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Abstract
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Introduction

The concept of a lattice subgenerated by a modular complete lattice L has been introduced
and investigated in [5]. In this paper we relate this concept with the one of product of two
lattices, introduced and studied in [4].

In Section 0 we list some definitions and results about lattices, especially from [2].

Section 1 is devoted to the concepts of trace and generators defined and investigated in
[1], [5], [7]. We present a new definition of trace related with the concept of product in L
of two lattices, introduced and studied in [4].

In Section 2 we discuss several properties of the category o[L] introduced and inves-
tigated in [5], but not covered there, as those of self-generator and fully invariance in
lattices.

Applications of our latticial results to Grothendieck categories and module categories
equipped with a hereditary torsion theory will be given in a subsequent paper.
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0 Preliminaries

All posets and lattices considered in this paper are assumed to be bounded, i.e., to have a
least element denoted by 0 and a last element denoted by 1, and L will always denote such
a lattice. If the lattices L and L’ are isomorphic, we denote this by L ~ L’. We denote
by L (respectively, M, M,) the class of all bounded (respectively, bounded modular,
bounded modular complete) lattices.

For a lattice L and elements a < b in L we write

b/a:=[a,bl={x€eLl]a<z<b}.

For basic notation and terminology on lattices the reader is referred to [2], [9], [10],
and/or [11], but especially to [2].

Recall from [6] the following concept. A mapping f : L — L’ between a lattice L
with least element 0 and greatest element 1 and a lattice L’ with least element 0’ and
greatest element 1’ is called a linear morphism if there exist k € L, called a kernel of f,
and a’ € L' such that the following two conditions are satisfied.

o f(x)=f(zVEk),VxeL.
e f induces a lattice isomorphism

f:1/k = d' /)0, f(z) = f(z), Vo cl/k.

If f:L — L' is a linear morphism of lattices, then, by [6, Proposition 1.3], f is
an increasing mapping, commutes with arbitrary joins (i.e., f (Vz‘el xl) = Ve f(x;) for
any family (z;);es of elements of L, provided both joins exist), preserves intervals (i.e., for
any u < v in L, one has f(v/u) = f(v)/f(u)), and its kernel & is uniquely determined.

As in [6], the class M of all (bounded) modular lattices becomes a category, denoted
by LM (L for “Linear” and M for “Modular”) if for any L, L’ € M one takes as
morphisms from L to L’ all the linear morphisms from L to L’. A major property of this
category is that the subobjects of an object L € LM can be viewed as the intervals a/0
for any a € L (see [6, Proposition 2.2(5)]).

Throughout this paper R will denote an associative ring with non-zero identity element,
and Mod-R the category of all unital right R-modules. The notation Mp will be used to
designate a unital right R-module M, and N < M will mean that N is a submodule of M.
The lattice of all submodules of a module My will be denoted by L(MEg).

The latticial counterpart of the concept of a fully invariant submodule of a module is
that of a fully invariant element introduced in [8] as follows. Let L € M. An element
a € L is said to be fully invariant, abbreviated FI, if f(a) < a for any f € Endyp(L) :=
Homg (L, L), and the set of all fully invariant elements of L will be denoted by FI(L).

1 Trace and Generators

The aim of this section is to present some results on trace and generators. Thus, we define
an apparently different concept of trace than the ones in [1] and [7], “somehow” related
with the concept of product in L of two lattices, introduced and studied in [4].
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Definition 1.1. ([1, Definition 3.1], [5, Definition 1.2]). A poset L is said to be generated
by a poset G, or G-generated, if for any a # 1 in L there exist ¢ € L and g € G such that
caandc/0~1/g.

One denotes by Gen (G) the class of all modular complete lattices generated by G. O

The next concept is a particular case of [7, Definition 3.1] for the trace Tr (X, L) of a
nonempty class X of lattices in a complete lattice L.

Definition 1.2. For any poset G and any modular complete lattice L we set
Tr (G,L) :=V{a€ L|a/0 € Gen (G)},
and call it the trace of G in L. O

Lemma 1.3. The following assertions are equivalent for L,L' € M..

(1) L is L'-generated.
(2) L="Tr(L',L)/0.

Proof. (1) = (2) As L is L’-generated, then L =1/0 € Gen (L’) by Definition 1.1. Now,
by Definition 1.2, we have

Tr(L',L)=V{a€ L|a/0 € Gen (L)} =1,
so Tr(L',L)/0=1/0 = L.

(2)= (1)As1/0=L=Tr(L,L)/0,then1 =Tr(L',L) =\/{a € L|a/0 € Gen (L)}
Thus 1 = \/{a € L|a/0 € Gen(L')}. So L =Tr(L',L)/0 € Gen (L) by [5, Proposition
1.3], i.e., L is L'-generated. a

Notice that by [5, Proposition 1.3] Tr (L', L)/0 € Gen(L’). Hence Tr(L’,L)/0 is L’-
generated. So by 1.3, Tr (L', Tr (L', L)/0)/0 = Tr (L', L)/0 for L,L' € M..

Next, we present another definition of Tr(—,—) for two lattices L,L" in M.. As
usually, we denote by 0 (respectively, 0') the least element of L (respectively, L'), and
by 1 (respectively, 1’) the greatest element of L (respectively, L’).

For any L, K € M, and N € Sub (L), where Sub (L) is the collection of all sublattices
in LM of L, we have denoted in [4]

NLK = ok (K),
and called it the product of N and K in L. If N =n/0, we showed there that

L _ L _ L
aN_\/a:eNaI = Q-

This implies that
af(K) = oy (K) = (V{f(n) | f € Hom £ (L, K)})/ 0

for all K € M..
In particular, for N =L =1/0 and K = L' =1'/0', we have
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ap(L) = af (L) = (V{f(1) | f € Hom cm(L, L')}) /0.
Definition 1.4. For lattices L, L' in M., the sublattice
Te* (L, L) = (V{F(1') | f € Hom cas(L', L)1)/ 0
of L is called the trace of L' in L. O

As one can see, Tr*(L’,L) is a sublattice of L, while Tr(L/,L) is an element of L.
They are related by Proposition 1.7 below.

Proposition 1.5. For any two lattices L', L € M., one has Tr*(L',L) = L}, L.
Proof. By Definition 1.4
Te*(L', L) = (V{f(1") | f € Hom £ (L', L)})/ 0.
By [3, Definition 2.9] we have
af/ (L) = (V{f(1) | f € Hom cpq (L', L)})/ 0,

so Tr*(L/,L) = ok (L). Now, ok (L) = ak/(L) by [4, Notation 2.3], which implies that
Tr*(L', L) = a},(L). Moreover, by [4, Notation 2.4], we have

ok (L) =L}, L,
and so Tr*(L/,L) = L}, L. 0

Definition 1.6. Let L € M,.. A lattice L' € M, 1is said to be generated™ by L or
L-generated” if Tr*(L',L) = L.
One denotes by Gen ™ (G) the class of all modular complete lattices generated™ by G. O

Observe that if T' is another lattice such that 7' is L-generated*, then Tr*(T,L) = L.

Notice also that if L is L’-generated (in the sense of Definition 1.1), then by Lemma
1.3 we have L = Tr (L', L)/0. Thus

L is L'-generated <= L = Tr (L', L) /0.
Proposition 1.7. Tr (L', L)/0=Tr*(L', L) for any lattices L', L € M..

Proof. Let t/0 =T = Tr*(L',L). By Lemma 1.3, T is L’-generated. Thus T € Gen (L’).
As Tr(L',L)=\/{a€ L|a/0 € Gen (L")}, we have t < \/{a € L|a/0 € Gen (L)}, so

T=1t/0C (\V{a€L|a/0e Gen(L)})/0 =Tt (L, L)/0.

Hence Tr*(L',L) =T C Tr (L', L)/0.

If we set h:=Tr(L',L), then Tr(L',L)/0=h/0. Ast/0=T C Tr(L',L)/0 = h/0, we
have t < h. We are going to prove that ¢ = h. Suppose that ¢ < h. Then, as we remarked
above, we have

t/0=T="T"(L', L) = (V{f(V) | f € Hom m (L', L)})/ 0 = L, L.
Thus t =V {f(1") | f € Hom sm(L', L)}. Because t < h, we deduce that
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V() | f € Hom gpg(L, L)} < h

By [5, Proposition 1.3], Tr (L', L)/0 = h/0 is L'-generated. As ¢t < h, there exist u € L’
and ¢ € h/0 such that ¢ £ t and 1'/u ~ ¢/0. Since L', L € M., then there exists a linear
isomorphism of lattices 1’/u ~ ¢/0, say ¢ :1'/u — ¢/0, and then ¢(1’) = c.

Consider the linear morphism iopow : L’ =1'/0' — L = 1/0, where 7 is the surjective
linear morphism 7 : L' = 1’/0’ — 1’/u and i is the canonical inclusion linear morphism
i:¢/0— L. Thus

(iopom)(l') = (iop)(n(l) = (iop)(l) =i(p(l) =i(c) = c.
Since i o pom € Hom £aq(L', L), we have
c=(iopom) (') <V{f(I')| f € Hom (L', L)} = t,
and hence ¢ < t, which is a contradiction. Thus ¢ = h, and so
Tr*(L/,L) =T =t/0 = h/0 = Tr (L', L) 0,

as desired. O

Observe that by Proposition 1.7, we have
Tc*(L',L)=Tr(L',L)/0= L.
Thus
L is L'-generated <= Tr*(L',L) = L.

If we use now Definition 1.6, then Tr*(L’, L) = L implies that L’ is L- generated".
Thus

L' is L- generated” < Tr*(L',L) = L.
As one can see, L is L'-generated <= Tr*(L',L) = L <= L’ is L- generated".

We are now going to show that the equality Gen (L) = Gen *(L) is not true in general. To
do that, consider the ring Z,4 of rational integers modulo 4 and the category Z4-Mod.

We claim that Gen (Z4) # Gen™(Z4). First, we show that 2Z4 € Gen (Z4). By Propo-
sition 1.8, we have

Tr (Z4, 2Z4)/O =Tr >‘<(Z4, 2Z4)7
‘TI‘*(Z47 224) = Z4 242Z4 = szHomZ4(Z472Z4) f(Z4),

2. feHom 2a(2a,22) f (La) = 2La,

SO

Tr (Z4, 224)/0 = TI'*(Z4, 224) = 224
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Thus Tr(Z4,27Z4)/0 = 2Z4. By Lemma 1.3, 2Z, is Z4-generated and so 2Z, € Gen (Zy).

We are going to show that 2Z4 ¢ Gen™(Z4). Suppose not, i.e., 2Z, € Gen*(Z4). By
Definition 1.6, we have

Tr *(224, Z4) = Z4,

and by Proposition 1.5,

TI‘*(2Z4,Z4) = 2Z4 224224 = Z f(QZ4)
f€Homz, (2Z4,Z4)

As 274 is a simple ideal of Z4, we have

> f(2Zy) = 2Zy4.

feHom 7, (2Z4,Z4)
Thus
Tr *(2Z4,Z4) = 274,
and so
Ly =Tr*(224,24) = 274,

which is a contradiction. Therefore 2Z, ¢ Gen™(Z4). This proves that Gen (Z4) #
Gen *(Z,4), as claimed.

Proposition 1.8. Let L,L' in M.. If for every non-zero linear morphism f:L —Y
there exists a linear morphism g : L — L' with f o g # 0, then L' is L-generated.

Proof. By Lemma 1.3, L’ is L-generated «<— L' = Tr(L,L’)/0’. Now, Tr(L,L")/0 =
Tr*(L, L") by Proposition 1.7, and Tr*(L,L’) = LpL’' as we observed just a line above
Definition 1.5. Thus L’ is L-generated <= L' = L L’. Consequently, it is enough to prove
that L' = L L.

Set N:=LyL' =N =n/0. Thenn/0' =N CL =1/0,s0n < 1. If n =1, then
N=n/0'=1'/0' = L, i.e., LL' =N = L.

Now, assume that n < 1/, and consider the surjective linear epimorphism

p:L'=1/0 —1/n,pla)=aVn,ae L.

Since n < 1/, p is a non-zero linear morphism. By hypothesis there exists a linear
morphism ¢g: L — L’ such that pog #0. Aspog: L — 1'/n, there exists | € L with
(pog)(l) >n. But (pog)(l) =p(g(l)) = g(I) Vn. Thus g(I) Vn > n, and then g(I) < g(1)
since g is an increasing mapping.

Remember that

n/0 =N =L.L' =\ ({f(1) | f € Hom (L, L)}) /0,
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son = V{f(1) | f € Hom sm(L,L")}. Hence n > f(1) for all f € Hom s (L, L"). As
g € Hom s pq(L, L"), we have n > ¢g(1). Since g(1) > g(I), we deduce that n > g(I).
So g(I) Vn = n. On the other hand, we have seen above that g(I) Vn > n, which is a
contradiction. Consequently, necessarily n = 1’, and then Ly L’ = N = L’/. This finishes
the proof. 0

We present below a new definition, that is a reformulation of [12, Proposition 13.5(2)]
showing that if U and L’ are two right R-modules, then

L’ is U-generated if and only if Tr (U, L") = L' .

Definition 1.9. A lattice L' € M. is said to be generated™ by L or L generated** for
a lattice L € M, if for every non-zero linear morphism f: L — Y there exists a linear
morphism g: L — L' with fog#0. O

One denotes by Gen **(@G) the class of all modular complete lattices generated™ by G.

Proposition 1.10. With the notation above, L' is L-generated if and only if it is L-
generated™*.

Proof. Suppose L' is L-generated**. Then, by Proposition 1.8 we deduce that L’ is L-
generated.

Conversely, assume that L’ is L-generated. Then, L' = Tr (L, L’)/0’ by Lemma 1.3, so
L' =Tr(L,L')/0' = Tc*(L, L').
Then LpL' =Tr*(L,L") by Proposition 1.5. It follows that
L'=Tc*(L,L')=L,L.
Now, let f: L' — Y =1"/0" be a non-zero linear morphism. Then
Lol =Te*(L, 1) = (V{g(1) | g € Hom caa(L, L)}/ O,
and so
V)0 = I = Ly = (V{g(1) | g € Hom cau(L, L')})/ 0"

We deduce that 1' = \/{g(1) | ¢ € Hom s am(L, L")}, and because f: L' — Y =1"/0"
is a non-zero linear morphism, we have

0" # f(1) = f(V{g(1) | g € Hom £m(L, L)}) = V{f(9(1)) | g € Hom £ (L, L)},

so there exists a linear morphism ¢ : L — L’ with f(g(1)) # 0”. Then fog is a non-zero
linear morphism. This proves that L’ is L- generated™™, as desired. 0

Lemma 1.11. Let 1/0=L, L' e M.. If T= Tv*(L', L), then T es L'-generated.

Proof. As above, T = Tr*(L',L) = L, L, so, by product of lattices we have
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t/0=T =Ly, L= (V{f(1') | f € Hom cau(I', L)})/ 0,

hence t = \/{f(1") | f € Hom s pq(L',L)}.

Let a € T,a # t. Then a < ¢t = \/{f(1")|f € Homm(L',L)}, so there exists
f € Hom (L', L)} with f(1') £ a. As f:1'/0' = L' — L =1/0 is a linear morphism,
there exists k € 1/0" such that k is the kernel of f. If ¢:= f(1’), then f induces a lattice
isomorphism

f:1/k == ¢/0, f(z) = f(x), Vo € I'/k, and so
¢/0 ~1/k,ie., T is L'-generated by Definition 1.1, as desired. 0

Proposition 1.12. The lattice Tr (L', L)/0 is L’-generated.

Proof. By Proposition 1.7, Tr (L', L)/0 = Tr*(L/, L), and Tr*(L’,L) is L’-generated by
Lemma 1.11, so Tr(L’,L)/0 is L’-generated. 0

Corollary 1.13. The following assertions hold for L,L' € M..

(1) Tr*(L', L) is the largest sublattice of L generated by L.
(2) Tr* (L', L) is fully invariant in L.

Proof. (1) Since Tr(L',L) = \/{a € L|a/0 € Gen(L')}, by [5, Proposition 1.3] we
have Tr(L',L)/0 € Gen(L’). Hence Tr(L',L)/0 is L'-generated. Now, Tr(L',L)/0 =
Tr *(L', L) by Proposition 1.7, so Tr*(L/, L) is L'-generated.

Let T = t/0 be a sublattice of L such that T is L’-generated, i.e., T =¢/0 € Gen (L').
Then

t<V{a€eL|la/0€ Gen(L)}=Tr(L,L).

Therefore T = ¢/0 C Tr(L',L)/0 = Tr* (L', L). Thus Tr*(L', L) is the largest sublattice
of L generated by L'.

(2) Let g : L — L be a linear morphism. Then
g(Tr* (L', L)) = g(V{f (V') | f € Hom £ m(L', L)})/ 0).

As g commutes with arbitrary joins, we have

g(V{F() [ f € Hom ppd(L,1)}1)/0) = V({(g 0 f)(1') | f € Hom £pq(L', L)})/ 0.

Because go f € Hom £(L', L) we have

V{(ge /() | f e Hom eam(L', L)1)/ 0 € V({R(1) | h € Hom (L', L)})/ 0,
and then g(Tr*(L', L)) C Tr*(L', L)), so Tr*(L’, L) is fully invariant in L, as desired. O

Proposition 1.14. Let L,L' € M, with L' € Gen™ (L). Then Gen™* (L") C Gen™(L).
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Proof. Let 1”/0” = L" € Gen™*(L'), so L" is L’-generated by Proposition 1.10, and then
L" =Tr(L',L")/0" by Lemma 1.3. Further, Tr (L', L")/0" = Tr *(L’, L"), and by Proposi-
tion 1.5 we have Tr*(L', L") = L, L"”. Thus

L =Te (L, L")/0" = Tv*(L', L") = L', L".
So L" = L%, L"”. Moreover, by Definition 1.4, we have
Ly, L" = (V{f(V') | f € Hom cm(L', L")})/ 0",
Notice that if f € Hom sa(L', L") then f(L') = f(1'/0") = f(1')/f(0") = £(1’)/0", so
\/fEHOm cm (L, L) f(L/) = \/fEHom LM(L’,L”)(-}C(]‘,)/OH)'

By Notation [4, 2.4], we have
Vpettom opa(zr.2n (F(1)/07) = (VAF(Q) | f € Hom e (L', L7)})/ 07 = L7, L7

Thus \/fEHom cm (L', L) f)="LyL".

Since L' € Gen ™ (L), then by Proposition 1.10 we deduce that L’ is L-generated. So,
by Lemma 1.3, L' = Tr (L, L’)/0’, and by Proposition 1.7 Tr (L, L") /0’ = Tr *(L, L'). Now,
by Proposition 1.5 we have Tr*(L,L’) = Ly L'. Thus

L' =Tr(L,I)/0' = Tr*(L,L)) = L, L.

On the other hand, by Definition 1.4 we have L' = L L" = \/},cxom i (1,2 P(L)-
If f € Hom paq(L', L"), then

f(LY) = f(LL L) = f(\/hEHom cm(L,L") h(L)) = \/hEHomLM(L,L’) f(R(L)),
and so f(L') = Vjcrom gz, 0 (f © R)(L). Since foh € Hom cam(L, L"), it follows that
f(L/) = \/hEHomEM(L’L’)(f © h)(L) g \/gEHomLM(L,L”) g(L)

Moreover, by Definition 1.4 we have \/ | cyom o0 (r,z 9(L) = LrL”. Thus f(L') € LyL”
for all f € Hom (L', L"). We deduce that

Vpettom parrr, o f(L') € L L”.
Since L" = L, L" =V ¢ cqom et (L7171 f(L), then
L'"=1L),L"CL,L"CL".

Thus L = L L”. By Proposition 1.5, we have Tr *(L, L") = L, L” = L”. So, by Lemma
1.11, we deduce that L’ is L-generated, and by Proposition 1.10 it follows that L” is
L-generated**. Therefore L” € Gen™*(L), as desired. O

Proposition 1.15. Let L,L' € M.. If L' € Gen™ (L), then L'/Y € Gen™ (L) for all Y
in Sub (L').

Proof. Let Y = y/0’ € Sub(L’). Then Lp(L'/Y) C L'/Y by the definition of product of
lattices. Consider the linear epimorphism
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p: L' — L)Y, p(z)=xVy Yeel.
Then p(L') = L'/Y. Since L' is L- generated”™, then L’ is L-generated by Proposition
1.10, so L' = Tr(L,L’)/0' by Lemma 1.3. It follows that Tr(L,L’)/0' = Tr*(L,L’) by
Proposition 1.7. Now, by Proposition 1.5 Tr*(L, L') = L L', we have

L'=Tr(L,L")/0 =Tr*(L,L") = LyL’.
On the other hand, Ly L' =V tepiom i (r.2r) [ (L) by Definition 1.4, so

L'= \/feHom cm(L,L") f<L)-
Thus

p(L') =p(LLL") = p( \/feHomLM(L,L') f(L)) = \/feHom,;M(L,L/)(P o [)(L).
Clearly po f € Hom s (L, L'/Y) for all f € Hom (L, L'), so

(pO f)(L) c \/gEHomLM(L,L//Y) g(L) for all f € HOI’HLM(L,L/).
Thus

\/feHom ﬁM(L,L')(p o f)(L) € \/gEHom cm(L,L')Y) g(L).
Observe that \/ cyom .o (2,0 /v) 9(L) = LL(L'/Y).

LY = p(L') =V jettom wreian 0 HL) S Lo(L')Y).

So Lp(L'/Y) = L'/Y. Apply now Proposition 1.5, Proposition 1.7, and Proposition 1.10
to deduce that L'/Y is L-generated**, i.e., L'/Y € Gen™"(L), which finishes the proof.
O

Lemma 1.16. Let L € M., and let (X;)ier be a family in Sub (L). If Y € Sub (L) and
X; CY forallicl, then \/;c; X; CY.

Proof. Let X; = x;/0 foreach i € I, and let Y =y/0. As X; CY, we have z;/0 C y/0, so
x; <y foralli €l Thus \/z; <y, and then (\/z;)/0 < y/0 =Y. By [4, Section 2 ], we

have \/,c; Xi = (\V/ 7;)/0. Consequently \/,.; X; C Y, as desired. 0

Proposition 1.17. Let L, L' € M.. If (X;)ier is a family in Sub (L") and X; € Gen™* (L)
for alli eI, then \/,c; X; € Gen™"(L).

Proof. Set X := \/;c; Xi. Then LpX = Lp(V;c; Xi) € Ve Xio As X3 € X, then
by [4, Proposition 2.7], L, X; C L;X. By Proposition 1.10, X; is L-generated, so by
Lemma 1.3, Proposition 1.7, and Proposition 1.5 we deduce that X; = Ly X; for all i € I.
Thus X; = L X; € LpX for all i € I. Now Viel X; C€C Lp X by Lemma 1.16, and then
X =V,er Xi = L X. Proposition 1.7, Lemma 1.3, and Proposition 1.10 imply that X is
L- generated™, i.e., \/;,c; X; = X € Gen™" (L), as desired. O

Lemma 1.18. Let L,L' € M.. Then L' is L-generated™ <= L L' = L’.
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Proof. Observe that
L’ is L-generated*™ <= L’ is L-generated
by Proposition 1.10, and
L' is L-generated<= L' = Tr (L, L") /0’
by Lemma 1.3, so
L’ is L-generated™* <= L' = Tr (L, L)/0.

On the other hand, L' = Tr (L, L) /0’ = Tr *(L, L") by Proposition 1.7, and Tr *(L, L’) =
LpL' by Proposition 1.5. Thus

L' is L-generated™ < L L' = L',

and we are done. O

Proposition 1.19. Let L, X € M.. Then
V{Y eSub(X)|Y € Gen™ (L)} = Tr*(L, X).

Proof. By Proposition 1.5, Tr*(L,X) = L1 X. Let Y € Sub (X). If Y € Gen**(L), then Y’
is L-generated*™, and LY =Y by Lemma 1.18. As Y C X, then by [4, Proposition 2.7 |
we have L)Y C Ly X. Thus L)Y C Ly X =Tr*(L,X),s0Y = LY C Tr*(L, X) for all
Y € Sub (X). Since Y € Gen**(L), then by Lemma 1.16,

V{Y €Sub(X)|Y € Gen**(L)} C Tr*(L, X).

Observe that Tr*(L, X) is L-generated by Lemma 1.11, and Tr*(L, X) is L-generated**
by Proposition 1.10, i.e., Tr*(L,X) € Gen**(L). Since Tr*(L,X) = L X C X, then
Tr*(L, X) € Sub (X). Hence

Tr*(L,X)C V{Y €Sub(X) |Y € Gen™(L)}.
Thus \/{Y € Sub(X) |Y € Gen ™" (L)} = Tr*(L, X), and we are done. g

Lemma 1.20. The following statements hold for L,L',L" € M, and 1'/0/ = L' €
Gen™*(L).

(1) If L’ ~L" in LM, then L" € Gen™(L).
(2) If € L' then 1'/a’ € Gen™(L).

Proof. (1) We are going to prove that L” = Ly L”. By definition of the product of lattices
we have LpL"” C L"”. By hypothesis, there exists a linear isomorphism ¢ : L' — L”, so
o) = L.

As L' € Gen** (L), then Ly L' = L' by Lemma 1.18, and

L'=LL' = (V{f(1) | f € Homem(L, L')}) /0" =V pepomppar,nry £ (L)
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by [4, Notation 2.4].
Thus

L" =g(L") = g( erHomLM(L,L') f(L)) = \/fEH()mLM(L,L’)(g o f)(L),

where go f: L — L" so go f € Homg (L, L").
Since LrL" =V j,ctomp iz, 1) (L), we have

L" =V petomen(r,2(9° FL) € Viettompun,om ML) = LLL”.

Therefore L C LpL", so L" = L;yL"”. Now, by Lemma 1.18 it follows that L” is L-
generated*, and then L” € Gen ™ (L).

(2) We are now going to prove that 1’/a’ = L;(1’/a’). By the definition of product of
two lattices we have Ly (1'/a’) C 1'/d’.
Consider the surjective linear morphism

p: L' —1/d, plx)y=axVd,Vxel.
Then, as L' € Gen™* (L), we have L;, L' = L' by Lemma 1.18. On the other hand
L'=LgL' = (V{f(1) | f € Homem(L, L')}) /0" =V scnompni(z.y [ (L)

by [4, Notation 2.4].
As p is a linear epimorphism we have p(L') = 1'/d’, so

1l/a/ = p(LI) = p( \/feHomgM(L,L’) f(L)) = \/feHoml;M(L,L’)(po f)(L)7

where po f: L — 1'/d’, so po f € Homg (L, (1'/a’)).
Since Lz (1'/a’) = VhEHomLM(L,(l’/a')) h(L), we deduce that

1//0‘/ = VfGHomcM(L,L’)(p © f)(L) g VhGHomCM(L,(l//a’)) h(L) = LL(ll/a/)'

Therefore 1'/a’ C L (1'/a’), s0 1'/a’ = Ly (1'/a’). By Lemma 1.18 it follows that 1'/a’ is
L-generated**. Thus 1’/a’ € Gen ™" (L), as desired. d

Proposition 1.21. The following assertions are equivalent for L,L' € M,.
(1) L' € Gen™(L).

2) There exists a family (X;)icr in Sub (L'), such that L' =\/..;, X; and X; is a linear
( Y € icl
homomorphic image of L.

Proof. (1) = (2). Assume that L’ € Gen™*(L). Then L' = L L’ by Lemma 1.18, and by
[4, Notation 2.4] we have

L'=LyLl' = (V{f(1)| f € Homem(L, L')})/ 0.
Therefore

L= \/fEHomLM(L,L’) f(L).
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For each f € Homga(L, L") we set Xy := f(L) and I := Homgpq(L,L"). Thus Xy is a
linear homomorphic image of L for all f € I, and so

L/ frd \/fEI Xf7
which proves (2).

(2) = (1) Suppose that L' =\/,.; X; and X; is a linear homomorphic image of L for
every i € I, i.e., there exist linear epimorphisms f; : L — X; for every ¢ € I. If k; is the
kernel of f;, then f; induces a lattice isomorphism

fi: ki = fQ)/f(k:), fi(x) = fi(x), Vo € 1/k;.

Since f; is linear epimorphism, then f;(L) = X;. Thus X; = f;(1)/fi(k;). Hence we deduce
that f;(L) = X; ~ 1/k;. As L = L L, then Lemma 1.18 and Proposition 1.10 imply that
L is L- generated™. As k; € L, then 1/k; is L- generated™™ by Lemma 1.20, and so X; is
L- generated™™ for all 1 € I by Lemma 1.20.

Since X; C L' for all i € I, then by Proposition 1.17 L' = \/,.; X; is L- generated™,
ie., L' € Gen™ (L), and we are done. 0

Proposition 1.22. Gen (L) = Gen**(L) for any L € M..

Proof. The result follows immediately from Proposition 1.10. 0

2 The category o[L]

Definition 2.1. For any lattice L € M. we denote by o[L] the full subcategory of M.
that contains all lattices L' € M, such that L' is linearly isomorphic to a sublattice of an
L -generated lattice (or equivalently, L-generated™™ by Proposition 1.10). O

Lemma 2.2. Let L,L' € M.. If h : L — L' is a linear isomorphism and K is a
sublattice of L, then L/K and L'/h(K) are (linearly) isomorphic.

Proof. Let K = k/0. As h is a linear morphism, then h preserves intervals by [7, Lemma
0.6], so h(1/k) = h(1)/h(k), h(1)=1', and h(1/k) =1"/h(k).

Since L/K = 1/k, L' /h(K) = 1'/h(k), and h is a linear isomorphism, then L/K and
L'/h(K) are (linearly) isomorphic, as desired. 0

Proposition 2.3. The category o[L] is closed under sublattices and quotient linear epi-
morphisms for any L € M..
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Proof. First, we are going to prove that o[L] is closed under sublattices. Let L’ € o[L] and
L" C L. Then, by the definition of o[L], we have L' ~ T", where T" is a sublattice of an
L-generated lattice T. Then L” is isomorphic to a sublattice of T”. Since T" is a sublattice
of T, we deduce that L” is isomorphic to a sublattice of T, which implies that L" € o[L],
so o[L] is closed under sublattices.

We are now going to show that o[L] is closed under quotient linear epimorphisms. Let
L' eo[L] and L” C L'. As L' € o[L], then L' ~ T’ by the definition of o[L], where T" is
a sublattice of an L-generated lattice T', so, L is isomorphic to sublattice 7" of T', and
L'/L" ~T'/T" by Lemma 2.2, As T" is sublattice of 77 and T" is a sublattice of T', we
deduce that T" is sublattice of T, and so T"/T" C T/T".

On the other hand, Gen ™ (L) = Gen (L) by Proposition 1.22, so T' € Gen (L), and then
T € Gen™(L). Now, T/T" € Gen**(L) by Proposition 1.15. Thus T/T" € Gen (L), so
T/T" is L-generated. Since T'/T" C T/T" and L'/L" ~ T'/T", it follows that L'/L" €
o[L], as desired. d

Lemma 2.4. If Gen[L] C Gen[H] for L,H € M, then o[L] C o[H].

Proof. Let L' € o[L] and L” C L'. As L’ € o[L], then by the definition of o[L], we have
L' ~ T’ where T’ is a sublattice of an L-generated lattice T. Thus T € Gen[L]. By
hypothesis, we have Gen[L] C Gen[H], so T € Gen[H], hence T is H -generated. Since
L' ~T' CT, we have L’ € o[H], which shows that o[L] C o[H]. g

Proposition 2.5. Let L,L' € M.. If L' is L-generated (or equivalently, L-generated™™),
then o[L'] C o[L].

Proof. As L' is L-generated, L' € Gen[L]. Then L' € Gen[L]** by Proposition 1.22.
Now, Gen [L']** C Gen [L]** by Proposition 1.14. Further, by Proposition 1.22, we have
Gen [L'] C Gen[L], and o[L'] C ¢[L] by Lemma 2.4. 0

Corollary 2.6. Let L € M. and T =t/0 € Sub(L). Then o[1/t] C o[L].

Proof. As t/0 = T C L, then t € L. By Lemma 1.20, we have 1/t € Gen[L]**, so,
by Proposition 1.22, we deduce that 1/t € Gen[L]. Now, by Proposition 2.5, we have
o[l/t] C o[L]. 0

Proposition 2.7. Let L,T € M, and let (T;)icr be a family in Sub (T). If T; € Gen[L]
for alli € I, then \/,c; T; € o[L].

Proof. Set T" := \/,.; T;. We claim that LpT" = T". Indeed, by the definition of product
of lattices, we have L, T' C T’. Since T; € Gen[L] for all ¢ € I, then by Lemma 1.18, we
deduce that L;T; = T; for all i € I. As T; C T’ for all ¢ € I, then, by [4, Proposition 2.7],
we have

T, = LT, C LT CT foralliel.
Thus T; C T for all ¢ € I, so we deduce that
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T =\, T, C LT CT.

Therefore L;,T' = T", as claimed.
By Lemma 1.18, it follows that 7" is L-generated, and so \/,.;T; = T" € Gen (L).
Now, Gen (L) C o[L] by the definition of o[L]. Consequently T* =\/,_; T; € o[L], and we

are done. O

Definition 2.8. A lattice L € M, is said to be a self-generator if it generates all its
sublattices, and a lattice L' € o[L] is called a generator in o[L] if L' generates all lattices
in olL]. O

Proposition 2.9. The following assertions are equivalent for L € M. and X € Sub (L).
(1) L is a self-generator.

(2) The mapping X — Hom sapq(L, X) from the set Sub (L) of all sublattices of L to
the set of all subsets of End saq(L) is injective.

Proof. 1) = 2) Let X,Y € Sub (L) be such that Hom (L, X) = Hom £¢(L,Y"). Since

L is a self-generator, then X and Y are L-generated. By Proposition 1.10, we deduce that

X and Y are L-generated™, and by Lemma 1.18, it follows that L, X = X and L )Y =Y.
On the other hand, we have

X=LyX=(V{f(1) | f € Hom cm(L,X)})/0

and

Y =LY =(V{f(1)| f € Hom s :m(L,Y)})/0.
Since Hom £ (L, X) = Hom £ (L, Y), we have
X=L,X=LY=Y,
which shows that the map X —— Hom (L, X) is injective.

2) = 1) Let X € Sub(L). By Lemma 1.11, it follows that Ly X is L-generated. Set
LpX := X', so by Lemma 1.18, we deduce that X’ is L-generated **. Again by Lemma
1.18, we have L X' = X'.

We claim that Hom saq(L, X’) = Hom (L, X). Indeed, X' = Ly X C X. Let
f € Hom g pq(L, X'). Then f € Hom (L, X), so Hom £ (L, X') € Hom (L, X). For
g € Hom £ pq(L, X)) we have

g(L) € \/heHomLM(L,X) h(L)=L.X =X,
and then g € Hom £aq(L, X'), which implies that
HOHILM(L, X) = HomﬁM(Lv X/)v

as claimed.

Since the map X +—— Hom paq(L, X) is injective, it follows that X = X’. Thus
X =X'=LyX. So, by Lemma 1.18, X is L-generated”. Now, by Proposition 1.10, we
deduce that X is L-generated. Thus L is a self-generator. 0
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For L € M. and X € o[L] we set (X) := Hom £ (L, X).
Proposition 2.10. The following assertions are equivalent for L € M.,.
(1) L is a generator in o[L].
(2) The map ¢ : o[L] — {Hom s (L, X) | X € o[L]} is injective.
Proof. 1) = 2) Let X,Y € o[L] be such that ¥(X) = ¥(Y), ie., Homm(L, X) =
Hom s pq(L,Y). Because L is a generator in o[L], then X and Y are L-generated, so
L-generated™ by Proposition 1.10, and by Lemma 1.18, we deduce that L X = X and
LY =Y.
On the other hand, we have
X =L X =(V{f(1)| f € Hom s m(L, X)})/0x

and
Y = LY = (V{f(1) | f € Hom cad(L,Y)}) /Oy
Since Hom g aq(L, X) = Hom £ (L, Y), we deduce that
X=L,X=L,Y=Y.
Thus the map 1 is injective.

2) = 1) Let X € o[L]. Then, L1 X is L-generated by Lemma 1.11. If we set L X :=
X', then by Lemma 1.18, we deduce that X’ is L-generated**. Now, by Lemma 1.18, we
have L X' = X'.

We claim that Hom zaq(L, X') = Hom £ aq(L, X). Indeed, we have X' = Ly X C X.
Now let f € Hom samq(L, X'). As X' C X, it follows that f € Hom gaq(L, X), and then
Hom s amq(L, X') € Hom g aq(L, X). For any g € Hom £aq(L, X) we have

g(L) C VheHomLM(L,X) h(L)=LrX = X',
so g € Hom £ aq(L, X'), which implies that
Hom[,M(LaX) = Hom,CM(L7X/)7

as claimed.

Thus ¢¥(X) = ¥(X’), so X = X’ = L X because the map v is injective. Now, by
Lemma 1.18, X is L-generated™, and then X is L-generated by Proposition 1.10. This
shows that L is a generator o[L], and we are done. g

Proposition 2.11. Let L € M, be a generator in o[L]. Then every simple lattice in o[L]
18 a linear homomorphic image of L.

Proof. Let S € o[L] be a simple lattice. As L is a generator in o[L], then S is L-generated,
so L-generated™ by Proposition 1.10. Then S = LS by Lemma 1.18. It follows that there
exists a non-zero linear morphism f: L — S. Since S is a simple lattice we deduce that
f(L) = S, which implies that S is a linear homomorphic image of L. ]
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