x2, x3, x4)} and k = max{|P | :
P ∈ Ass(S/I)} = 4. The (minimal) number of monomial generators of I is m = 5.
We have dm/ke = 2 and, indeed, x1, for example, appears in two generators of I.
This example also shows that the bound dm/ke is, in general, the best possible.

Lemma 1.7. Let s ≥ k ≥ 2 be two integers and let m be a positive integer. Then

1. m−
⌈
m
k

⌉
≤ s− 1 if and only if m ≤ s− 1 +

⌈
s

k−1

⌉
,

2.

⌊
m−dm

k e
2

⌋
≤ s− 2 if and only if m ≤ 2s− 3 +

⌈
2s−2
k−1

⌉
.

Proof: Note that m−
⌈
m
k

⌉
≤ s− 1 if and only if m− m

k < s. This is equivalent

with m < sk
k−1 = s + s

k−1 . Similarly, we get the second equivalence.

Theorem 1.8. Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal, minimally gen-
erated by m monomials, k = max{|P | : P ∈ Ass(S/I)}, and s ≥ k be an integer.
Then

1. If m ≤ s− 1 +
⌈

s
k−1

⌉
, then sdepth(S/I) ≥ n− s.

2. If m ≤ 2s− 3 +
⌈
2s−2
k−1

⌉
, then sdepth(I) ≥ n− s + 1.

If depth(S/I) = n − s then (1) and (2) imply the Stanley Conjecture for S/I,
respectively for I.

Proof: If I is principal, then k = m = 1 and sdepth(S/I) ≥ n−1 by Proposition
1.1. Assume m ≥ 2, G(I) = {v1, . . . , vm} and set ε(I) :=

∑m
i=1 deg(vi). We

use induction on ε(I). If ε(I) = m it follows that I is generated by m variables.
Therefore k = |I| = m and so sdepthS(S/I) = n − m = n − k ≥ n − s. Also
by [1, Theorem 2.2] and [5, Lemma 3.6], sdepth(I) = n− bm/2c ≥ n−m + 1 =
n− k + 1 ≥ n− s + 1.

Assume ε(I) > m. According to Lemma 1.5, we can assume that r := tn ≥
dm/ke after renumbering of variables. If r = m, then xn|vj for all all i ∈ [m] and
thus I = xn(I : xn). According to Proposition 1.3, sdepth(S/I) = sdepth(S/(I :
xn)) and sdepth(I) = sdepth(I : xn). As in the proof of Lemma 1.5, we have
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k′ = max{|P ′| : P ′ ∈ Ass(S/(I : xn))} ≤ k and so our statement holds for S/(I :
xn) by induction hypothesis. Thus sdepth(S/I) = sdepth(S/(I : xn)) ≥ n − s
and sdepth(I) = sdepth(I : xn) ≥ n− s + 1.

We consider now the case r < m. By reordering the generators of I, we may
assume that xn|v1,. . . ,xn|vr and vn 6 |vr+1,. . . , xn 6 |vm. Let S′ = K[x1, . . . , xn−1].
We write:

(∗) S/I = (S′/(I ∩ S′))⊕ xn(S/(I : xn)), and I = (I ∩ S′)⊕ xn(I : xn)

the direct sum being of linear spaces. By Proposition 1.1, Theorem 1.2 and
Lemma 1.7, it follows that:

sdepthS′(S′/(I ∩ S′)) ≥ (n− 1)− (m− r) ≥ n− (m−
⌈m
k

⌉
+ 1) ≥ n− s and

sdepthS′(I ∩ S′) ≥ (n− 1)−
⌊
m− r

2

⌋
≥ n−

⌊
m−

⌈
m
k

⌉
2

⌋
+ 1 ≥ n− s + 1,

because r ≥ dm/ke. Let m′ be the minimal number of generators of I : xn.

In the first case, we have m′ ≤ m ≤ s − 1 +
⌈

s
k−1

⌉
≤ s − 1 +

⌈
s

k′−1

⌉
because

k′ ≤ k. By induction hypothesis, we get sdepth(S/(I : xn)) ≥ n − s. Similarly,
sdepth(I : xn) ≥ n − s + 1 in the second case. Using the decompositions (∗),
we obtain Stanley decompositions of S/I, I with the Stanley depth ≥ n − s,
respectively ≥ n− s + 1.

Corollary 1.9. Let I be a monomial almost complete intersection ideal. Then
Stanley’s Conjecture holds for S/I and I.

Proof: Let s := n − depth(S/I). Then m ≤ s + 1. Since s ≥ k by Remark 1.4

we have m ≤ s − 1 +
⌈

s
k−1

⌉
and we see that S/I satisfies Stanley’s Conjecture

by (1) of the above theorem. If s ≥ 2 then similarly m ≤ 2s− 3 +
⌈
2s−2
k−1

⌉
and so

I satisfies Stanley’s Conjecture by (2) of the above theorem. But if s = 1 then
k = 1 and it follows that I is principal, in which case clearly Stanley’s Conjecture
holds.

Remark 1.10. Note that the decomposition used in the proof of Theorem 1.8 is
also useful to check Stanley’s Conjecture for monomial ideals (and their quotient
rings), which do not satisfy the hypothesis of the quoted theorem. For example,
consider the ideal I = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4) ⊂ S := K[x1, . . . , x4].
We have (I : x1) = (x2, x3, x4). If we denote S′ := K[x1, x2, x3], then I ′ :=
I ∩ S′ = (x1x2, x1x3, x2x3). One can easily check that sdepthS′(S′/I ′) = 1 and
sdepthS′(I ′) = 2. Using the decomposition I = I ′ ⊕ x1(I : x1), it follows, as in
the proof of Theorem 1.8, that sdepth(I) ≥ 2 and sdepth(S/I) ≥ 1. On the other
hand, it is well known that depth(S/I) = 1. Of course, I is a squarefree Veronese
ideal, and we already know that I and S/I satisfy the Stanley conjecture, by [4,
Corollary 1.2].
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