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Abstract
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Introduction

The concept of a lattice subgenerated by a modular complete lattice L has been introduced
and investigated in [5]. In this paper we relate this concept with the one of product of two
lattices, introduced and studied in [4].

In Section 0 we list some definitions and results about lattices, especially from [2].

Section 1 is devoted to the concepts of trace and generators defined and investigated in
[1], [5], [7]. We present a new definition of trace related with the concept of product in L
of two lattices, introduced and studied in [4].

In Section 2 we discuss several properties of the category σ[L] introduced and inves-
tigated in [5], but not covered there, as those of self-generator and fully invariance in
lattices.

Applications of our latticial results to Grothendieck categories and module categories
equipped with a hereditary torsion theory will be given in a subsequent paper.
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0 Preliminaries

All posets and lattices considered in this paper are assumed to be bounded, i.e., to have a
least element denoted by 0 and a last element denoted by 1, and L will always denote such
a lattice. If the lattices L and L′ are isomorphic, we denote this by L ≃ L′. We denote
by L (respectively, M, Mc) the class of all bounded (respectively, bounded modular,
bounded modular complete) lattices.

For a lattice L and elements a 6 b in L we write

b/a := [a, b] = { x ∈ L | a 6 x 6 b }.

For basic notation and terminology on lattices the reader is referred to [2], [9], [10],
and/or [11], but especially to [2].

Recall from [6] the following concept. A mapping f : L −→ L′ between a lattice L
with least element 0 and greatest element 1 and a lattice L′ with least element 0′ and
greatest element 1′ is called a linear morphism if there exist k ∈ L, called a kernel of f ,
and a′ ∈ L′ such that the following two conditions are satisfied.

• f(x) = f(x ∨ k), ∀x ∈ L.
• f induces a lattice isomorphism

f̄ : 1/k
∼−→ a′/0′, f̄(x) = f(x), ∀x ∈ 1/k.

If f : L −→ L′ is a linear morphism of lattices, then, by [6, Proposition 1.3], f is
an increasing mapping, commutes with arbitrary joins (i.e., f

(∨
i∈I xi

)
=

∨
i∈I f(xi) for

any family (xi)i∈I of elements of L, provided both joins exist), preserves intervals (i.e., for
any u 6 v in L, one has f(v/u) = f(v)/f(u)), and its kernel k is uniquely determined.

As in [6], the class M of all (bounded) modular lattices becomes a category, denoted
by LM (L for “Linear” and M for “M odular”) if for any L, L′ ∈ M one takes as
morphisms from L to L′ all the linear morphisms from L to L′. A major property of this
category is that the subobjects of an object L ∈ LM can be viewed as the intervals a/0
for any a ∈ L (see [6, Proposition 2.2(5)]).

Throughout this paper R will denote an associative ring with non-zero identity element,
and Mod-R the category of all unital right R-modules. The notation MR will be used to
designate a unital right R-module M , and N 6M will mean that N is a submodule of M .
The lattice of all submodules of a module MR will be denoted by L(MR).

The latticial counterpart of the concept of a fully invariant submodule of a module is
that of a fully invariant element introduced in [8] as follows. Let L ∈ M. An element
a ∈ L is said to be fully invariant, abbreviated FI, if f(a) 6 a for any f ∈ EndLM(L) :=
HomLM(L,L), and the set of all fully invariant elements of L will be denoted by FI(L).

1 Trace and Generators

The aim of this section is to present some results on trace and generators. Thus, we define
an apparently different concept of trace than the ones in [1] and [7], “somehow” related
with the concept of product in L of two lattices, introduced and studied in [4].
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Definition 1.1. ([1, Definition 3.1], [5, Definition 1.2]). A poset L is said to be generated
by a poset G, or G-generated, if for any a ̸= 1 in L there exist c ∈ L and g ∈ G such that
c 
 a and c/0 ≃ 1/g.

One denotes by Gen (G) the class of all modular complete lattices generated by G. �

The next concept is a particular case of [7, Definition 3.1] for the trace Tr (X , L) of a
nonempty class X of lattices in a complete lattice L.

Definition 1.2. For any poset G and any modular complete lattice L we set

Tr (G,L) :=
∨
{ a ∈ L | a/0 ∈ Gen (G)},

and call it the trace of G in L. �

Lemma 1.3. The following assertions are equivalent for L,L′ ∈ Mc.

(1) L is L′-generated.

(2) L = Tr (L′, L)/0.

Proof. (1) =⇒ (2) As L is L′-generated, then L = 1/0 ∈ Gen (L′) by Definition 1.1. Now,
by Definition 1.2, we have

Tr (L′, L) =
∨
{ a ∈ L | a/0 ∈ Gen (L′)} = 1,

so Tr (L′, L)/0 = 1/0 = L.

(2) =⇒ (1) As 1/0 = L = Tr (L′, L)/0, then 1 = Tr (L′, L) =
∨
{ a ∈ L | a/0 ∈ Gen (L′)}.

Thus 1 =
∨
{ a ∈ L | a/0 ∈ Gen (L′)}. So L = Tr (L′, L)/0 ∈ Gen (L′) by [5, Proposition

1.3], i.e., L is L′-generated.

Notice that by [5, Proposition 1.3] Tr (L′, L)/0 ∈ Gen (L′). Hence Tr (L′, L)/0 is L′-
generated. So by 1.3, Tr (L′,Tr (L′, L)/0)/0 = Tr (L′, L)/0 for L,L′ ∈ Mc.

Next, we present another definition of Tr (−,−) for two lattices L,L′ in Mc. As
usually, we denote by 0 (respectively, 0′) the least element of L (respectively, L′), and
by 1 (respectively, 1′) the greatest element of L (respectively, L′).

For any L,K ∈ Mc and N ∈ Sub (L), where Sub (L) is the collection of all sublattices
in LM of L, we have denoted in [4]

NLK := αL
N (K),

and called it the product of N and K in L. If N = n/0, we showed there that

αL
N =

∨
x∈N αL

x = αL
n .

This implies that

αL
N (K) = αL

n(K) =
(∨

{f(n) | f ∈ Hom LM(L,K)}
)
/ 0

for all K ∈ Mc.
In particular, for N = L = 1/0 and K = L′ = 1′/0′, we have
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αL
L(L

′) = αL
1 (L

′) =
(∨

{f(1) | f ∈ Hom LM(L,L′)}
)
/ 0.

Definition 1.4. For lattices L,L′ in Mc, the sublattice

Tr ∗(L′, L) = (
∨
{f(1′) | f ∈ Hom LM(L′, L)})/ 0

of L is called the trace of L′ in L. �

As one can see, Tr ∗(L′, L) is a sublattice of L, while Tr (L′, L) is an element of L.
They are related by Proposition 1.7 below.

Proposition 1.5. For any two lattices L′, L ∈ Mc, one has Tr ∗(L′, L) = L′
L′L.

Proof. By Definition 1.4

Tr ∗(L′, L) = (
∨
{f(1′) | f ∈ Hom LM(L′, L)})/ 0.

By [3, Definition 2.9] we have

αL′

1′ (L) = (
∨
{f(1′) | f ∈ Hom LM(L′, L)})/ 0,

so Tr ∗(L′, L) = αL′

1′ (L). Now, αL′

1′ (L) = αL′

L′(L) by [4, Notation 2.3], which implies that

Tr ∗(L′, L) = αL′

L′(L). Moreover, by [4, Notation 2.4], we have

αL′

L′(L) = L′
L′L,

and so Tr ∗(L′, L) = L′
L′L.

Definition 1.6. Let L ∈ Mc. A lattice L′ ∈ Mc is said to be generated∗ by L or
L- generated∗ if Tr ∗(L′, L) = L.

One denotes by Gen ∗(G) the class of all modular complete lattices generated∗ by G. �

Observe that if T is another lattice such that T is L-generated∗, then Tr ∗(T, L) = L.

Notice also that if L is L′-generated (in the sense of Definition 1.1), then by Lemma
1.3 we have L = Tr (L′, L)/0. Thus

L is L′-generated ⇐⇒ L = Tr (L′, L)/0.

Proposition 1.7. Tr (L′, L)/0 = Tr ∗(L′, L) for any lattices L′, L ∈ Mc.

Proof. Let t/0 = T = Tr ∗(L′, L). By Lemma 1.3, T is L′-generated. Thus T ∈ Gen (L′).
As Tr (L′, L) =

∨
{ a ∈ L | a/0 ∈ Gen (L′)}, we have t 6

∨
{ a ∈ L | a/0 ∈ Gen (L′)}, so

T = t/0 ⊆ (
∨
{ a ∈ L | a/0 ∈ Gen (L′)})/0 = Tr (L′, L)/0.

Hence Tr ∗(L′, L) = T ⊆ Tr (L′, L)/0.
If we set h := Tr (L′, L), then Tr (L′, L)/0 = h/0. As t/0 = T ⊆ Tr (L′, L)/0 = h/0, we

have t 6 h. We are going to prove that t = h. Suppose that t < h. Then, as we remarked
above, we have

t/0 = T = Tr ∗(L′, L) = (
∨
{f(1′) | f ∈ Hom LM(L′, L)})/ 0 = L′

L′L.

Thus t =
∨
{f(1′) | f ∈ Hom LM(L′, L)}. Because t < h, we deduce that
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∨
{f(1′) | f ∈ Hom LM(L′, L)} < h

By [5, Proposition 1.3], Tr (L′, L)/0 = h/0 is L′-generated. As t < h, there exist u ∈ L′

and c ∈ h/0 such that c 
 t and 1′/u ≃ c/0. Since L′, L ∈ Mc, then there exists a linear
isomorphism of lattices 1′/u ≃ c/0, say φ : 1′/u −→ c/0, and then φ(1′) = c.

Consider the linear morphism i◦φ◦π : L′ = 1′/0′ −→ L = 1/0, where π is the surjective
linear morphism π : L′ = 1′/0′ −→ 1′/u and i is the canonical inclusion linear morphism
i : c/0 ↪→ L. Thus

(i ◦ φ ◦ π)(1′) = (i ◦ φ)(π(1′)) = (i ◦ φ)(1′) = i(φ(1′) = i(c) = c.

Since i ◦ φ ◦ π ∈ Hom LM(L′, L), we have

c = (i ◦ φ ◦ π)(1′) 6
∨
{f(1′) | f ∈ Hom LM(L′, L)} = t,

and hence c 6 t, which is a contradiction. Thus t = h, and so

Tr ∗(L′, L) = T = t/0 = h/0 = Tr (L′, L)/0,

as desired.

Observe that by Proposition 1.7, we have

Tr ∗(L′, L) = Tr (L′, L)/0 = L.

Thus

L is L′-generated ⇐⇒ Tr ∗(L′, L) = L.

If we use now Definition 1.6, then Tr ∗(L′, L) = L implies that L′ is L- generated∗.
Thus

L′ is L- generated∗ ⇐⇒ Tr ∗(L′, L) = L.

As one can see, L is L′-generated ⇐⇒ Tr ∗(L′, L) = L ⇐⇒ L′ is L- generated∗.

We are now going to show that the equality Gen (L) = Gen ∗(L) is not true in general. To
do that, consider the ring Z4 of rational integers modulo 4 and the category Z4-Mod.

We claim that Gen (Z4) ̸= Gen ∗(Z4). First, we show that 2Z4 ∈ Gen (Z4). By Propo-
sition 1.8, we have

Tr (Z4, 2Z4)/0 = Tr ∗(Z4, 2Z4),

Tr ∗(Z4, 2Z4) = Z4 Z4
2Z4 =

∑
f∈Hom Z4 (Z4,2Z4)

f(Z4),∑
f∈Hom Z4 (Z4,2Z4)

f(Z4) = 2Z4,

so

Tr (Z4, 2Z4)/0 = Tr ∗(Z4, 2Z4) = 2Z4.
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Thus Tr (Z4, 2Z4)/0 = 2Z4. By Lemma 1.3, 2Z4 is Z4-generated and so 2Z4 ∈ Gen (Z4).

We are going to show that 2Z4 /∈ Gen ∗(Z4). Suppose not, i.e., 2Z4 ∈ Gen ∗(Z4). By
Definition 1.6, we have

Tr ∗(2Z4,Z4) = Z4,

and by Proposition 1.5,

Tr ∗(2Z4,Z4) = 2Z4 2Z4
2Z4 =

∑
f∈Hom Z4 (2Z4,Z4)

f(2Z4).

As 2Z4 is a simple ideal of Z4, we have∑
f∈Hom Z4 (2Z4,Z4)

f(2Z4) = 2Z4.

Thus

Tr ∗(2Z4,Z4) = 2Z4,

and so

Z4 = Tr ∗(2Z4,Z4) = 2Z4,

which is a contradiction. Therefore 2Z4 /∈ Gen ∗(Z4). This proves that Gen (Z4) ̸=
Gen ∗(Z4), as claimed.

Proposition 1.8. Let L,L′ in Mc. If for every non-zero linear morphism f : L′ −→ Y
there exists a linear morphism g : L −→ L′ with f ◦ g ̸= 0, then L′ is L-generated.

Proof. By Lemma 1.3, L′ is L-generated ⇐⇒ L′ = Tr (L,L′)/0′. Now, Tr (L,L′)/0′ =
Tr ∗(L,L′) by Proposition 1.7, and Tr ∗(L,L′) = LLL

′ as we observed just a line above
Definition 1.5. Thus L′ is L-generated ⇐⇒ L′ = LLL

′. Consequently, it is enough to prove
that L′ = LLL

′.
Set N := LLL

′ = N = n/0′. Then n/0′ = N ⊆ L′ = 1′/0′, so n 6 1′. If n = 1′, then
N = n/0′ = 1′/0′ = L′, i.e., LLL

′ = N = L′.
Now, assume that n < 1′, and consider the surjective linear epimorphism

p : L′ = 1′/0′ −→ 1′/n, p(a) = a ∨ n, a ∈ L′.

Since n < 1′, p is a non-zero linear morphism. By hypothesis there exists a linear
morphism g : L −→ L′ such that p ◦ g ̸= 0. As p ◦ g : L −→ 1′/n, there exists l ∈ L with
(p ◦ g)(l) > n. But (p ◦ g)(l) = p(g(l)) = g(l) ∨ n. Thus g(l) ∨ n > n, and then g(l) 6 g(1)
since g is an increasing mapping.

Remember that

n/0′ = N = LLL
′ =

∨
({f(1) | f ∈ Hom LM(L,L′)})/0′,
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so n =
∨
{f(1) | f ∈ Hom LM(L,L′)}. Hence n > f(1) for all f ∈ Hom LM(L,L′). As

g ∈ Hom LM(L,L′), we have n > g(1). Since g(1) > g(l), we deduce that n > g(l).
So g(l) ∨ n = n. On the other hand, we have seen above that g(l) ∨ n > n, which is a
contradiction. Consequently, necessarily n = 1′, and then LLL

′ = N = L′. This finishes
the proof.

We present below a new definition, that is a reformulation of [12, Proposition 13.5(2)]
showing that if U and L′ are two right R-modules, then

L′ is U -generated if and only if Tr (U,L′) = L′ .

Definition 1.9. A lattice L′ ∈ Mc is said to be generated∗∗ by L or L generated∗∗ for
a lattice L ∈ Mc if for every non-zero linear morphism f : L′ −→ Y there exists a linear
morphism g : L −→ L′ with f ◦ g ̸= 0. �

One denotes by Gen ∗∗(G) the class of all modular complete lattices generated∗∗ by G.

Proposition 1.10. With the notation above, L′ is L-generated if and only if it is L-
generated∗∗.

Proof. Suppose L′ is L-generated∗∗. Then, by Proposition 1.8 we deduce that L′ is L-
generated.

Conversely, assume that L′ is L-generated. Then, L′ = Tr (L,L′)/0′ by Lemma 1.3, so

L′ = Tr (L,L′)/0′ = Tr ∗(L,L′).

Then LLL
′ = Tr ∗(L,L′) by Proposition 1.5. It follows that

L′ = Tr ∗(L,L′) = LLL
′.

Now, let f : L′ −→ Y = 1′′/0′′ be a non-zero linear morphism. Then

LLL
′ = Tr ∗(L,L′) = (

∨
{g(1) | g ∈ Hom LM(L,L′)})/ 0′,

and so

1′/0′ = L′ = LLL
′ = (

∨
{g(1) | g ∈ Hom LM(L,L′)})/ 0′.

We deduce that 1′ =
∨
{g(1) | g ∈ Hom LM(L,L′)}, and because f : L′ −→ Y = 1′′/0′′

is a non-zero linear morphism, we have

0′′ ̸= f(1′) = f(
∨
{g(1) | g ∈ Hom LM(L,L′)}) =

∨
{f(g(1)) | g ∈ Hom LM(L,L′)},

so there exists a linear morphism g : L −→ L′ with f(g(1)) ̸= 0′′. Then f ◦g is a non-zero
linear morphism. This proves that L′ is L- generated ∗∗, as desired.

Lemma 1.11. Let 1/0 = L,L′ ∈ Mc. If T = Tr ∗(L′, L), then T es L′-generated.

Proof. As above, T = Tr ∗(L′, L) = L′
L′L, so, by product of lattices we have
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t/0 = T = L′
L′L = (

∨
{f(1′) | f ∈ Hom LM(L′, L)})/ 0,

hence t =
∨
{f(1′) | f ∈ Hom LM(L′, L)}.

Let a ∈ T, a ̸= t. Then a < t =
∨

{f(1′) | f ∈ Hom LM(L′, L)}, so there exists
f ∈ Hom LM(L′, L)} with f(1′) 
 a. As f : 1′/0′ = L′ −→ L = 1/0 is a linear morphism,
there exists k ∈ 1′/0′ such that k is the kernel of f . If c := f(1′), then f induces a lattice
isomorphism

f̄ : 1′/k
∼−→ c/0, f̄(x) = f(x), ∀x ∈ 1′/k, and so

c/0 ≃ 1′/k, i.e., T is L′-generated by Definition 1.1, as desired.

Proposition 1.12. The lattice Tr (L′, L)/0 is L′-generated.

Proof. By Proposition 1.7, Tr (L′, L)/0 = Tr ∗(L′, L), and Tr ∗(L′, L) is L′-generated by
Lemma 1.11, so Tr (L′, L)/0 is L′-generated.

Corollary 1.13. The following assertions hold for L,L′ ∈ Mc.

(1) Tr ∗(L′, L) is the largest sublattice of L generated by L′.

(2) Tr ∗(L′, L) is fully invariant in L.

Proof. (1) Since Tr (L′, L) =
∨
{ a ∈ L | a/0 ∈ Gen (L′)}, by [5, Proposition 1.3] we

have Tr (L′, L)/0 ∈ Gen (L′). Hence Tr (L′, L)/0 is L′-generated. Now, Tr (L′, L)/0 =
Tr ∗(L′, L) by Proposition 1.7, so Tr ∗(L′, L) is L′-generated.

Let T = t/0 be a sublattice of L such that T is L′-generated, i.e., T = t/0 ∈ Gen (L′).
Then

t 6
∨
{ a ∈ L | a/0 ∈ Gen (L′)} = Tr (L′, L).

Therefore T = t/0 ⊆ Tr (L′, L)/0 = Tr ∗(L′, L). Thus Tr ∗(L′, L) is the largest sublattice
of L generated by L′.

(2) Let g : L −→ L be a linear morphism. Then

g(Tr ∗(L′, L)) = g(
∨
{f(1′) | f ∈ Hom LM(L′, L)})/ 0).

As g commutes with arbitrary joins, we have

g(
∨
{f(1′) | f ∈ Hom LM(L′, L)})/ 0) =

∨
({(g ◦ f)(1′) | f ∈ Hom LM(L′, L)})/ 0.

Because g ◦ f ∈ Hom LM(L′, L) we have∨
({(g ◦ f)(1′) | f ∈ Hom LM(L′, L)})/ 0 ⊆

∨
({h(1′) | h ∈ Hom LM(L′, L)})/ 0,

and then g(Tr ∗(L′, L)) ⊆ Tr ∗(L′, L)), so Tr ∗(L′, L) is fully invariant in L, as desired.

Proposition 1.14. Let L,L′ ∈ Mc with L′ ∈ Gen ∗∗(L). Then Gen ∗∗(L′) ⊆ Gen ∗∗(L).
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Proof. Let 1′′/0′′ = L′′ ∈ Gen ∗∗(L′), so L′′ is L′-generated by Proposition 1.10, and then
L′′ = Tr (L′, L′′)/0′′ by Lemma 1.3. Further, Tr (L′, L′′)/0′ = Tr ∗(L′, L′′), and by Proposi-
tion 1.5 we have Tr ∗(L′, L′′) = L′

L′L′′. Thus

L′′ = Tr (L′, L′′)/0′′ = Tr ∗(L′, L′′) = L′
L′L′′.

So L′′ = L′
L′L′′. Moreover, by Definition 1.4, we have

L′
L′L′′ = (

∨
{f(1′) | f ∈ Hom LM(L′, L′′)})/ 0′′.

Notice that if f ∈ Hom LM(L′, L′′) then f(L′) = f(1′/0′) = f(1′)/f(0′) = f(1′)/0′′, so∨
f∈HomLM(L′,L′′) f(L

′) =
∨

f∈HomLM(L′,L′′)(f(1
′)/0′′).

By Notation [4, 2.4], we have∨
f∈HomLM(L′,L′′)(f(1

′)/0′′) = (
∨
{f(1′) | f ∈ Hom LM(L′, L′′)})/ 0′′ = L′

L′L′′.

Thus
∨

f∈HomLM(L′,L′′) f(L
′) = L′

L′L′′.

Since L′ ∈ Gen ∗∗(L), then by Proposition 1.10 we deduce that L′ is L-generated. So,
by Lemma 1.3, L′ = Tr (L,L′)/0′, and by Proposition 1.7 Tr (L,L′)/0′ = Tr ∗(L,L′). Now,
by Proposition 1.5 we have Tr ∗(L,L′) = LLL

′. Thus

L′ = Tr (L,L′)/0′ = Tr ∗(L,L′) = LLL
′.

On the other hand, by Definition 1.4 we have L′ = LLL
′ =

∨
h∈HomLM(L,L′) h(L).

If f ∈ Hom LM(L′, L′′), then

f(L′) = f(LLL
′) = f(

∨
h∈HomLM(L,L′) h(L)) =

∨
h∈HomLM(L,L′) f(h(L)),

and so f(L′) =
∨

h∈HomLM(L,L′)(f ◦ h)(L). Since f ◦ h ∈ Hom LM(L,L′′), it follows that

f(L′) =
∨

h∈HomLM(L,L′)(f ◦ h)(L) ⊆
∨

g∈HomLM(L,L′′) g(L).

Moreover, by Definition 1.4 we have
∨

g∈HomLM(L,L′′) g(L) = LLL
′′. Thus f(L′) ⊆ LLL

′′

for all f ∈ Hom LM(L′, L′′). We deduce that∨
f∈HomLM(L′,L′′) f(L

′) ⊆ LLL
′′.

Since L′′ = L′
L′L′′ =

∨
f∈HomLM(L′,L′′) f(L

′), then

L′′ = L′
L′L′′ ⊆ LLL

′′ ⊆ L′′.

Thus L′′ = LLL
′′. By Proposition 1.5, we have Tr ∗(L,L′′) = LLL

′′ = L′′. So, by Lemma
1.11, we deduce that L′′ is L-generated, and by Proposition 1.10 it follows that L′′ is
L-generated∗∗. Therefore L′′ ∈ Gen ∗∗(L), as desired.

Proposition 1.15. Let L,L′ ∈ Mc. If L′ ∈ Gen ∗∗(L), then L′/Y ∈ Gen ∗∗(L) for all Y
in Sub (L′).

Proof. Let Y = y/0′ ∈ Sub (L′). Then LL(L
′/Y ) ⊆ L′/Y by the definition of product of

lattices. Consider the linear epimorphism



140 Some remarks on the category σ[L]

p : L′ −→ L′/Y , p(x) = x ∨ y, ∀x ∈ L′.

Then p(L′) = L′/Y . Since L′ is L- generated∗∗, then L′ is L-generated by Proposition
1.10, so L′ = Tr (L,L′)/0′ by Lemma 1.3. It follows that Tr (L,L′)/0′ = Tr ∗(L,L′) by
Proposition 1.7. Now, by Proposition 1.5 Tr ∗(L,L′) = LLL

′, we have

L′ = Tr (L,L′)/0′ = Tr ∗(L,L′) = LLL
′.

On the other hand, LLL
′ =

∨
f∈HomLM(L,L′) f(L) by Definition 1.4, so

L′ =
∨

f∈HomLM(L,L′) f(L).

Thus

p(L′) = p(LLL
′) = p(

∨
f∈HomLM(L,L′) f(L)) =

∨
f∈HomLM(L,L′)(p ◦ f)(L).

Clearly p ◦ f ∈ Hom LM(L,L′/Y ) for all f ∈ Hom LM(L,L′), so

(p ◦ f)(L) ⊆
∨

g∈HomLM(L,L′/Y ) g(L) for all f ∈ Hom LM(L,L′).

Thus ∨
f∈HomLM(L,L′)(p ◦ f)(L) ⊆

∨
g∈HomLM(L,L′/Y ) g(L).

Observe that
∨

g∈HomLM(L,L′/Y ) g(L) = LL(L
′/Y ).

L′/Y = p(L′) =
∨

f∈HomLM(L,L′)(p ◦ f)(L) ⊆ LL(L
′/Y ).

So LL(L
′/Y ) = L′/Y . Apply now Proposition 1.5, Proposition 1.7, and Proposition 1.10

to deduce that L′/Y is L-generated∗∗, i.e., L′/Y ∈ Gen ∗∗(L), which finishes the proof.

Lemma 1.16. Let L ∈ Mc, and let (Xi)i∈I be a family in Sub (L). If Y ∈ Sub (L) and
Xi ⊆ Y for all i ∈ I, then

∨
i∈I Xi ⊆ Y .

Proof. Let Xi = xi/0 for each i ∈ I, and let Y = y/0. As Xi ⊆ Y , we have xi/0 ⊆ y/0, so
xi 6 y for all i ∈ I. Thus

∨
xi 6 y, and then (

∨
xi)/0 6 y/0 = Y . By [4, Section 2 ], we

have
∨

i∈I Xi = (
∨
xi)/0. Consequently

∨
i∈I Xi ⊆ Y , as desired.

Proposition 1.17. Let L,L′ ∈ Mc. If (Xi)i∈I is a family in Sub (L′) and Xi ∈ Gen ∗∗(L)
for all i ∈ I, then

∨
i∈I Xi ∈ Gen ∗∗(L).

Proof. Set X :=
∨

i∈I Xi. Then LLX = LL(
∨

i∈I Xi) ⊆
∨

i∈I Xi. As Xi ⊆ X, then
by [4, Proposition 2.7], LLXi ⊆ LLX. By Proposition 1.10, Xi is L-generated, so by
Lemma 1.3, Proposition 1.7, and Proposition 1.5 we deduce that Xi = LLXi for all i ∈ I.
Thus Xi = LLXi ⊆ LLX for all i ∈ I. Now

∨
i∈I Xi ⊆ LLX by Lemma 1.16, and then

X =
∨

i∈I Xi = LLX. Proposition 1.7, Lemma 1.3, and Proposition 1.10 imply that X is
L- generated∗∗, i.e.,

∨
i∈I Xi = X ∈ Gen ∗∗(L), as desired.

Lemma 1.18. Let L,L′ ∈ Mc. Then L′ is L-generated∗∗ ⇐⇒ LLL
′ = L′.
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Proof. Observe that

L′ is L-generated∗∗ ⇐⇒ L′ is L-generated

by Proposition 1.10, and

L′ is L-generated⇐⇒ L′ = Tr (L,L′)/0′

by Lemma 1.3, so

L′ is L-generated∗∗ ⇐⇒ L′ = Tr (L,L′)/0′.

On the other hand, L′ = Tr (L,L′)/0′ = Tr ∗(L,L′) by Proposition 1.7, and Tr ∗(L,L′) =
LLL

′ by Proposition 1.5. Thus

L′ is L-generated∗∗ ⇐⇒ LLL
′ = L′,

and we are done.

Proposition 1.19. Let L,X ∈ Mc. Then∨
{Y ∈ Sub (X) | Y ∈ Gen ∗∗(L)} = Tr ∗(L,X).

Proof. By Proposition 1.5, Tr ∗(L,X) = LLX. Let Y ∈ Sub (X). If Y ∈ Gen ∗∗(L), then Y
is L-generated∗∗, and LLY = Y by Lemma 1.18. As Y ⊆ X, then by [4, Proposition 2.7 ]
we have LLY ⊆ LLX. Thus LLY ⊆ LLX = Tr ∗(L,X), so Y = LLY ⊆ Tr ∗(L,X) for all
Y ∈ Sub (X). Since Y ∈ Gen ∗∗(L), then by Lemma 1.16,∨

{Y ∈ Sub (X) | Y ∈ Gen ∗∗(L)} ⊆ Tr ∗(L,X).

Observe that Tr ∗(L,X) is L-generated by Lemma 1.11, and Tr ∗(L,X) is L-generated∗∗

by Proposition 1.10, i.e., Tr ∗(L,X) ∈ Gen ∗∗(L). Since Tr ∗(L,X) = LLX ⊆ X, then
Tr ∗(L,X) ∈ Sub (X). Hence

Tr ∗(L,X) ⊆
∨
{Y ∈ Sub (X) | Y ∈ Gen ∗∗(L)}.

Thus
∨
{Y ∈ Sub (X) | Y ∈ Gen ∗∗(L)} = Tr ∗(L,X), and we are done.

Lemma 1.20. The following statements hold for L,L′, L′′ ∈ Mc and 1′/0′ = L′ ∈
Gen ∗∗(L).

(1) If L′ ≃ L′′ in LM, then L′′ ∈ Gen ∗∗(L).

(2) If a′ ∈ L′ then 1′/a′ ∈ Gen ∗∗(L).

Proof. (1) We are going to prove that L′′ = LLL
′′. By definition of the product of lattices

we have LLL
′′ ⊆ L′′. By hypothesis, there exists a linear isomorphism g : L′ ∼−→ L′′, so

g(L′) = L′′.
As L′ ∈ Gen ∗∗(L), then LLL

′ = L′ by Lemma 1.18, and

L′ = LLL
′ =

(∨
{ f(1) | f ∈ HomLM(L,L′)}

)
/ 0′ =

∨
f∈HomLM(L,L′) f(L)
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by [4, Notation 2.4].
Thus

L′′ = g(L′) = g(
∨

f∈HomLM(L,L′) f(L)) =
∨

f∈HomLM(L,L′)(g ◦ f)(L),

where g ◦ f : L −→ L′′, so g ◦ f ∈ HomLM(L,L′′).
Since LLL

′′ =
∨

h∈HomLM(L,L′′) h(L), we have

L′′ =
∨

f∈HomLM(L,L′)(g ◦ f)(L) ⊆
∨

h∈HomLM(L,L′′) h(L) = LLL
′′.

Therefore L′′ ⊆ LLL
′′, so L′′ = LLL

′′. Now, by Lemma 1.18 it follows that L′′ is L-
generated∗∗, and then L′′ ∈ Gen ∗∗(L).

(2) We are now going to prove that 1′/a′ = LL(1
′/a′). By the definition of product of

two lattices we have LL(1
′/a′) ⊆ 1′/a′.

Consider the surjective linear morphism

p : L′ −→ 1′/a′, p(x) = x ∨ a′, ∀x ∈ L′.

Then, as L′ ∈ Gen ∗∗(L), we have LLL
′ = L′ by Lemma 1.18. On the other hand

L′ = LLL
′ =

(∨
{ f(1) | f ∈ HomLM(L,L′)}

)
/ 0′ =

∨
f∈HomLM(L,L′) f(L)

by [4, Notation 2.4].
As p is a linear epimorphism we have p(L′) = 1′/a′, so

1′/a′ = p(L′) = p(
∨

f∈HomLM(L,L′) f(L)) =
∨

f∈HomLM(L,L′)(p ◦ f)(L),

where p ◦ f : L −→ 1′/a′, so p ◦ f ∈ HomLM(L, (1′/a′)).
Since LL(1

′/a′) =
∨

h∈HomLM(L,(1′/a′)) h(L), we deduce that

1′/a′ =
∨

f∈HomLM(L,L′)(p ◦ f)(L) ⊆
∨

h∈HomLM(L,(1′/a′)) h(L) = LL(1
′/a′).

Therefore 1′/a′ ⊆ LL(1
′/a′), so 1′/a′ = LL(1

′/a′). By Lemma 1.18 it follows that 1′/a′ is
L-generated∗∗. Thus 1′/a′ ∈ Gen ∗∗(L), as desired.

Proposition 1.21. The following assertions are equivalent for L,L′ ∈ Mc.

(1) L′ ∈ Gen ∗∗(L).

(2) There exists a family (Xi)i∈I in Sub (L′), such that L′ =
∨

i∈I Xi and Xi is a linear
homomorphic image of L.

Proof. (1) =⇒ (2). Assume that L′ ∈ Gen ∗∗(L). Then L′ = LLL
′ by Lemma 1.18, and by

[4, Notation 2.4] we have

L′ = LLL
′ =

(∨
{ f(1) | f ∈ HomLM(L,L′)}

)
/ 0′.

Therefore

L′ =
∨

f∈HomLM(L,L′) f(L).
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For each f ∈ HomLM(L,L′) we set Xf := f(L) and I := HomLM(L,L′). Thus Xf is a
linear homomorphic image of L for all f ∈ I, and so

L′ =
∨

f∈I Xf ,

which proves (2).

(2) =⇒ (1) Suppose that L′ =
∨

i∈I Xi and Xi is a linear homomorphic image of L for
every i ∈ I, i.e., there exist linear epimorphisms fi : L −→ Xi for every i ∈ I. If ki is the
kernel of fi, then fi induces a lattice isomorphism

f̄i : 1/ki
∼−→ f(1)/f(ki), f̄i(x) = fi(x), ∀x ∈ 1/ki.

Since fi is linear epimorphism, then fi(L) = Xi. Thus Xi = fi(1)/fi(ki). Hence we deduce
that fi(L) = Xi ≃ 1/ki. As L = LLL, then Lemma 1.18 and Proposition 1.10 imply that
L is L- generated∗∗. As ki ∈ L, then 1/ki is L- generated∗∗ by Lemma 1.20, and so Xi is
L- generated∗∗ for all i ∈ I by Lemma 1.20.

Since Xi ⊆ L′ for all i ∈ I, then by Proposition 1.17 L′ =
∨

i∈I Xi is L- generated
∗∗,

i.e., L′ ∈ Gen ∗∗(L), and we are done.

Proposition 1.22. Gen (L) = Gen ∗∗(L) for any L ∈ Mc.

Proof. The result follows immediately from Proposition 1.10.

2 The category σ[L]

Definition 2.1. For any lattice L ∈ Mc we denote by σ[L] the full subcategory of Mc

that contains all lattices L′ ∈ Mc such that L′ is linearly isomorphic to a sublattice of an
L -generated lattice (or equivalently, L-generated∗∗ by Proposition 1.10). �

Lemma 2.2. Let L,L′ ∈ Mc. If h : L −→ L′ is a linear isomorphism and K is a
sublattice of L, then L/K and L′/h(K) are (linearly) isomorphic.

Proof. Let K = k/0. As h is a linear morphism, then h preserves intervals by [7, Lemma
0.6], so h(1/k) = h(1)/h(k), h(1) = 1′, and h(1/k) = 1′/h(k) .

Since L/K = 1/k, L′/h(K) = 1′/h(k), and h is a linear isomorphism, then L/K and
L′/h(K) are (linearly) isomorphic, as desired.

Proposition 2.3. The category σ[L] is closed under sublattices and quotient linear epi-
morphisms for any L ∈ Mc.
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Proof. First, we are going to prove that σ[L] is closed under sublattices. Let L′ ∈ σ[L] and
L′′ ⊆ L′. Then, by the definition of σ[L], we have L′ ≃ T ′, where T ′ is a sublattice of an
L -generated lattice T . Then L′′ is isomorphic to a sublattice of T ′. Since T ′ is a sublattice
of T , we deduce that L′′ is isomorphic to a sublattice of T , which implies that L′′ ∈ σ[L],
so σ[L] is closed under sublattices.

We are now going to show that σ[L] is closed under quotient linear epimorphisms. Let
L′ ∈ σ[L] and L′′ ⊆ L′. As L′ ∈ σ[L], then L′ ≃ T ′ by the definition of σ[L], where T ′ is
a sublattice of an L -generated lattice T , so, L′′ is isomorphic to sublattice T ′′ of T ′, and
L′/L′′ ≃ T ′/T ′′ by Lemma 2.2, As T ′′ is sublattice of T ′ and T ′ is a sublattice of T , we
deduce that T ′′ is sublattice of T , and so T ′/T ′′ ⊆ T/T ′′.

On the other hand, Gen ∗∗(L) = Gen (L) by Proposition 1.22, so T ∈ Gen (L), and then
T ∈ Gen ∗∗(L). Now, T/T ′′ ∈ Gen ∗∗(L) by Proposition 1.15. Thus T/T ′′ ∈ Gen (L), so
T/T ′′ is L -generated. Since T ′/T ′′ ⊆ T/T ′′ and L′/L′′ ≃ T ′/T ′′, it follows that L′/L′′ ∈
σ[L], as desired.

Lemma 2.4. If Gen [L] ⊆ Gen [H] for L,H ∈ Mc, then σ[L] ⊆ σ[H].

Proof. Let L′ ∈ σ[L] and L′′ ⊆ L′. As L′ ∈ σ[L], then by the definition of σ[L], we have
L′ ≃ T ′, where T ′ is a sublattice of an L -generated lattice T . Thus T ∈ Gen [L]. By
hypothesis, we have Gen [L] ⊆ Gen [H], so T ∈ Gen [H], hence T is H -generated. Since
L′ ≃ T ′ ⊆ T , we have L′ ∈ σ[H], which shows that σ[L] ⊆ σ[H].

Proposition 2.5. Let L,L′ ∈ Mc. If L′ is L-generated (or equivalently, L-generated∗∗),
then σ[L′] ⊆ σ[L].

Proof. As L′ is L -generated, L′ ∈ Gen [L]. Then L′ ∈ Gen [L]∗∗ by Proposition 1.22.
Now, Gen [L′]∗∗ ⊆ Gen [L]∗∗ by Proposition 1.14. Further, by Proposition 1.22, we have
Gen [L′] ⊆ Gen [L], and σ[L′] ⊆ σ[L] by Lemma 2.4.

Corollary 2.6. Let L ∈ Mc and T = t/0 ∈ Sub (L). Then σ[1/t] ⊆ σ[L].

Proof. As t/0 = T ⊆ L, then t ∈ L. By Lemma 1.20, we have 1/t ∈ Gen [L]∗∗, so,
by Proposition 1.22, we deduce that 1/t ∈ Gen [L]. Now, by Proposition 2.5, we have
σ[1/t] ⊆ σ[L].

Proposition 2.7. Let L, T ∈ Mc and let (Ti)i∈I be a family in Sub (T ). If Ti ∈ Gen [L]
for all i ∈ I, then

∨
i∈I Ti ∈ σ[L].

Proof. Set T ′ :=
∨

i∈I Ti. We claim that LLT
′ = T ′. Indeed, by the definition of product

of lattices, we have LLT
′ ⊆ T ′. Since Ti ∈ Gen [L] for all i ∈ I, then by Lemma 1.18, we

deduce that LLTi = Ti for all i ∈ I. As Ti ⊆ T ′ for all i ∈ I, then, by [4, Proposition 2.7],
we have

Ti = LLTi ⊆ LLT
′ ⊆ T ′ for all i ∈ I.

Thus Ti ⊆ T ′ for all i ∈ I, so we deduce that
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T ′ =
∨

i∈I Ti ⊆ LLT
′ ⊆ T ′.

Therefore LLT
′ = T ′, as claimed.

By Lemma 1.18, it follows that T ′ is L -generated, and so
∨

i∈I Ti = T ′ ∈ Gen (L).
Now, Gen (L) ⊆ σ[L] by the definition of σ[L]. Consequently T ′ =

∨
i∈I Ti ∈ σ[L], and we

are done.

Definition 2.8. A lattice L ∈ Mc is said to be a self-generator if it generates all its
sublattices, and a lattice L′ ∈ σ[L] is called a generator in σ[L] if L′ generates all lattices
in σ[L]. �

Proposition 2.9. The following assertions are equivalent for L ∈ Mc and X ∈ Sub (L).

(1) L is a self-generator.

(2) The mapping X 7−→ Hom LM(L,X) from the set Sub (L) of all sublattices of L to
the set of all subsets of End LM(L) is injective.

Proof. 1) =⇒ 2) Let X,Y ∈ Sub (L) be such that Hom LM(L,X) = Hom LM(L, Y ). Since
L is a self-generator, then X and Y are L -generated. By Proposition 1.10, we deduce that
X and Y are L -generated∗∗, and by Lemma 1.18, it follows that LLX = X and LLY = Y .

On the other hand, we have

X = LLX =
(∨

{f(1) | f ∈ Hom LM(L,X)}
)
/ 0

and

Y = LLY =
(∨

{f(1) | f ∈ Hom LM(L, Y )}
)
/ 0.

Since Hom LM(L,X) = Hom LM(L, Y ), we have

X = LLX = LLY = Y ,

which shows that the map X 7−→ Hom LM(L,X) is injective.

2) =⇒ 1) Let X ∈ Sub (L). By Lemma 1.11, it follows that LLX is L -generated. Set
LLX := X ′, so by Lemma 1.18, we deduce that X ′ is L -generated ∗∗. Again by Lemma
1.18, we have LLX

′ = X ′.
We claim that Hom LM(L,X ′) = Hom LM(L,X). Indeed, X ′ = LLX ⊆ X. Let

f ∈ Hom LM(L,X ′). Then f ∈ Hom LM(L,X), so Hom LM(L,X ′) ⊆ Hom LM(L,X). For
g ∈ Hom LM(L,X) we have

g(L) ⊆
∨

h∈HomLM(L,X) h(L) = LLX = X ′,

and then g ∈ Hom LM(L,X ′), which implies that

Hom LM(L,X) = Hom LM(L,X ′),

as claimed.
Since the map X 7−→ Hom LM(L,X) is injective, it follows that X = X ′. Thus

X = X ′ = LLX. So, by Lemma 1.18, X is L -generated∗∗. Now, by Proposition 1.10, we
deduce that X is L -generated. Thus L is a self-generator.
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For L ∈ Mc and X ∈ σ[L] we set ψ(X) := Hom LM(L,X).

Proposition 2.10. The following assertions are equivalent for L ∈ Mc.

(1) L is a generator in σ[L].

(2) The map ψ : σ[L] −→ {Hom LM(L,X) | X ∈ σ[L]} is injective.

Proof. 1) =⇒ 2) Let X, Y ∈ σ[L] be such that ψ(X) = ψ(Y ), i.e., Hom LM(L,X) =
Hom LM(L, Y ). Because L is a generator in σ[L], then X and Y are L -generated, so
L-generated∗∗ by Proposition 1.10, and by Lemma 1.18, we deduce that LLX = X and
LLY = Y .

On the other hand, we have

X = LLX =
(∨

{f(1) | f ∈ Hom LM(L,X)}
)
/ 0X

and

Y = LLY =
(∨

{f(1) | f ∈ Hom LM(L, Y )}
)
/ 0Y .

Since Hom LM(L,X) = Hom LM(L, Y ), we deduce that

X = LLX = LLY = Y .

Thus the map ψ is injective.

2) =⇒ 1) Let X ∈ σ[L]. Then, LLX is L-generated by Lemma 1.11. If we set LLX :=
X ′, then by Lemma 1.18, we deduce that X ′ is L -generated∗∗. Now, by Lemma 1.18, we
have LLX

′ = X ′.
We claim that Hom LM(L,X ′) = Hom LM(L,X). Indeed, we have X ′ = LLX ⊆ X.

Now let f ∈ Hom LM(L,X ′). As X ′ ⊆ X, it follows that f ∈ Hom LM(L,X), and then
Hom LM(L,X ′) ⊆ Hom LM(L,X). For any g ∈ Hom LM(L,X) we have

g(L) ⊆
∨

h∈HomLM(L,X) h(L) = LLX = X ′,

so g ∈ Hom LM(L,X ′), which implies that

Hom LM(L,X) = Hom LM(L,X ′),

as claimed.
Thus ψ(X) = ψ(X ′), so X = X ′ = LLX because the map ψ is injective. Now, by

Lemma 1.18, X is L-generated∗∗, and then X is L -generated by Proposition 1.10. This
shows that L is a generator σ[L], and we are done.

Proposition 2.11. Let L ∈ Mc be a generator in σ[L]. Then every simple lattice in σ[L]
is a linear homomorphic image of L.

Proof. Let S ∈ σ[L] be a simple lattice. As L is a generator in σ[L], then S is L -generated,
so L-generated∗∗ by Proposition 1.10. Then S = LLS by Lemma 1.18. It follows that there
exists a non-zero linear morphism f : L −→ S. Since S is a simple lattice we deduce that
f(L) = S, which implies that S is a linear homomorphic image of L.
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