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Equations with arithmetic functions of Pell numbers
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Abstract

Here, we prove some diophantine results about the Euler function of Pell numbers and
their Pell–Lucas companion sequence. For example, if the Euler function of the nth Pell
number Pn or Pell–Lucas companion number Qn is a power of 2, then n ≤ 8.
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1 Introduction

Let α = 1 +
√

2 and β = 1 −
√

2 be the two roots of the quadratic equation x2 − 2x − 1 = 0.
Let (Pn)n≥0 and (Qn)n≥0 be the Pell sequence and its companion of general terms

Pn =
αn − βn

α− β
and Qn = αn + βn

for all n ≥ 0.
Let φ(m) and σ(m) be the Euler function and the sum of divisors function of the positive

integer m.
In this paper, we prove the following result.

Theorem 1. The following statements hold:

(i) The only nonnegative integer solutions of the equation φ(Pn) = 2m are

(n,m) ∈ {(1, 0), (2, 0), (3, 2), (4, 2), (8, 7)}. If n > 1, t > 1, the only nonnegative integer
solutions to φ(P t

n) = 2m are (n, t,m) = (2, t, t− 1), t ≥ 2.

(ii) The only nonnegative integer solutions of the equation φ(Qn) = 2m are

(n,m) ∈ {(1, 0), (2, 1), (4, 4)}. If n > 1, t > 1, then there are no nonnegative solutions to
φ(Qt

n) = 2m.
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(iii) The only nonnegative integer solutions of the equation σ(P t
n) = 2m are (n, t,m) = (1, t, 0),

t ≥ 1.

(iv) The equation σ(Qt
n) = 2m does not have nonnegative integer solutions (n, t,m), t ≥ 1.

Before proceeding further, we mention that several other Diophantine equations with binary
recurrences have been studied previously. For example, the above Diophantine equations with
the numbers Pn and Qn replaced by the Fibonacci and Lucas numbers Fn and Ln were studied
in [4]. In [5], it was shown that the largest Fibonacci number whose Euler function is a rep-
digit; i.e., a number whose decimal representation consists of a string of the same repeating
digit d ∈ {1, 2, . . . , 9}, is φ(F11) = 88. In [6], it was shown that there are no rep-digits with
two or more digits which are multiply perfect, namely numbers who divide the sum of their
divisors.

We record a corollary of our theorem.

Corollary 1. A polygon with Pn, respectively, Qn sides can be constructed with a ruler and
compass if and only if n ∈ {1, 2, 3, 4, 8}, respectively, n ∈ {1, 2, 4}.

Proof. Recall that by a theorem of Gauss, the regular polygon with m ≥ 3 sides can be con-
structed with the ruler and the compass if and only if φ(m) is a power of 2. By our theorem,
we infer the corollary.

A lot of research promoted by Erdős and his collaborators has been devoted on investigating
the intersections of ranges of various arithmetic functions. We added into the mix the binary
recurrences. One of the reasons why we consider such problems interesting is that on the one
hand Euler’s phi-function and the sum of divisors function are multiplicative so they behave
well with respect to multiplicative properties of the integers while a linearly recurrent sequence
displays an additive pattern. It is the intersection between the multiplicative and additive
structures that makes such questions interesting. Of course, it would be desirable to completely
describe the image of an arbitrary arithmetical function acting on a second, or higher-order
linearly recurrent sequence, but that problem seems hopelessly difficult.

One the ingredients of our proof is the notion of a primitive divisor for the sequences {Pn}n≥1

and {Qn}n≥1. A primitive divisor of Pn (or Qn) is a prime factor of Pn (or Qn) which does not
divide Pm (or Qm) for any 1 ≤ m < n. Such a primitive divisor always exists for all n ≥ 13, by a
celebrated result of Carmichael of 1913 ([2]). See also [1] for the most general result concerning
primitive divisors of Lucas sequences.

2 The Proof

If s is a positive integer such that φ(s) is a power of 2, then s has the form s = 2ap1 . . . p`, where
a ≥ 0 and p1, . . . , p` are distinct Fermat primes. For more information on Fermat numbers, see
[3]. Further, if d | s, then also φ(d) is a power of 2.

So, for the Pell sequence, we first check that φ(P2k) is a power of 2 for k = 0, 1, 2, 3 but
not for k = 4. We also check that φ(P3) is a power of 2 but φ(P9) is not. Suppose now that
p > 3 is some prime and that φ(Pp) = 2k. Since Pp is odd and coprime to 3 and 5, it follows

that Pp = p1 · · · p`, where pi = 22
bi

+ 1 for some 2 ≤ b1 < · · · < b`. Since pi ≡ 1 (mod 8),
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it follows that (8|pi) = 1 for i = 1, . . . , `. Here and in what follows, for an odd prime p and
an integer a we use (a|p) for the Legendre symbol. Since pi is a prime factor of Pp and the
discriminant ∆ = (α− β)2 = 8 of the Pell sequence is a quadratic residue modulo pi, it follows
that pi ≡ 1 (mod p). However, this is false since pi−1 is a power of 2. This shows that if φ(Pn)
is a power of 2, then n | 24, and we get the solutions from the first claim of (i). Certainly, if
t > 1 and φ(P t

n) = 2m, then we must have P t
n = 2ap1 . . . p` (for some integer a, and odd primes

p1, . . . , p`), which implies that, in fact, ` = 0 and P t
n = 2a, and the previous argument can also

be used, obtaining the second claim of (i).
We now look at φ(Qn) being a power of 2. Note that

Q2k = α2k + β2k = 2
∑

0≤i≤2k

i≡0 (mod 2)

(
2n

i

)
2i/2.

Further, for even i ∈ {1, . . . , 2k}, we have

ν2

((
2k

i

)
2i/2

)
= ν2

(
2k(2k − 1) · · · (2k − (i− 1))

i!

)
+ i/2

= k + ν2

(
(i− 1)!

i!

)
+ i/2

= k + i/2− ν2(i),

where ν2(m) is the exponent of 2 in the factorization of the positive integers m. Since i/2 ≥ ν2(i)
for all even positive integers i, we get that

Q2k/2 ≡ 1 (mod 2k). (2.1)

To compute the exact exponent of 2 in Q2k/2− 1, we proceed as follows. Suppose that k ≥ 2.
Then

Q2k/2− 1 =
α2k + β2k

2
− 1 =

α2k + β2k − 2

2
=

1

2

(
α2k−1

− β2k−1
)2

=
1

2
(α− β)2(α+ β)2(α2 + β2)2 · · · (α2k−2

+ β2k−2

)2

= 4Q2
1Q

2
2 · · ·Q2

2k−2 .

From (2.1), we get that ν2(Q2j ) = 1 for all j ≥ 0. Hence, ν2(Q2k/2 − 1) = 2k for k ≥ 2.
Obviously, for k = 1 we get that ν2(Q2/2− 1) = 1.

We now check that φ(Q2) and φ(Q4) are powers of 2 and that φ(Q2k) is not a power of 2
for k ∈ {3, 4}. Suppose that φ(Q2k) is a power of 2 for some k ≥ 5. Write

Q2k/2 = (22
b1

+ 1) · · · (22
b`

+ 1)

for some 2 ≤ b1 < · · · < b` such that pi = 22
bi

+ 1 is prime for all i = 1, . . . , `. Then
2b1 = ν2(Q2k/2−1) = 2k. Further, for j ≥ 2, we use (2.1) to write Q2j = 2(1 + 22jαj) for some
odd integer αj . Then

Q2k/2− 1 = 22k32 · 172(1 + 26α3)2 · · · (1 + 22(k−2)αk−2)2.
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On the other hand,

Q2k/2− 1 = 22
b1

+ 22
b2

+ higher powers of 2.

Thus, we get

32 · 172(1 + 26α3)2 · · · (1 + 22(k−2)αk−2)2 = 1 + 22
b2−2b1 + higher powers of 2.

The left hand side above is congruent to 9 modulo 16. This gives that 2b2 − 2b1 = 3, and its
only solution is b1 = 0, b2 = 1. Thus, p1 = 3 and this is impossible because 3 cannot divide Q2k

for some k ≥ 5. Thus, if φ(Qn) is a power of 2, we deduce that n = 2am, where a ∈ {0, 1, 2}
and m is odd. Let us show that m = 1. Assume that this is not so. Fix a. Let p be some

prime factor of m. Then φ(Q2ap) is also a power of 2. Let q = 22
b

+ 1 be any primitive prime
factor of Q2ap. Then q is not 3 or 5, so, in particular, q ≡ 1 (mod 8). Thus, (8|q) = 1, showing
that q | Pq−1. Since also q | Q2ap | P2a+1p | P8p, we get that q | gcd(Pq−1, P8p). Since q − 1 is a
power of 2, we get that q | P8, so that q ∈ {3, 17}, which is impossible because we chose q to be
primitive for Q2ap. This shows that there is no number of the form Q2ap for some a ∈ {0, 1, 2}
and odd prime p whose Euler function is a power of 2. This takes care of the first part of (ii).
Certainly, if t > 1 and φ(Qt

n) = 2m, since, then, we must have Qt
n = 2ap1 . . . p`, it follows that

Qt
n = 2a, and we can use the previous argument, which shows the second part of (ii).

We now move on to the σ function. Using a similar reasoning as before, we can assume
t = 1. If σ(s) is a power of 2, then s = p1 · · · p`, where pi = 2qi−1 are distinct Mersenne primes
for i = 1, . . . , `. In particular, s is odd. Further, if d | s, then also σ(d) is a power of 2. So,
assume that Pn has the property that the sum of its divisors is a power of 2. Then n is odd.
Let p be some prime factor of n. Then the sum of divisors of Pp is a power of 2. Write

Pp = p1 · · · p`, (2.2)

where pi = 2qi − 1 are Mersenne primes with q1 < · · · < q`. Clearly, q1 > 2, because 3
does not divide Pp for any prime index p. Since pi ≡ 7 (mod 8), it follows that (8|pi) = 1.
Thus, pi ≡ 1 (mod p). In particular, p | 2q1 − 2 = 2(2(q1−1)/2 − 1)(2(q1−1)/2 + 1). Thus,
2(q1−1)/2 + 1 ≥ p. Reducing Pn modulo 8 we discover that its period is 0, 1, 2, 5, 4, 5, 2, 1 of
length 8. Since Pp ≡ (−1)` (mod 8) from formula (2.2), and there is no Pell number Pn

congruent to 7 modulo 8, we get that ` is even. Hence,

Pp = 1− 2q1 + higher powers of 2.

We thus get that q1 = ν2(Pp−1). One checks that Pp−1 = P(p−1)/2Q(p+1)/2 or P(p+1)/2Q(p−1)/2

according to the residue class of p modulo 4. Furthermore, ν2(Qm) = 1 for all positive integers
m, whereas ν2(Pm) = ν2(m). Thus, we get that q1 = ν2(Pp−1) ≤ 1+max{ν2((p−1)/2), ν2((p+
1)/2)}, giving that

2q1 ≤ p+ 1 ≤ 2(q1−1)/2 + 2.

The above inequality fails for all primes q1 ≥ 3. Thus, the only n such that σ(Pn) is a power
of 2 is n = 1. This takes care of (iii). Finally, (iv) follows from the fact that Qn is even for all
n, so σ(Qn) cannot be a power of 2.
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