The Siegel norm of algebraic numbers

by
Florin Stan and Alexandru Zaharescu*

Abstract

In this paper we investigate connections between the Siegel norm and the spectral norm on the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}, and their extensions to the spectral completion $\widetilde{\overline{\mathbb{Q}}}$ of $\overline{\mathbb{Q}}$.

Key Words: Galois groups, normed fields.
2010 Mathematics Subject Classification: Primary 11R80; Secondary 11R04.

1 Introduction

Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} in \mathbb{C}, and denote by $\|\cdot\|$ the spectral norm on $\overline{\mathbb{Q}}$, defined by

$$
\|\alpha\|=\max _{\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}|\sigma(\alpha)|,
$$

for any algebraic number α. We consider the map $A: \overline{\mathbb{Q}} \longrightarrow[0, \infty)$ given by

$$
A(\alpha)=\frac{1}{[K: \mathbb{Q}]} \sum_{\sigma}|\sigma(\alpha)|^{2},
$$

where σ runs over all the embeddings of K into \mathbb{C}. Here $A(\alpha)$ depends only on α and not on the field K containing α. Note that if $\alpha=\beta^{2}$, where α is totally real and positive, then β is totally real and

$$
A(\beta)=\frac{\operatorname{Tr} \alpha}{\operatorname{deg} \alpha} .
$$

For a totally real and positive algebraic integer $\alpha \in O_{\overline{\mathbb{Q}}}$, let $n=\operatorname{deg} \alpha$ be the degree of α over \mathbb{Q}, and let $\alpha_{1}=\alpha, \alpha_{2}, \cdots, \alpha_{n}$ be the conjugates of α over \mathbb{Q}. Then

$$
\frac{\operatorname{Tr} \alpha}{\operatorname{deg} \alpha}=\frac{\alpha_{1}+\cdots+\alpha_{n}}{n} \geq \sqrt[n]{\alpha_{1} \cdots \alpha_{n}} \geq 1
$$

[^0]The well known trace problem of Siegel asks for the best possible constant λ_{0} for which given $\lambda<\lambda_{0}$, the trace of a totally real and positive algebraic integer γ is at least λ times its degree, except for finitely many γ 's.

The best result to date is $\lambda_{0} \geq 1.78702$. On the other hand, as Siegel pointed out, for every odd prime p, the number $4 \cos ^{2} \frac{\pi}{p}$ is a totally real and positive algebraic integer of degree $\frac{p-1}{2}$ and its trace is $p-2$. So the best possible constant λ_{0} is at most 2.

In [3], and more recently in [9], the restriction of the map $A(\cdot)$ to the ring of cyclotomic integers $O_{\mathbb{Q}^{a b}}$ is studied. It is shown in [9] that the set $T=\{A(\alpha)$: $\left.\alpha \in O_{\mathbb{Q}^{a b}}\right\}$ is closed under addition, that T is topologically closed in \mathbb{R}, and that for any $0 \leq r<1, r \in \mathbb{Q}$, there is a $t_{r} \in \mathbb{Q}$ such that

$$
T \cap(r+\mathbb{Z})=\left\{t_{r}, t_{r}+1, t_{r}+2, \cdots\right\}
$$

We also mention that from Siegel's work [8] it follows that the intersection $T \cap\left[0, \frac{3}{2}\right)$ consists of only two elements: 0 and 1 , and they are attained when $\alpha=0$, respectively when α is a root of unity. A striking application of this result is provided in an unpublished theorem of Thompson. Recall that the values of a linear character of a finite group are roots of unity. A classical theorem of Burnside [1] says that a non-linear irreducible character of a finite group has at least one zero. Thompson's theorem, whose proof also implies Burnside's result, states that an irreducible character of a finite group is zero or a root of unity at more than a third of the group elements.

In the present paper we extend $A(\alpha)$ to a larger set. The completion $\widetilde{\overline{\mathbb{Q}}}$ of $\overline{\mathbb{Q}}$ with respect to the spectral norm (see [4] and [5]), provides a natural setting for such an extension. The map $A(\cdot): \overline{\mathbb{Q}} \longrightarrow[0, \infty)$ is continuous with respect to the spectral norm, and it naturally extends to a map, which we will still denote by $A(\cdot)$, from $\widetilde{\overline{\mathbb{Q}}}$ to $[0, \infty)$. For any algebraic number α, we define its Siegel norm $\|\alpha\|_{S i}$ by $\|\alpha\|_{S i}=\sqrt{A(\alpha)}$. In this paper we investigate connections between the Siegel norm and the spectral norm on $\overline{\mathbb{Q}}$, and their extensions to the spectral completion $\widetilde{\overline{\mathbb{Q}}}$ of $\overline{\mathbb{Q}}$. In the last section we show how one can explicitly compute the Siegel norm for some classes of elements of $\widetilde{\overline{\mathbb{Q}}}$.

2 Construction of the Siegel norm

Let us first remark that the function $\|\cdot\|_{S i}: \overline{\mathbb{Q}} \longrightarrow[0, \infty)$ has the following properties.

1. $\|\alpha+\beta\|_{S i} \leq\|\alpha\|_{S i}+\|\beta\|_{S i}$, for any $\alpha, \beta \in \overline{\mathbb{Q}}$.
2. $\|c \alpha\|_{S i}=|c|\|\alpha\|_{S i}$, for any $c \in \mathbb{Q}, \alpha \in \overline{\mathbb{Q}}$.

Indeed, let $\alpha, \beta \in \overline{\mathbb{Q}}$. Let K be a number field such that $\alpha, \beta \in K$. Then

$$
\sum_{\sigma}|\sigma(\alpha)+\sigma(\beta)|^{2} \leq \sum_{\sigma}|\sigma(\alpha)|^{2}+\sum_{\sigma}|\sigma(\beta)|^{2}+\left|\sum_{\sigma} \sigma(\alpha) \overline{\sigma(\beta)}\right|+\left|\sum_{\sigma} \overline{\sigma(\alpha)} \sigma(\beta)\right|
$$

Employing Cauchy's inequality, we derive that

$$
\left|\sum_{\sigma} \sigma(\alpha) \overline{\sigma(\beta)}\right|=\left|\sum_{\sigma} \overline{\sigma(\alpha)} \sigma(\beta)\right| \leq\left(\sum_{\sigma}|\sigma(\alpha)|^{2}\right)^{\frac{1}{2}}\left(\sum_{\sigma}|\sigma(\beta)|^{2}\right)^{\frac{1}{2}}
$$

Hence $A(\alpha+\beta) \leq A(\alpha)+A(\beta)+2 \sqrt{A(\alpha)} \sqrt{A(\beta)}$, so $\sqrt{A(\alpha+\beta)} \leq \sqrt{A(\alpha)}+$ $\sqrt{A(\beta)}$, and the first remark follows.

The second part follows easily from the definition of the map A.
The above properties show that $\|\cdot\|_{S i}$ is a vector space norm on $\overline{\mathbb{Q}}$. Note that $A(\alpha) \leq\|\alpha\|^{2}$, hence $\|\alpha\|_{S i} \leq\|\alpha\|$, for any $\alpha \in \overline{\mathbb{Q}}$.

For $x \in \widetilde{\overline{\mathbb{Q}}}$ and $\delta>0$, consider the open ball $B(x, \delta)=\{y \in \widetilde{\overline{\mathbb{Q}}}:\|y-x\|<\delta\}$, and let $n(x, \delta)=\min \{\operatorname{deg} \alpha: \alpha \in B(x, \delta)\}$. We can now state the following theorem.

Theorem 1. i) The map $A: \overline{\mathbb{Q}} \longrightarrow[0, \infty)$ is continuous with respect to the spectral norm and it extends canonically to a map, which we will still denote by A, from $\widetilde{\overline{\mathbb{Q}}}$ to $[0, \infty)$.
ii) Let $x \in \widetilde{\overline{\mathbb{Q}}}, x \neq 0$. Then $\|x\|_{S i} \geq \frac{\|x\|}{4 \sqrt{n\left(x, \frac{\|x\|}{4}\right)}}$.
iii) $\|\cdot\|_{S i}$ is a vector space norm on $\widetilde{\overline{\mathbb{Q}}}$.

Proof: i) Let $\left(x_{n}\right)_{n \geq 0}$ be a convergent sequence in $\overline{\mathbb{Q}}$. Then $\left(x_{n}\right)_{n}$ is Cauchy and let $M>0$ be such that $\left|x_{n}\right| \leq M$, for any $n \geq 0$. From the proof of the remarks at the beginning of this section it follows that for all $m, n \geq 0$ we have

$$
\begin{equation*}
\left|\sqrt{A\left(x_{n}\right)}-\sqrt{A\left(x_{m}\right)}\right| \leq \sqrt{A\left(x_{n}-x_{m}\right)} \tag{1}
\end{equation*}
$$

On the other hand, since $\sqrt{A(\alpha)} \leq\|\alpha\|$, for any algebraic number α, we derive that

$$
\begin{equation*}
\sqrt{A\left(x_{n}-x_{m}\right)} \leq\left\|x_{n}-x_{m}\right\| \tag{2}
\end{equation*}
$$

Combining relations (1) and (2), we obtain

$$
\begin{equation*}
\left|\sqrt{A\left(x_{n}\right)}-\sqrt{A\left(x_{m}\right)}\right| \leq\left\|x_{n}-x_{m}\right\| \tag{3}
\end{equation*}
$$

We have

$$
\begin{gathered}
\mid A\left(x_{n}\right)- \\
A\left(x_{m}\right)\left|=\left|\sqrt{A\left(x_{n}\right)}-\sqrt{A\left(x_{m}\right)}\right|\right| \sqrt{A\left(x_{n}\right)}+\sqrt{A\left(x_{m}\right)} \mid \leq \\
\leq 2 M\left|\sqrt{A\left(x_{n}\right)}-\sqrt{A\left(x_{m}\right)}\right| \leq 2 M\left\|x_{n}-x_{m}\right\|
\end{gathered}
$$

and hence

$$
\begin{equation*}
\left|A\left(x_{n}\right)-A\left(x_{m}\right)\right| \leq 2 M\left\|x_{n}-x_{m}\right\| . \tag{4}
\end{equation*}
$$

Since $\left(x_{n}\right)_{n}$ is Cauchy with respect to the spectral norm, it follows from inequality (4) that the sequence $\left(A\left(x_{n}\right)\right)_{n}$ is Cauchy in $[0, \infty)$, hence it is convergent. Another consequence of relation (4) is that the map A can be extended to $\widetilde{\overline{\mathbb{Q}}}$ as follows. Let $\alpha \in \widetilde{\overline{\mathbb{Q}}}$. Then $\alpha=\lim _{n \rightarrow \infty} \alpha_{n}$, with $\alpha_{n} \in \overline{\mathbb{Q}}$, and $A(\alpha):=\lim _{n \rightarrow \infty} A\left(\alpha_{n}\right) \in[0, \infty)$.
ii) Let $x \in \widetilde{\overline{\mathbb{Q}}}, x \neq 0$, and let $0<\delta=\frac{\|x\|}{4}$. Also let $\alpha, \alpha_{0} \in \overline{\mathbb{Q}} \cap B(x, \delta)$ and denote $n=\operatorname{deg} \alpha, n_{0}=\operatorname{deg} \alpha_{0}$. Let K be a finite field extension of \mathbb{Q} such that $\alpha, \alpha_{0} \in K$. Denote by m the degree of K over $\mathbb{Q}\left(\alpha_{0}\right)$. From the above choice of α we have $\left\|\alpha_{0}-x\right\|<\frac{\|x\|}{4}$. It follows that

$$
\begin{equation*}
\left\|\alpha_{0}\right\| \geq\|x\|-\left\|x-\alpha_{0}\right\|>\|x\|-\frac{\|x\|}{4}=\frac{3}{4}\|x\| \tag{5}
\end{equation*}
$$

Let $\sigma_{1}, \ldots, \sigma_{m n_{0}}$ be the embeddings of K in \mathbb{C}. From relation (5) we deduce that

$$
\max _{1 \leq j \leq n_{0} m}\left|\sigma_{j}\left(\alpha_{0}\right)\right|=\left\|\alpha_{0}\right\|>\frac{3}{4}\|x\|
$$

There exist j_{1}, \ldots, j_{m} such that $\left|\sigma_{j_{1}}\left(\alpha_{0}\right)\right|=\left|\sigma_{j_{2}}\left(\alpha_{0}\right)\right|=\cdots=\left|\sigma_{j_{m}}\left(\alpha_{0}\right)\right|>$ $\frac{3}{4}\|x\|$.

We have $\left\|\alpha_{0}-\alpha\right\| \leq\left\|\alpha_{0}-x\right\|+\|x-\alpha\|<\frac{1}{4}\|x\|+\frac{1}{4}\|x\|=\frac{1}{2}\|x\|$.
It follows that $\left|\sigma_{j}\left(\alpha_{0}\right)-\sigma_{j}(\alpha)\right|<\frac{1}{2}\|x\|$, for any $j \in\left\{1,2, \ldots, n_{0} m\right\}$. In particular, $\left|\sigma_{j_{1}}\left(\alpha_{0}\right)-\sigma_{j_{1}}(\alpha)\right|<\frac{1}{2}\|x\|$. Since $\left|\sigma_{j_{1}}\left(\alpha_{0}\right)\right|>\frac{3}{4}\|x\|$, we obtain

$$
\left|\sigma_{j_{1}}(\alpha)\right| \geq\left|\sigma_{j_{1}}\left(\alpha_{0}\right)\right|-\left|\sigma_{j_{1}}\left(\alpha_{0}\right)-\sigma_{j_{1}}(\alpha)\right|>\frac{3}{4}\|x\|-\frac{1}{2}\|x\|=\frac{1}{4}\|x\| .
$$

We derive that

$$
\begin{gathered}
A(\alpha)=\frac{1}{n_{0} m} \sum_{1 \leq j \leq n_{0} m}\left|\sigma_{j}(\alpha)\right|^{2} \geq \frac{1}{n_{0} m}\left(\left|\sigma_{j_{1}}(\alpha)\right|^{2}+\cdots+\left|\sigma_{j_{m}}(\alpha)\right|^{2}\right) \\
\geq \frac{1}{n_{0} m} \cdot \frac{\|x\|^{2}}{16} m=\frac{\|x\|^{2}}{16 n_{0}}
\end{gathered}
$$

Hence

$$
\|\alpha\|_{S i} \geq \frac{\|x\|}{4 \sqrt{n_{0}}}, \text { for any } \alpha \in B\left(x, \frac{\|x\|}{4}\right)
$$

iii) From the two remarks at the beginning of this section, by continuity it follows that $\|\alpha+\beta\|_{S i} \leq\|\alpha\|_{S i}+\|\beta\|_{S i}$, for any $\alpha, \beta \in \widetilde{\overline{\mathbb{Q}}}$ and also that $\|c \alpha\|_{S i}=|c|\|\alpha\|_{S i}$, for any $c \in \mathbb{Q}, \alpha \in \widetilde{\overline{\mathbb{Q}}}$. Moreover, part ii) shows that for $x \in \widetilde{\overline{\mathbb{Q}}}$, $\|x\|_{S i}=0$ if and only if $x=0$, which completes the proof of the theorem.

Recall ([2]) that a Pisot-Vijayaraghavan number (or simply a Pisot number or a $P V$ number) is a real algebraic integer $\alpha>1$ such that all its conjugates are in absolute value <1.

We remark that, apart from the constant $1 / 4$ on its right hand side, the inequality from Theorem 1 part ii) is best possible. Indeed let us choose a $P V$ number, β say, a positive integer m, and put $x=\beta^{m}$. Let d denote the degree of β over \mathbb{Q}. Since all the conjugates $\sigma(\beta)$ are in absolute value <1, it is easy to see (using the fact that a natural power of a $P V$ number β of degree d over \mathbb{Q} also has degree d over \mathbb{Q}) that if we keep β fixed and let m tend to infinity, the ratio $\|x\|_{S i} /\|x\|$ will approach $1 / \sqrt{d}$. On the other hand $n(x,\|x\| / 4) \leq d$. Therefore, for any fixed $\epsilon>0$, if m is large enough then $\|x\|_{S i}<(1+\epsilon) \frac{\|x\|}{\sqrt{n(x,\|x\| / 4)}}$.

3 Explicit computations

In this section we obtain a formula that gives the value of the map $A(\cdot)$ on a large class of elements of $\widetilde{\overline{\mathbb{Q}}}$. To proceed, we introduce a few notations and recall some of the results from [6].

Let $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ be the absolute Galois group of \mathbb{Q}, endowed with the Krull topology, and let $C\left(G_{\mathbb{Q}}\right)$ be the \mathbb{C}-Banach algebra of all continuous functions defined on $G_{\mathbb{Q}}$ with values in $\mathbb{C}\left(\|f\|=\sup \left\{|f(\sigma)|, \sigma \in G_{\mathbb{Q}}\right\}\right.$ for any $\left.f \in C\left(G_{\mathbb{Q}}\right)\right)$. Denote by μ the Haar measure on $G_{\mathbb{Q}}$, normalized such that $\mu\left(G_{\mathbb{Q}}\right)=1$, and let $\int_{G_{\mathrm{Q}}} f(\sigma) d \sigma$ be the corresponding Haar integral of any continuous function $f: G_{\mathbb{Q}} \rightarrow \mathbb{C}$.

Let x be an element of $\widetilde{\overline{\mathbb{Q}}}$ and let $\left\{x_{n}\right\}_{n}$ a Cauchy sequence in $\overline{\mathbb{Q}}$ (relative to the spectral norm $\|\cdot\|$) in the class of x, i.e. $\lim _{n \rightarrow \infty} x_{n} \stackrel{\|.\|}{=} x$. Since $\left|\sigma\left(x_{n+p}\right)-\sigma\left(x_{n}\right)\right| \leq$ $\left\|x_{n+p}-x_{n}\right\|$, for all $\sigma \in G_{\mathbb{Q}},\left\{\sigma\left(x_{n}\right)\right\}_{n}$ is also a Cauchy sequence in \mathbb{C}. Let $x_{(\sigma)}$ be the limit of $\left\{\sigma\left(x_{n}\right)\right\}_{n}$ in \mathbb{C}. It can be shown that $\|x\|=\sup \left\{\left|x_{(\sigma)}\right|, \sigma \in G_{\mathbb{Q}}\right\}$ and that $\|x\|=\left\|\varphi_{x}\right\|=\sup \left\{\left|\varphi_{x}(\sigma)\right|, \sigma \in G_{K}\right\}$, where $\varphi_{x}: G_{\mathbb{Q}} \rightarrow \mathbb{C}, \varphi_{x}(\sigma)=x_{(\sigma)}$. In [6] it is shown that for any $x \in \widetilde{\overline{\mathbb{Q}}}$ the function φ_{x} is continuous and that the mapping

$$
\begin{equation*}
\Phi: \widetilde{\overline{\mathbb{Q}}} \rightarrow C\left(G_{\mathbb{Q}}\right), \quad \Phi(x)=\varphi_{x} \tag{6}
\end{equation*}
$$

is an isomorphism between the \mathbb{C}-Banach algebras $\widetilde{\overline{\mathbb{Q}}}$ and $C\left(G_{\mathbb{Q}}\right)$.
Following [6], we introduce a continuous function $H: G_{\mathbb{Q}} \rightarrow[0,1]$ with a special property: it is a measure preserving function, in the sense that it takes a Haar measurable subset of $G_{\mathbb{Q}}$ to a Lebesgue measurable subset of $[0,1]$.

We begin by fixing a tower of subgroups of finite index $G_{\mathbb{Q}} \supset G_{1} \supset \cdots \supset$ $G_{n} \supset \cdots \supset\{e\}$ for $G_{\mathbb{Q}}$, where $\bigcap_{i=0}^{\infty} G_{i}=\{e\}$ and e is the identity of $G_{\mathbb{Q}}$, and for this tower we consider a complete set of left cosets $\left\{\Delta_{G_{i}}\right\}_{i \geq 1}$ of $G_{\mathbb{Q}}$ relative to the subgroup G_{i}, of the form $\Delta_{G_{i}}=\left\{G_{i}, \sigma_{2}^{(i)} G_{i}, \ldots, \sigma_{k_{i}}^{(i)} G_{i}\right\}$ (where $k_{i}=\left[G_{\mathbb{Q}}: G_{i}\right]$,
i.e. k_{i} is the index of G_{i} in $G_{\mathbb{Q}}$). We choose an ordering in every $\Delta_{G_{i}}$ such that if $n \leq m, \sigma_{n}^{(i)} G_{i} \subset \sigma_{s}^{(i-1)} G_{i-1}$ and $\sigma_{m}^{(i)} G_{i} \subset \sigma_{l}^{(i-1)} G_{i-1}$, then $s \leq l$.

Consider the partitions $G_{\mathbb{Q}}=G_{i} \cup \sigma_{2}^{(i)} G_{i} \cup \cdots \cup \sigma_{k_{i}}^{(i)} G_{i}$ and respectively $[0,1]=\left[0, \frac{1}{k_{i}}\right) \cup\left[\frac{1}{k_{i}}, \frac{2}{k_{i}}\right) \cup \cdots \cup\left[\frac{k_{i}-1}{k_{i}}, 1\right]$, for every $i=1,2, \ldots$. For an $i \in\{1,2, \ldots\}$ we define the step function H_{i} such that $H_{i}(\sigma)=\frac{2 j-1}{2 k_{i}}$ if and only if $\sigma \in \sigma_{j}^{(i)} G_{i}$, $j=1,2, \ldots, k_{i}$. It is easy to see that the function $H^{2}=\lim _{n \rightarrow \infty} H_{n}$ is a continuous function and

$$
H^{-1}\left(\left[\frac{j-1}{k_{i}}, \frac{j}{k_{i}}\right]\right) \supseteq \sigma_{j}^{(i)} G_{i} \supseteq H^{-1}\left(\left(\frac{j-1}{k_{i}}, \frac{j}{k_{i}}\right)\right) \text { for every } j=1,2, \ldots, k_{i}
$$

The function H depends not only on the tower $G_{\mathbb{Q}} \supset G_{1} \supset \cdots \supset G_{n} \supset \cdots \supset\{e\}$, but also on the chosen ordering in every $\Delta_{G_{i}}, i=1,2, \ldots$

Next, we find a formula for evaluating the map A at elements of $\widetilde{\overline{\mathbb{Q}}}$ that correspond, via the isomorphism (6), to functions of the form $f \circ H$, for a continuous $f:[0,1] \rightarrow \mathbb{C}$.
Proposition 1. Let $H: G_{\mathbb{Q}} \rightarrow[0,1]$ be the above defined map, and let f : $[0,1] \rightarrow \mathbb{C}$ be a continuous function. Let $x_{f} \in \widetilde{\overline{\mathbb{Q}}}$ be the element corresponding to the function $f \circ H$ under the isomorphism (6). Then

$$
A\left(x_{f}\right)=\int_{0}^{1}|f(t)|^{2} d t
$$

Proof: Let $x_{f} \in \widetilde{\overline{\mathbb{Q}}}$ be such an element. Let $\left(\alpha_{j}\right)_{j}$ be a sequence of algebraic numbers that converges in the spectral norm to x_{f}. Let $M_{j}=\left\{\sigma \in G_{\mathbb{Q}}: \sigma\left(\alpha_{j}\right)=\right.$ $\left.\alpha_{j}\right\}$, and let $n_{j}=\left[G_{\mathbb{Q}}: M_{j}\right]=\operatorname{deg}_{\mathbb{Q}}\left(\alpha_{j}\right)$.

Consider a coset decomposition of $G_{\mathbb{Q}}$ with respect to M_{j} :

$$
G_{\mathbb{Q}}=\bigcup_{s=1}^{n_{j}} \sigma_{s} M_{j}
$$

and let $\alpha_{1}^{(j)}, \alpha_{2}^{(j)}, \cdots, \alpha_{n_{j}}^{(j)}$ be the conjugates of α_{j} over \mathbb{Q}, where $\sigma_{s}\left(\alpha_{j}\right)=\alpha_{s}^{(j)}$.
For $\sigma \in \sigma_{s} M_{j}$, we have $\sigma=\sigma_{s} m_{j}$, with $m_{j} \in M_{j}$, and deduce that

$$
\varphi_{\alpha_{j}}(\sigma)=\varphi_{\alpha_{j}}\left(\sigma_{s} m_{j}\right)=\left(\sigma_{s} m_{j}\right)\left(\alpha_{j}\right)=\sigma_{s}\left(\alpha_{j}\right)=\alpha_{s}^{(j)}
$$

Hence

$$
\begin{gathered}
A\left(\alpha_{j}\right)=\frac{1}{n_{j}}\left|\alpha_{1}^{(j)}\right|^{2}+\frac{1}{n_{j}}\left|\alpha_{2}^{(j)}\right|^{2}+\cdots+\frac{1}{n_{j}}\left|\alpha_{n_{j}}^{(j)}\right|^{2}= \\
=\sum_{s=1}^{n_{j}} \int_{\sigma_{s} M_{j}}\left|\varphi_{\alpha_{j}}(\sigma)\right|^{2} d \sigma=\int_{G_{Q}}\left|\varphi_{\alpha_{j}}(\sigma)\right|^{2} d \sigma
\end{gathered}
$$

Let $M>0$ be such that $\left|\varphi_{\alpha_{j}}(\sigma)\right|,\left|\varphi_{x_{f}}(\sigma)\right| \leq M$ for any $\sigma \in G_{\mathbb{Q}}$. For $\sigma \in G_{\mathbb{Q}}$ one has:

$$
\begin{aligned}
& \left|\left|\varphi_{\alpha_{j}}(\sigma)\right|^{2}-\left|\varphi_{x_{f}}(\sigma)\right|^{2}\right|=\left|\left|\varphi_{\alpha_{j}}(\sigma)\right|+\left|\varphi_{x_{f}}(\sigma)\right|\right| \cdot| | \varphi_{\alpha_{j}}(\sigma)\left|-\left|\varphi_{x_{f}}(\sigma)\right|\right| \\
& \quad \leq 2 M\left|\varphi_{\alpha_{j}}(\sigma)-\varphi_{x_{f}}(\sigma)\right| \leq 2 M\left\|\varphi_{\alpha_{j}}-\varphi_{x_{f}}| |=2 M\right\| \alpha_{j}-x_{f} \|
\end{aligned}
$$

This shows that the sequence $\left(\left|\varphi_{\alpha_{j}}(\cdot)\right|^{2}\right)_{j}$ converges uniformly to $\left|\varphi_{\alpha_{j}}(\cdot)\right|^{2}$, and hence

$$
\int_{G_{\mathbb{Q}}}\left|\varphi_{\alpha_{j}}(\sigma)\right|^{2} d \sigma \longrightarrow \int_{G_{\mathbb{Q}}}\left|\varphi_{x_{f}}(\sigma)\right|^{2} d \sigma .
$$

Since $A\left(x_{f}\right)=\lim _{j \rightarrow \infty} A\left(\alpha_{j}\right)$, and $\varphi_{x_{f}}=f \circ H$ we obtain that

$$
\begin{equation*}
A\left(x_{f}\right)=\int_{G_{\mathbb{Q}}}|(f \circ H)(\sigma)|^{2} d \sigma \tag{7}
\end{equation*}
$$

In [6] it is proven that for any continuous function $g:[0,1] \rightarrow \mathbb{C}$ one has

$$
\int_{0}^{1} g(t) d t=\int_{G_{\mathrm{Q}}}(g \circ H)(\sigma) d \sigma
$$

Choosing $g(t)=|f(t)|^{2}$, we obtain

$$
\begin{equation*}
\int_{0}^{1}|f(t)|^{2} d t=\int_{G_{\mathbb{Q}}}|(f \circ H)(\sigma)|^{2} d \sigma \tag{8}
\end{equation*}
$$

Combining relations (7) and (8) we conclude that

$$
\begin{equation*}
A\left(x_{f}\right)=\int_{0}^{1}|f(t)|^{2} d t \tag{9}
\end{equation*}
$$

which completes the proof of the proposition.

We end this paper with a couple of examples.
Example 1. Let $f:[0,1] \rightarrow \mathbb{C}$,

$$
f(t)=\exp (-2 \pi i n t)+\exp (2 \pi i n t)
$$

and let $x_{f}:=\Phi^{-1}(f \circ H) \in \widetilde{\overline{\mathbb{Q}}}$. Then

$$
A\left(x_{f}\right)=\int_{0}^{1}|2 \cos (2 \pi n t)|^{2} d t=2
$$

Note that this example may be interpreted in some sense as a limiting case in $\widetilde{\overline{\mathbb{Q}}}$ of the sequence of examples in $\overline{\mathbb{Q}}$ provided by Siegel, mentioned above in the
introduction, which showed that the best possible constant λ_{0} in Siegel's trace problem is at most 2.

Example 2. Let $f:[0,1] \rightarrow \mathbb{C}, f(t)=2 t$ and let $x_{f}:=\Phi^{-1}(f \circ H) \in \widetilde{\overline{\mathbb{Q}}}$. Then

$$
A\left(x_{f}\right)=\int_{0}^{1} 4 t^{2} d t=\frac{4}{3}
$$

As an element of $\widetilde{\overline{\mathbb{Q}}}$, we know that x_{f} is a limit of a Cauchy sequence $\left\{x_{n}\right\}_{n}$ in $\overline{\mathbb{Q}}$, which must then satisfy $\lim _{n \rightarrow \infty} x_{n}=\frac{4}{3}$. Let us remark that x_{f} cannot be a limit of algebraic integers, since by Siegel's result, for any algebraic integer x_{n} we must have $A\left(x_{n}\right) \in\{0,1\}$ or $A\left(x_{n}\right) \geq \frac{3}{2}$.

References

[1] W. Burnside, Theory of groups of finite order, 2nd edition, Dover Publications, New York, 1955.
[2] J.W.S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957.
[3] J.W.S. Cassels, On a conjecture of R. M. Robinson about sums of roots of unity, J. Reine Angew. Math. 238 (1969), 112-131.
[4] V. Pasol, A. Popescu, and N. Popescu, Spectral norms on valued fields, Math. Zeit. 238 (2001), no 1, 101-114.
[5] A. Popescu, N. Popescu, and A. Zaharescu, On the spectral norm of algebraic numbers, Math. Nachr. 260 (2003), 78-83.
[6] A. Popescu, N. Popescu, and A. Zaharescu, Trace series on $\tilde{\mathbb{Q}}_{K}$, Results Math. 43 (2003), no. 3-4, 331-342.
[7] I. Schur, Uber die Verteilung der Wurzeln bei gewissen algebraischen Gelichungen mit ganz-zahligen Koeffizienten, Math. Zeit. 1 (1918), 377402.
[8] C. L. Siegel, The trace of totally positive and real algebraic integers, Ann. Math. 46 (1945), 302 - 314.
[9] F. Stan and A. Zaharescu, Siegel's trace problem and character values of finite groups, J. Reine Angew. Math. 637 (2009), 217-234.

Received: 29.10.2011,
Accepted: 06.01.2012.

Simion Stoilow
Institute of Mathematics of the Romanian Academy, Research unit 5, P. O. Box 1-764,
RO-014700 Bucharest, Romania
E-mail: sfloringabriel@yahoo.com

Simion Stoilow
Institute of Mathematics of the Romanian Academy,
Research unit 5, P. O. Box 1-764,
RO-014700 Bucharest, Romania
and
Department of Mathematics,
University of Illinois at Urbana-Champaign
Altgeld Hall, 1409 W. Green Street,
Urbana, IL, 61801, USA
E-mail: zaharesc@math.uiuc.edu

[^0]: *Research of the second author is supported by the NSF grant DMS-0901621

