
Bull. Math. Soc. Sci. Math. Roumanie
Tome 65 (113), No. 2, 2022, 149–180

Irreducibility criteria for some classes of compositions of polynomials with
integer coefficients

by
Ciprian Mircea Bonciocat(1), Nicolae Ciprian Bonciocat(2), Yann Bugeaud(3),

Mihai Cipu(4), Maurice Mignotte(5)

Dedicated to the memory of Professor Doru Ştefănescu

Abstract

We provide irreducibility criteria for compositions of polynomials with integer co-
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1 Introduction

Many of the classical irreducibility criteria refer to the class of compositions of polynomials.
The earliest such results in the univariate case appeared in the works of Schur [17], Pólya
[49], Flügel [34], Ille [43], A. Brauer, R. Brauer and Hopf [18], Wegner [58], Dorwart and Ore
[31]. Further irreducibility results for compositions of polynomials appeared in papers by
Seres [53], [54], [55] and Győry [37], [38], [39], [40], [41]. More recent irreducibility criteria
for compositions of polynomials can be found in papers by Guersenzvaig [36], Győry, Hajdu
and Tijdeman [42], Ayad [1], and also in [10], [15] and [16]. Many fundamental results on
the reduction, specialization and composition of polynomials in connection with the Hilbert
Irreducibility Theorem, Bertini-Noether Theorem and Schinzel Hypothesis appeared in the
last decades, and here we will mention, for instance, the results of Fried [35], Sprindžuk [56],
Dèbes [25], [26], [27], [28] and [29], Morita [45], Langmann [44], Cavachi [21], Müller [46],
Dvornicich and Zannier [33], Corvaja [24], Dèbes and Walkowiak [30], Zannier [59], Bary-
Soroker [2], Castillo and Dietmann [20], Bary-Soroker and Entin [3], and Bodin, Dèbes and
Najib [4], [5] and [6]. Many of these results provide valuable techniques and ideas useful
in the difficult problem of testing the irreducibility of compositions of polynomials, in both
univariate and multivariate cases.

One way to study compositions of polynomials f ◦ g(X) over unique factorization do-
mains, with f(X) = anX

n + · · · + a1X + a0 and a0an ̸= 0, is to regard them as linear
combinations of two relatively prime polynomials F and G, by writing

f ◦ g(X) = anF (X) +G(X),

with F = gn and G = a0 + a1g + · · · + an−1g
n−1. One method to test the irreducibility

of a linear combination of two relatively prime polynomials was studied by Cavachi [21],
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which, inspired by some results of Fried [35] and Langmann [44] on Hilbert’s Irreducibility
Theorem, proved that a linear combination pF (X) + G(X), with F,G relatively prime
polynomials with rational coefficients and degG < degF , is irreducible over Q for all
but finitely many prime numbers p. Cavachi, M. Vâjâitu and Zaharescu [22] obtained an
explicit lower bound for the primes that ensure the irreducibility of the linear combination,
depending on the degrees of F and G and on their coefficients (see [23] for the multivariate
case). Sharper bounds and results for the case that degF = degG have been obtained
later in [12]. The idea to study compositions of polynomials by regarding them as linear
combinations of polynomials was used in the univariate case in [10], and also in [7], [8]
and [9], where the more general concept of multiplicative convolutions of polynomials was
studied. For instance, the following result for compositions of polynomials with integer
coefficients was proved in [10].

Theorem A ([10, Corollary 4]) Let F (X) =
∑m

i=0 aiX
i and G(X) =

∑n
i=0 biX

i ∈ Z[X]
be non-constant polynomials of degrees m and n respectively, with a0 ̸= 0. If am = pq with
p a prime satisfying

p > max

{
|q|m−1L∗

(
F

(
X

|q|

))
, |q|n−1|bn|mnL∗

(
F

(
X

|q|n/m|bn|n

))}
,

then the polynomial F ◦G is irreducible over Q.

Here and henceforth we use the following definition:

Definition 1. For a complex polynomial F , L∗(F ) stands for the sum of the absolute values
of the coefficients of F , except for the leading one.

An irreducibility criterion that complements Theorem A, which uses similar ideas, as
well as a Newton polygon argument, is the following result proved in [8].

Theorem B. ([8, Corollary 1.4]) Let f(X) = a0 + a1X + · · · amXm and g(X) = b0 +
b1X + · · ·+ bnX

n ∈ Z[X] be polynomials of degrees m ≥ 1 and n ≥ 1 respectively, a0 ̸= 0.
Put

d = max{i : i < m and ai ̸= 0}

and assume that am = pkq with p a prime number, q a non-zero integer, p - qadbn and k a
positive integer coprime to (m− d)n. If

|am| > max

{
d∑

i=0

|ai| · |q|m−i,

d∑
i=0

|ai| · [|q|
n
m |bn|n]m−i

}
,

then the polynomial f ◦ g is irreducible over Q.

We refer the interested reader to [11] and [14] for more irreducibility criteria analogous
to Theorems A and B, concerning multivariate polynomials over arbitrary fields in non-
Archimedean settings instead.

The aim of this paper is to complement Theorem A and Theorem B, by proving several
irreducibility criteria for the case that am = pkq with p prime, q an integer not divisible by
p, and k a positive integer coprime to mn. Unlike Theorem B, the results in this paper will
not rely on a Newton polygon argument, but instead will require a simultaneous analysis
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of some resultants associated to the hypothetical factors of f ◦ g(X). For some additional
irreducibility criteria that rely on Newton polygons and resultants we refer the interested
reader to Ştefănescu [57], and Panaitopol and Ştefănescu [47], [48].

To get a glimpse of the results that may be obtained by the methods employed in this
paper, we will mention the following two irreducibility criteria, that are simple instances of
more general results appearing in the following two sections of the paper.

Corollary 7 Let f(X) = a0+ a1X + · · ·+ amXm and g(X) = b0+ b1X + · · ·+ bnX
n be

polynomials with integer coefficients, of degrees m ≥ 2 and n ≥ 2, with a0 ̸= 0 and |bn| = 1.
Assume that |am| = pk, where p is a prime number and k is coprime to mn. If

p > (|a0|+ |a1|+ · · ·+ |am−1|)max{m,n}−1,

then the polynomial f ◦ g is irreducible over Q.

Corollary 11 Let f(X) = a0+ · · ·+amXm and g(X) = b0+ · · ·+ bnX
n be polynomials

with integer coefficients, of degrees m ≥ 3 and n ≥ 3, with a0 ≠ 0 and |bn| = 1. Assume that
am = pk, where p is a prime number and k satisfies k ≡ 1 (mod m) and k ≡ 1 (mod n). If

p > (|a0|+ |a1|+ · · ·+ |am−1|)
max{m,n}−1

2 ,

then f ◦ g is irreducible over Q.

In the proof of some of our results we will need the following famous result by Capelli,
which is one of the fundamental tools to study the canonical factorization for compositions
of polynomials:

Theorem. Let K be a field, f, g ∈ K[X], f irreducible over K, f(α) = 0. If

g(X)− α
can
=

K(α)
const ·

r∏
i=1

ϕi(X)ei , then

f ◦ g(X)
can
=
K

const ·
r∏

i=1

NK(α)/Kϕi(X)ei .

In particular, the degree of every irreducible factor of f ◦ g must be a multiple of deg f .

Here the notation F
can
=
K

const·
r∏

i=1

ϕi(X)ei stands for the fact that the ϕi’s are irreducible

over K and prime to each other, so that the factorization is canonical. We mention here
that Capelli [19] proved this result for K ⊂ C, Rédei [50] proved it for the case of a separable
f , while in its general form, this result first appeared in the book of Schinzel [51] (see also
[52]).

The paper is structured as follows. The following section provides irreducibility criteria
for the case that k is coprime to mn, but no specific information is known on the inverse
of k modulo mn, or on the residue class of k modulo mn. A deeper analysis leading to
sharper irreducibility conditions is done in Section 3 and Section 4, for the cases that the
inverse of k modulo mn and the remainder of the Euclidean division of k by mn are known,
respectively. Several examples are given in the last section of the paper.

We end this section by mentioning that throughout the paper, the signs of the coeffi-
cients of f and g are irrelevant, so we may arbitrarily change them, without affecting the
conclusions in our results.
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2 The case that no additional information on k is known

Our first result that requires no information on the residue class of k modulo mn is:

Theorem 1. Let f(X) = a0 + a1X + · · ·+ amXm and g(X) = b0 + b1X + · · ·+ bnX
n be

non-constant polynomials with integer coefficients, satisfying a0ambn ̸= 0. If am = pkq with
p a prime number, q an integer, k a positive integer coprime to mn, and

p > |bn|m
2n ·min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}mn−1,

with λ = (|bn|mnk|a0|
k−1
m |q| k+1

m ·max{|a0|, |q|}
(mn−2)k

m )−1, then f ◦ g is irreducible over Q.

We note here that in the non-trivial case that at least one of m and n is greater than
1, the positive real λ in Theorem 1 is at most 1, and can be quite small for some values
of |q|, |bn|, |a0|, m or n, thus making the assumption on the magnitude of p reasonably
sharp. When we are not particularly interested in finding small primes p that guarantee the
irreducibility of f ◦ g, we may use instead of Theorem 1 the following simpler, but weaker
result.

Corollary 1. Let f(X) = a0 + a1X + · · · + amXm and g(X) = b0 + b1X + · · · + bnX
n

be non-constant polynomials with integer coefficients, satisfying a0ambn ̸= 0. If am = pkq
with p a prime number, q an integer, k a positive integer coprime to mn, and

p > |bn|m
2n ·min{|q|, |a0|+ · · ·+ |am−1|} ·max{|q|, |a0|+ · · ·+ |am−1|}mn−1,

then f ◦ g is irreducible over Q.

We mention that in some cases, unlike the condition on p in Corollary 1, the one in
Theorem 1 allows the coefficients a1, . . . , am−1 to be divisible by p as well. The reason is
that when mn > 1 and at least one of |bn|, |a0| or |q| is larger than 1, the value of λ in
the statement of Theorem 1 can be made arbitrarily small by simply increasing k, while
keeping it coprime to mn. As a consequence, for sufficiently large such k, L∗(f(λX)) can be
arbitrarily close to |a0|, no matter what values we choose for the coefficients a1, . . . , am−1.
To illustrate this situation, we will prove the following result.

Corollary 2. Let f(X) = a0 + a1X + · · · + amXm and g(X) = b0 + b1X + · · · + bnX
n

be non-constant polynomials with integer coefficients, satisfying a0ambn ̸= 0. Assume that
am = pkq with p a prime number, q an integer, and k a positive integer. If |a0qbn| > 1 and

p > |bn|m
2n ·min{|q|, |a0|} ·max{|q|, |a0|}mn−1,

then f ◦ g is irreducible over Q for sufficiently large integers k coprime to mn.

In particular, for g(X) = X we obtain from Theorem 1 the following irreducibility
criterion for polynomials with integer coefficients:

Corollary 3. Let f(X) = a0+a1X+· · ·+amXm be a non-constant polynomial with integer
coefficients, satisfying a0am ̸= 0. If am = pkq with p a prime number, q an integer, k a
positive integer coprime to m, and

p > min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}m−1,

with λ = (|a0|
k−1
m |q| k+1

m ·max{|a0|, |q|}
(m−2)k

m )−1, then f is irreducible over Q.
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Two simple, explicit instances of Corollary 3 appear in the following results.

Corollary 4. Let f(X) = a0+a1X + · · ·+amXm be a polynomial with integer coefficients
of degree m ≥ 2, a0 ̸= 0. Assume that am = pkq with p a prime number, q an integer
satisfying |q| > |a0|, and k a positive integer coprime to m. If p > (1 + |a0|) · |q|m−1 and

k > log
|a0|

1
m |q|

m−1
m

(|a1|+ · · ·+ |am−1|),

then f is irreducible over Q.

Corollary 5. Let f(X) = a0+a1X + · · ·+amXm be a polynomial with integer coefficients
of degree m ≥ 2, satisfying a0 ̸= 0. Assume that am = pkq with p a prime number, q an
integer with 1 < |q| ≤ |a0|, and k a positive integer coprime to m. If p > (1 + |a0|)m−1|q|
and

k > 1 + log
|a0|

m−1
m |q|

1
m
(|a1|+ · · ·+ |am−1|),

then f is irreducible over Q.

A comparison between the irreducibility conditions in Corollary 4, Corollary 5 and those
in Dumas’ irreducibility criterion is in order. We recall the famous irreducibility criterion
of Dumas [32], that generalizes the Schönemann-Eisenstein irreducibility criterion.

Irreducibility criterion of Dumas Let f(X) = a0+a1X+· · ·+amXm be a polynomial
with integer coefficients, and let p be a prime number. If

i)
νp(ai)

i >
νp(am)

m for i = 1, . . . ,m− 1,
ii) νp(a0) = 0,
iii) gcd(νp(am),m) = 1,

then f is irreducible over Q.

Here, for an integer n and a prime number p, νp(n) stands for the largest integer i
such that pi | n (by convention, νp(0) = ∞). We observe that in Dumas’ criterion the
multiplicities of p in the prime factorizations of the coefficients ai, i = 1, . . . ,m − 1, must
exceed a certain lower bound linear in i, more precisely they must satisfy the inequality
νp(ai) >

i
m · νp(am), while k := νp(am) is coprime to m, and a0 is not divisible by p. In

Corollary 4 and Corollary 5 there is no restriction on νp(ai) for i = 1, . . . ,m − 1, but this
additional flexibility in choosing the coefficients comes at the cost of asking p and k to
exceed certain explicit lower bounds, while in Corollary 3 there is no restriction on k other
than being coprime to m, and p is asked to exceed a lower bound potentially larger than in
Corollary 4 and Corollary 5.

We may relax the conditions on k and p in the statement of Theorem 1 if we already
know that f is irreducible, as shown in the following result:

Theorem 2. Let f(X) = a0 + a1X + · · ·+ amXm and g(X) = b0 + b1X + · · ·+ bnX
n be

non-constant polynomials with integer coefficients, with a0ambn ̸= 0 and f irreducible over
Q. If am = pkq with p a prime number, q an integer, k a positive integer coprime to n, and

p > |bn|mn ·min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}n−1,

with λ = (|bn|nk|a0|
k−1
m |q| k+1

m ·max{|a0|, |q|}
(n−2)k

m )−1, then f ◦ g is irreducible over Q.
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By combining Corollary 3 and Theorem 2 we obtain the following irreducibility criterion
that no longer requires the assumption that f is irreducible:

Theorem 3. Let f(X) = a0 + a1X + · · ·+ amXm and g(X) = b0 + b1X + · · ·+ bnX
n be

non-constant polynomials with integer coefficients, with a0ambn ̸= 0. Assume that am = pkq
with p a prime number, q an integer, and k a positive integer coprime to mn. If

p > max
{
min{|q|, L∗(f(λ1X))} ·max{|q|, L∗(f(λ1X))}m−1,

|bn|mn ·min{|q|, L∗(f(λ2X))} ·max{|q|, L∗(f(λ2X))}n−1
}
,

with

λ1 =
(
|a0|

k−1
m |q|

k+1
m ·max{|a0|, |q|}

(m−2)k
m

)−1

and

λ2 =
(
|bn|nk|a0|

k−1
m |q|

k+1
m ·max{|a0|, |q|}

(n−2)k
m

)−1

,

then the polynomial f ◦ g is irreducible over Q.

Even if the lower bound on p in Theorem 3 is quite involved, it takes simpler and more
explicit forms when some additional information on the coefficients and on the degrees of f
and g is known. We will only state here two results corresponding to the case that |bn| = 1
and m = n, and to the case that |bn| = |q| = 1, respectively:

Corollary 6. Let f(X) = a0 + a1X + · · · + amXm and g(X) = b0 + b1X + · · · + bmXm

be non-constant polynomials with integer coefficients, with |bm| = 1, and am = pkq with p
a prime number, q a nonzero integer, and k a positive integer coprime to m. If

p > min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}m−1,

with λ = (|a0|
k−1
m |q| k+1

m ·max{|a0|, |q|}
(m−2)k

m )−1, then f ◦ g is irreducible over Q.

Corollary 7. Let f(X) = a0 + a1X + · · ·+ amXm and g(X) = b0 + b1X + · · ·+ bnX
n be

polynomials with integer coefficients, of degrees m ≥ 2 and n ≥ 2, with a0 ̸= 0 and |bn| = 1.
Assume that |am| = pk, where p is a prime number and k is coprime to mn. If

p > (|a0|+ |a1|+ · · ·+ |am−1|)max{m,n}−1,

then the polynomial f ◦ g is irreducible over Q.

We note that the conditions on p in the statements of the results above do not depend
on b0, b1, . . . , bn−1, so the conclusion on the irreducibility of f ◦ g will hold once we choose
a0, . . . , am−1, bn and p to satisfy the inequalities in the statements of Theorems 1, 2 and 3,
respectively, then choose a suitable k, and let b0, b1, . . . , bn−1 vary independently. We also
note that in the results above we can not drop the arithmetical condition on k and solely
ask p to be sufficiently large. To see this, consider the polynomial f(X) = ppXp − 1, with
p a prime number. In this case, ap = pp and k = deg f = p, so we cannot apply Corollary
3; in fact, f is obviously reducible, being divisible by pX − 1. Besides, in our results the
condition on the magnitude of p implies that the leading coefficient of g is not divisible by
p. For an example where the conclusion on the irreducibility of f ◦ g fails if we allow bn to
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be divisible by p, let us consider an irreducible polynomial f(X) with integer coefficients, of
degreem ≥ 2, having leading coefficient am = pkq with p prime, q an integer not divisible by
p, and k a positive integer coprime to m (such polynomials do exist, according to Corollary
3, for instance). Let g(X) = f(X) +X, so m = n and am = bn, and let θ be a root of f .
Since f(g(θ)) = f(f(θ) + θ) = f(θ) = 0, we deduce that f ◦ g is reducible over Q, being
divisible by f , and this holds for an arbitrary choice of the prime p.

We will first prove Theorem 1, and then we will adapt its proof to the case that f is
known to be irreducible, when we can make use of the crucial information on the degrees of
the hypothetical factors of f ◦ g provided by Capelli’s Theorem. This will allow us to relax
the conditions on k and on the magnitude of p, as in Theorem 2.

Proof of Theorem 1. First of all, we note that f ◦ g is irreducible for m = n = 1, without
any restriction on k or p, since it is linear. Therefore in what follows we will assume that
mn > 1. By our assumption on p we see in particular that p > |q| and p > |bn|, so p - qbn.
Now let us assume to the contrary that f(g(X)) is reducible, say

f(g(X)) = F1(X)F2(X)

with F1, F2 ∈ Z[X], degF1 ≥ 1,degF2 ≥ 1, and let t1 and t2 be the leading coefficients
of F1 and F2 respectively. Then, by comparing the leading coefficients in this equality we
obtain

t1t2 = ambmn = pkqbmn . (2.1)

Let us now write t1 = pαt′1 and t2 = pβt′2 with α, β non-negative integers and t′1, t
′
2 ∈ Z,

p - t′1t′2. By (2.1) and the fact that p - qbn we must have

α+ β = k (2.2)

and
t′1t

′
2 = qbmn . (2.3)

We note that we may also write f(g(X)) = h(X) + pkq · gm(X), with

h(X) = a0 + a1g(X) + · · ·+ am−1g
m−1(X).

Now, since a0 ̸= 0, we deduce that h(X) and gm(X) are algebraically relatively prime (i.e.
they can only share a constant factor), so the same must hold for gm(X) and F1(X), and
also for gm(X) and F2(X). As a consequence, the resultants R(gm, F1) and R(gm, F2) must
be nonzero rational integers, so we must have

|R(gm, F1)| ≥ 1 and |R(gm, F2)| ≥ 1. (2.4)

In the remainder of the proof, we will estimate |R(gm, F1)| and |R(gm, F2)| in a different
way. If we consider the factorizations of F1(X) and F2(X) over C, say

F1(X) = t1(X − α1) · · · (X − αr) and F2(X) = t2(X − β1) · · · (X − βs)

with α1, . . . , αr, β1, . . . , βs ∈ C, r, s ≥ 1 and r + s = mn, then we have

|R(gm, F1)| = |t1|mn
∏

1≤j≤r

|gm(αj)| and |R(gm, F2)| = |t2|mn
∏

1≤j≤s

|gm(βj)|. (2.5)
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We note that since g and h are relatively prime, we have g(αj) ̸= 0, h(αj) ̸= 0 and also
g(βj) ̸= 0, h(βj) ̸= 0. All that remains now is to prove that our assumption on the
magnitude of p actually forces one of the inequalities |R(gm, F1)| < 1 and |R(gm, F2)| < 1
to hold, which contradicts (2.4). To do this, we need to find upper bounds for the absolute
values of the two resultants in (2.5). We first observe that since f(g(αj)) = 0 for 1 ≤ j ≤ r
and f(g(βj)) = 0 for 1 ≤ j ≤ s, we have

|gm(αj)| =
|h(αj)|
|am|

, 1 ≤ j ≤ r, and |gm(βj)| =
|h(βj)|
|am|

, 1 ≤ j ≤ s,

so instead of (2.5) we may write

|R(gm, F1)| = pαmn−kr|t′1|mn
∏

1≤j≤r

|h(αj)|
|q|

(2.6)

and

|R(gm, F2)| = pβmn−ks|t′2|mn
∏

1≤j≤s

|h(βj)|
|q|

. (2.7)

We now analyze the exponents αmn−kr and βmn−ks of the prime p appearing in (2.6) and
(2.7), respectively. To do this we will adapt an idea from [13], and use our key assumption
that k and mn are coprime. Using (2.2) and the fact that r + s = mn, we observe that

(αmn− kr) + (βmn− ks) = mn(α+ β)− k(r + s) = mnk − kmn = 0. (2.8)

Assume now without loss of generality that αmn − kr ≤ βmn − ks. We will prove that
neither αmn− kr, nor βmn− ks can be zero. As these two integers sum up to zero, if one
of them is zero, the other one must be zero too. So let us suppose that αmn = kr and
βmn = ks. As k and mn are coprime, these equalities force both r and s to be divisible
by mn, and since r + s = mn, this would imply that one of r and s must be zero, a
contradiction. Therefore, there exists a positive integer δ such that αmn − kr = −δ and
βmn− ks = δ. In particular, by (2.6) and (2.3) we deduce that

|R(gm, F1)| =
|t′1|mn

pδ

∏
1≤j≤r

|h(αj)|
|q|

≤ |qbmn |mn

pδ

∏
1≤j≤r

|h(αj)|
|q|

. (2.9)

In what follows, we will find an upper bound for |h(αj)|, 1 ≤ j ≤ r. To this end, we will
actually need to find first an upper bound for g(αj), 1 ≤ j ≤ r, which in turn will require
an upper bound for the roots of f . So let us consider the factorization of f(X), say

f(X) = am(X − θ1) · · · (X − θm),

with θ1, . . . , θm ∈ C.
Let us first assume that |a0| ≥ |q|, so λ = (|bn|mnk|a0|

(mn−1)k−1
m |q| k+1

m )−1. Our as-

sumption on the magnitude of p implies in particular that p > |bn|m
2n|q|L∗(f(λX))mn−1,

so

pk|q| > |bn|m
2nk|q|k+1L∗(f(λX))(mn−1)k

= [λm|bn|m
2nk|q|k+1L∗(f(λX))(mn−1)k−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).
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The quantity in square brackets above is equal to(
L∗(f(λX))

|a0|

)(mn−1)k−1

,

which is at least 1, since |a0| ≤ L∗(f(λX)) and (mn− 1)k − 1 ≥ 0 (as mn ≥ 2).

Assume now that |a0| < |q|, so λ = (|bn|mnk|a0|
k−1
m |q|

(mn−1)k+1
m )−1. Our assumption on

the magnitude of p also implies that p > |bn|m
2n|q|mn−1L∗(f(λX)), so

pk|q| > |bn|m
2nk|q|(mn−1)k+1L∗(f(λX))k

= [λm|bn|m
2nk|q|(mn−1)k+1L∗(f(λX))k−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

Here the quantity in square brackets above is equal to(
L∗(f(λX))

|a0|

)k−1

,

which is still at least 1, as k ≥ 1.
We have thus proved that in each of these two cases we have

pk|q| > |a0|λ−m + · · ·+ |am−1|λ−1.

It is a standard fact that this condition forces all the roots θ1, . . . , θm of f to lie in the open
disk {|z| < λ}. This is an immediate consequence of Rouché’s Theorem, but can also be
checked in an elementary way, for if f had a root θ with |θ| ≥ λ, then we would obtain

0 =

∣∣∣∣ m∑
i=0

aiθ
i−m

∣∣∣∣ ≥ pk|q| −
m−1∑
i=0

|ai| · |θ|i−m ≥ pk|q| − (|a0|λ−m + · · ·+ |am−1|λ−1) > 0,

a contradiction. Therefore, for any i ∈ {1, . . . ,m} one has

|θi| < λ. (2.10)

Let us fix now an index j ∈ {1, . . . , r} and recall that f(g(αj)) = 0. Therefore there
exists an index i ∈ {1, . . . ,m}, depending on j, for which g(αj) = θi, which in view of (2.10)
shows that we must have

|g(αj)| < λ, (2.11)

uniformly, for each j = 1, . . . , r. Recalling the definition of h(X), one deduces by (2.11)
that |h(αj)| < |a0|+ |a1|λ+ · · ·+ |am−1|λm−1, that is |h(αj)| < L∗(f(λX)), uniformly, for
each j = 1, . . . , r, which in view of (2.9) yields

|R(gm, F1)| ≤
|q|mn|bn|m

2n

pδ
·
(
L∗(f(λX))

|q|

)r

. (2.12)

We distinguish now two cases:
Case 1: |q| > L∗(f(λX)). In this case, as δ ≥ 1 and r ≥ 1, we deduce by (2.12) that

|R(gm, F1)| ≤
1

p
· |q|mn−1|bn|m

2nL∗(f(λX)),
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which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|mn−1|bn|m
2nL∗(f(λX)).

Case 2: |q| ≤ L∗(f(λX)). In this second case, as δ ≥ 1 and r ≤ mn− 1, we deduce by
(2.12) that

|R(gm, F1)| ≤ |q|mn|bn|m
2n

p
·
(
L∗(f(λX))

|q|

)mn−1

=
1

p
· |q| · |bn|m

2nL∗(f(λX))mn−1,

which gives the desired contradiction if p > |q| · |bn|m
2nL∗(f(λX))mn−1. Summarizing, we

conclude that |R(gm, F1)| < 1 if

p > |bn|m
2n ·min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}mn−1,

which is precisely the condition on the magnitude of p in the statement of our theorem. So if
p satisfies this inequality, the polynomial f(g(X)) (and hence f(X) too) must be irreducible
over Q, which completes the proof of the theorem.

Proof of Corollary 2. Since |a0qbn| > 1, we have lim
k→∞

λ = 0, so lim
k→∞

L∗(f(λX)) = |a0|,
which in turn shows that

lim
k→∞

|bn|m
2n ·min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}mn−1 =

|bn|m
2n ·min{|q|, |a0|} ·max{|q|, |a0|}mn−1.

Since p > |bn|m
2n ·min{|q|, |a0|} ·max{|q|, |a0|}mn−1, for sufficiently large k we will have

p > |bn|m
2n ·min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}mn−1.

Thus, for sufficiently large integers k that are coprime to mn, we may apply Theorem 1 to
conclude that the polynomial f ◦ g is irreducible over Q.

Proof of Corollary 3. The result follows by Theorem 1 with n = bn = 1.

Proof of Corollary 4. Our assumption that |q| > |a0| implies that λ in Corollary 3 is

equal to |a0|−
k−1
m |q|−

(m−1)k+1
m , so

L∗(f(λX)) = |a0|+
|a1|

|a0|
k−1
m |q|

(m−1)k+1
m

+ · · ·+ |am−1|
|a0|

k−1
m (m−1)|q|

(m−1)k+1
m (m−1)

≤ |a0|+
|a1|+ · · ·+ |am−1|
|a0|

k−1
m |q|

(m−1)k+1
m

< |a0|+ 1.

Last inequality above is equivalent to k > log
|a0|

1
m |q|

m−1
m

A, with

A := (|a1|+ · · ·+ |am−1|) ·
|a0|

1
m

|q| 1
m

,
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which holds true, according to our assumption that

k > log
|a0|

1
m |q|

m−1
m

(|a1|+ · · ·+ |am−1|),

together with the fact that |a0|
1
m < |q| 1

m .
On the other hand, since |q| ≥ |a0| + 1 > L∗(f(λX)) and p > (1 + |a0|)|q|m−1, the

condition p > min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}m−1 in Corollary 3 is fulfilled, so
f must be irreducible over Q.

Proof of Corollary 5. Here our assumption that |q| ≤ |a0| implies that λ in Corollary 3

is equal to |a0|−
(m−1)k−1

m |q|−
(k+1)

m , so

L∗(f(λX)) = |a0|+
|a1|

|a0|
(m−1)k−1

m |q| k+1
m

+ · · ·+ |am−1|
|a0|

(m−1)k−1
m (m−1)|q| k+1

m (m−1)

≤ |a0|+
|a1|+ · · ·+ |am−1|
|a0|

(m−1)k−1
m |q| k+1

m

< |a0|+ 1.

The right-most inequality above is equivalent to k > log
|a0|

m−1
m |q|

1
m

A, with

A := (|a1|+ · · ·+ |am−1|) ·
|a0|

1
m

|q| 1
m

,

which obviously holds, according to our assumption that

k > 1 + log
|a0|

m−1
m |q|

1
m
(|a1|+ · · ·+ |am−1|),

and to the fact that |a0|
m−1
m |q| 1

m ≥ |a0/q|
1
m , as |q| ≤ |a0|.

Next, as |a0| + 1 > L∗(f(λX)) ≥ |a0| ≥ |q| and p > (1 + |a0|)m−1|q|, we conclude that
the condition p > min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}m−1 in Corollary 3 is satisfied,
which proves the irreducibility of f .

Proof of Theorem 2. Here we know that f is irreducible over Q, so obviously f(b0+b1X)
must also be irreducible over Q for every b0, b1 ∈ Z with b1 ̸= 0. We may therefore assume
that n > 1, so by our assumption on p we can deduce in this case too that p > |bn| and
p > |q|, hence p - qbn. The proof continues as in the case of Theorem 1, with the main
differences coming from the important information on the degrees of F1 and F2 given by
Capelli’s Theorem. More precisely, as f is known to be irreducible, the degree of every
irreducible factor of f(g(X)) must be a multiple of m, which implies in particular that
degF1 = r ≥ m and also degF2 = s ≥ m. Therefore here we may conclude that

m ≤ r, s ≤ mn−m. (2.13)

Besides, when we try as before to prove that none of the integers αmn− kr and βmn− ks
can be zero, it suffices to only ask k to be coprime to n (instead of mn as in Theorem 1),
and this too is due to the fact that r and s are both multiples of m. Indeed, as r = mr′
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and s = ms′ for some integers r′ and s′, if we assume that αmn = kr and βmn = ks, we
obtain

αn = kr′ and βn = ks′.

As k is coprime to n, these equalities will force both r′ and s′ to be divisible by n, which
in turn will force both r and s to be divisible by mn. Since r + s = mn, this will further
imply that one of r and s must be zero, a contradiction.

Last, but not least, we notice that in this case the non-zero integers αmn − kr and
βmn− ks are both multiples of m, hence δ is a positive multiple of m, so in particular we
have

δ ≥ m. (2.14)

Let us first assume that |a0| ≥ |q|, so λ = (|bn|nk|a0|
(n−1)k−1

m |q| k+1
m )−1. Our assumption on

the magnitude of p implies in particular that p > |bn|mn|q|L∗(f(λX))n−1, so

pk|q| > |bn|mnk|q|k+1L∗(f(λX))(n−1)k

= [λm|bn|mnk|q|k+1L∗(f(λX))(n−1)k−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

The quantity in square brackets above is equal to(
L∗(f(λX))

|a0|

)(n−1)k−1

,

which is at least 1, since |a0| ≤ L∗(f(λX)) and (n− 1)k − 1 ≥ 0 (as n > 1).

Assume next that |a0| < |q|, so λ = (|bn|nk|a0|
k−1
m |q|

(n−1)k+1
m )−1. Our assumption on

the magnitude of p also implies that p > |bn|mn|q|n−1L∗(f(λX)), so

pk|q| > |bn|mnk|q|(n−1)k+1L∗(f(λX))k

= [λm|bn|mnk|q|(n−1)k+1L∗(f(λX))k−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

Here the quantity in square brackets above is equal to(
L∗(f(λX))

|a0|

)k−1

,

which is still at least 1, as k ≥ 1.
We thus proved that in this case too we have

pk|q| > |a0|λ−m + · · ·+ |am−1|λ−1,

so we may still conclude that all the roots θ1, . . . , θm of f lie in the open disk {|z| < λ}.
Here too we will analyze separately the cases that |q| exceeds or not L∗(f(λX)):
Case 1: |q| > L∗(f(λX)). In this case, since r ≥ m and δ ≥ m (according to (2.14)),

we deduce by (2.12) that

|R(gm, F1)| ≤
|q|mn|bn|m

2n

pm
·
(
L∗(f(λX))

|q|

)m

,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|n−1|bn|mnL∗(f(λX)).
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Case 2: |q| ≤ L∗(f(λX)). Here, since by (2.13) we have r ≤ mn − m, we deduce by
(2.14) and (2.12) that

|R(gm, F1)| ≤ |q|mn|bn|m
2n

pm
·
(
L∗(f(λX))

|q|

)mn−m

=
|q|m · |bn|m

2n(L∗(f(λX)))mn−m

pm
,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q| · |bn|mnL∗(f(λX))n−1. We
conclude that |R(gm, F1)| < 1 in each of these two cases if

p > |bn|mn ·min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}n−1,

so if p satisfies this inequality, the polynomial f ◦ g (and hence f too) must be irreducible
over Q.

Proof of Corollary 6. Since |bn| = 1 and m = n we see that

λ1 = λ2 = (|a0|
k−1
m |q|

k+1
m ·max{|a0|, |q|}

(m−2)k
m )−1, (2.15)

and the condition on p in Theorem 3 reduces to

p > min{|q|, L∗(f(λX))} ·max{|q|, L∗(f(λX))}m−1,

with λ given by (2.15). The conclusion follows now by Theorem 3.

Proof of Corollary 7. In this case, as m ≥ 2 and n ≥ 2, both λ1 and λ2 are at most 1, so
it suffices to ask p to satisfy p > (|a0|+ |a1|+ · · ·+ |am−1|)max{m,n}−1.

3 The case that the inverse of k modulo mn is known

As seen in the proof of the results in the previous section, there is an intimate connection
between the arithmetical properties of k and the possible degrees of the hypothetical factors
of f ◦ g. In this section we will provide some sharper irreducibility conditions for the case
that some additional information on k is known. More precisely, we will present some
refinements of the lower bounds on p in the case that the inverse of k modulo mn (or
modulo n) is known.

Our first result that uses information on the inverse of k modulo mn is the following.

Theorem 4. Let f(X) = a0 + · · · + amXm and g(X) = b0 + · · · + bnX
n be non-constant

polynomials with integer coefficients, with a0ambn ̸= 0. Assume that am = pkq with p a
prime number, q an integer, and k a positive integer coprime to mn. Let ℓ ∈ {1, . . . ,mn−1}
be the inverse of k modulo mn, and let λ = (|q|

(mn−ℓ)k+1
m |a0|

ℓk−1
m |bn|mnk)−1. If

p > max
{
|q|mn−ℓ|bn|m

2nL∗(f(λX))ℓ, |q|
mn−1

2 |bn|
m2n

2 L∗(f(λX))
1
2 ,

|q| 12 |bn|
m2n

2 L∗(f(λX))
mn−1

2

}
,

then f ◦ g is irreducible over Q.
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Remark 1. As we shall see in the proof of Theorem 4, if k > 1, or if k = 1 and mn ≥ 3,
we may slightly decrease the value of λ above by replacing it with

λ′ = max{|q|
(mn−ℓ)k+1

m |a0|
ℓk−1
m |bn|mnk, |q|

k+2
2m |a0|

(mn−1)k−2
2m |bn|

mnk
2 }−1.

Moreover, if k > 1 we may further decrease the value of λ to

λ′′ = max{|q|
(mn−ℓ)k+1

m |a0|
ℓk−1
m |bn|mnk, |q|

k+2
2m |a0|

(mn−1)k−2
2m |bn|

mnk
2 ,

|q|
(mn−1)k+2

2m |a0|
k−2
2m |bn|

mnk
2 }−1.

In particular, for g(X) = X one obtains the following irreducibility criterion.

Corollary 8. Let f(X) = a0 + a1X + · · · + amXm be a non-constant polynomial with
integer coefficients, with a0 ̸= 0. Assume that am = pkq with p a prime number, q a non-
zero integer, and k a positive integer coprime to m. Let ℓ ∈ {1, . . . ,m − 1} be the inverse

of k modulo m, and let λ = (|q|
(m−ℓ)k+1

m |a0|
ℓk−1
m )−1. If

p > max
{
|q|m−ℓL∗(f(λX))ℓ, |q|

m−1
2 L∗(f(λX))

1
2 , |q| 12L∗(f(λX))

m−1
2

}
,

then f is irreducible over Q.

According to Remark 1, if k > 1, or if k = 1 and m ≥ 3, we may slightly decrease the
value of λ in Corollary 8 by replacing it with

λ′ = max
{
|q|

(m−ℓ)k+1
m |a0|

ℓk−1
m , |q|

k+2
2m |a0|

(m−1)k−2
2m

}−1

.

Moreover, if k > 1 we may further decrease the value of λ to

λ′′ = max
{
|q|

(m−ℓ)k+1
m |a0|

ℓk−1
m , |q|

k+2
2m |a0|

(m−1)k−2
2m , |q|

(m−1)k+2
2m |a0|

k−2
2m

}−1

.

One may obtain some simpler irreducibility conditions in the case that |q| = 1 and k ≡ 1
(mod m), or k ≡ 2 (mod m), as in the following two results.

Corollary 9. Let f(X) = a0+a1X+ · · ·+amXm be a polynomial with integer coefficients,
of degree m ≥ 3, a0 ̸= 0. If am = pk, where p is a prime number, k ≡ 1 (mod m), and

p > (|a0|+ · · ·+ |am−1|)
m−1

2 , then f is irreducible over Q.

Corollary 10. Let f(X) = a0+a1X+· · ·+amXm be a polynomial with integer coefficients,
of odd degree m, a0 ̸= 0. If am = pk, where p is a prime number, k ≡ 2 (mod m), and

p > (|a0|+ · · ·+ |am−1|)
m+1

2 , then f is irreducible over Q.

As in previous section, we can relax the restrictions on p and k in the case that f is
known to be irreducible.

Theorem 5. Let f(X) = a0 + · · · + amXm and g(X) = b0 + · · · + bnX
n be non-constant

polynomials with integer coefficients, a0ambn ̸= 0, f irreducible over Q. Assume am = pkq
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with p prime, q an integer, and k a positive integer coprime to n. Let ℓ ∈ {1, . . . , n− 1} be

the inverse of k modulo n, and let λ = (|q|
(n−ℓ)k+1

m |a0|
ℓk−1
m |bn|nk)−1. If

p > max
{
|q|n−ℓ|bn|mnL∗(f(λX))ℓ, |q|

n−1
2 |bn|

mn
2 L∗(f(λX))

1
2 ,

|q| 12 |bn|
mn
2 L∗(f(λX))

n−1
2

}
,

then f ◦ g is irreducible over Q.

Remark 2. We mention that if n ≥ 2 and k ≥ 2, or if n ≥ 3 and k = 1, we may decrease
the value of λ in Theorem 5 by replacing it with

λ′ = max
{
|q|

(n−ℓ)k+1
m |a0|

ℓk−1
m |bn|nk, |q|

k+2
2m |a0|

(n−1)k−2
2m |bn|

nk
2

}−1

.

Moreover, if k ≥ 2 we may further decrease the value of λ to

λ′′ = max
{
|q|

(n−ℓ)k+1
m |a0|

ℓk−1
m |bn|nk, |q|

k+2
2m |a0|

(n−1)k−2
2m |bn|

nk
2 , |q|

(n−1)k+2
2m |a0|

k−2
2m |bn|

nk
2

}−1

.

We may obviously drop the condition that f is irreducible over Q by combining Corollary
8 and Theorem 5. In this respect we will only present here a simple example where the
irreducibility conditions drastically simplify, namely the case that |q| = |bn| = 1 and k
satisfies the congruences k ≡ 1 (mod m) and k ≡ 1 (mod n).

Corollary 11. Let f(X) = a0 + · · ·+ amXm and g(X) = b0 + · · ·+ bnX
n be polynomials

with integer coefficients, of degrees m ≥ 3 and n ≥ 3, with a0 ̸= 0 and |bn| = 1. Assume that
am = pk, where p is a prime number and k satisfies k ≡ 1 (mod m) and k ≡ 1 (mod n). If

p > (|a0|+ |a1|+ · · ·+ |am−1|)
max{m,n}−1

2 ,

then f ◦ g is irreducible over Q.

Proof of Theorem 4. Here too the assumption on p implies that both q and bn are not
divisible by p. The proof continues as in the case of Theorem 1. Our assumption on the
magnitude of p implies that p > |q|mn−ℓ|bn|m

2nL∗(f(λX))ℓ, so

pk|q| > |q|(mn−ℓ)k+1|bn|m
2nkL∗(f(λX))ℓk

= [λm|q|(mn−ℓ)k+1|bn|m
2nkL∗(f(λX))ℓk−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

Recalling that λ = (|q|
(mn−ℓ)k+1

m |a0|
ℓk−1
m |bn|mnk)−1, we deduce that the quantity in the

square brackets above is equal to (
L∗(f(λX))

|a0|

)ℓk−1

,

which is at least 1, as L∗(f(λX)) ≥ |a0|, and the exponent ℓk − 1 is nonnegative.
We will consider now the situation mentioned in Remark 1. So let us assume now that

λ = (|q|
k+2
2m |a0|

(mn−1)k−2
2m |bn|

mnk
2 )−1.
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The hypothesis on the magnitude of p also implies that p > |q| 12 |bn|
m2n

2 L∗(f(λX))
mn−1

2 , so

pk|q| > |q| k2+1|bn|
m2nk

2 L∗(f(λX))
(mn−1)k

2

= [λm|q| k2+1|bn|
m2nk

2 L∗(f(λX))
(mn−1)k

2 −1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

Observe that the quantity in the square brackets above is this time equal to(
L∗(f(λX))

|a0|

) (mn−1)k
2 −1

,

which is at least 1 if the exponent (mn−1)k
2 −1 is nonnegative. This last condition obviously

holds if mn ≥ 3, as k ≥ 1, but also holds for mn = 2, provided k ≥ 2 (the irreducibility of
f ◦ g in the case that both m and n are equal to 1 is trivial).

Finally, let us assume that

λ = (|q|
(mn−1)k+2

2m |a0|
k−2
2m |bn|

mnk
2 )−1.

Since our assumption on the magnitude of p implies that p > |q|mn−1
2 |bn|

m2n
2 L∗(f(λX))

1
2 ,

we deduce that

pk|q| > |q|
(mn−1)k+2

2 |bn|
m2nk

2 L∗(f(λX))
k
2

= [λm|q|
(mn−1)k+2

2 |bn|
m2nk

2 L∗(f(λX))
k
2−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

Observe that the quantity in the square brackets above is equal to(
L∗(f(λX))

|a0|

) k
2−1

,

which is at least 1 for k ≥ 2.
We have thus checked that in each of the above three cases we have

pk|q| > |a0|λ−m + · · ·+ |am−1|λ−1.

We may therefore still conclude that all the roots θ1, . . . , θm of f lie in the open disk
{|z| < λ}, and then deduce that

|R(gm, F1)| ≤
|q|mn|bn|m

2n

pδ
·
(
L∗(f(λX))

|q|

)r

. (3.1)

We distinguish now three cases:
Case 1: δ = 1. Observe now that if δ = 1, then by reducing modulo mn the equality

αmn− kr = −1 we obtain kr ≡ 1 (mod mn), and since r ∈ {1, . . . ,mn− 1}, we must have
r = ℓ. In this case we deduce by (3.1) that

|R(gm, F1)| ≤
|q|mn|bn|m

2n

p
·
(
L∗(f(λX))

|q|

)ℓ

,



C. M. Bonciocat, N. C. Bonciocat, Y. Bugeaud, M. Cipu, M. Mignotte 165

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|mn−ℓ|bn|m
2nL∗(f(λX))ℓ.

Case 2: δ ≥ 2 and |q| > L∗(f(λX)). In this case, as r ≥ 1, we deduce by (3.1) that

|R(gm, F1)| ≤
|q|mn|bn|m

2n

p2
· L

∗(f(λX))

|q|
,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|mn−1
2 |bn|

m2n
2 L∗(f(λX))

1
2 .

Case 3: δ ≥ 2 and |q| ≤ L∗(f(λX)). Here, as r ≤ mn− 1, we see by (3.1) that

|R(gm, F1)| ≤ |q|mn|bn|m
2n

p2
·
(
L∗(f(λX))

|q|

)mn−1

=
1

p2
· |q| · |bn|m

2nL∗(f(λX))mn−1,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q| 12 |bn|
m2n

2 L∗(f(λX))
mn−1

2 .
Summarizing, we conclude that |R(gm, F1)| < 1 if

p > max{|q|mn−ℓ|bn|m
2nL∗(f(λX))ℓ, |q|

mn−1
2 |bn|

m2n
2 L∗(f(λX))

1
2 ,

|q| 12 |bn|
m2n

2 L∗(f(λX))
mn−1

2 },

which is precisely the hypothesis on the magnitude of p in the statement of our theorem.
This completes the proof of the theorem.

Proof of Corollary 9. Here ℓ = |q| = 1, and one may check that λ ≤ 1. Therefore it
suffices to ask p to satisfy

p > max{L∗(f(X)), L∗(f(X))
1
2 , L∗(f(X))

m−1
2 } = L∗(f(X))

m−1
2 ,

as m ≥ 3. This completes the proof.

Proof of Corollary 10. Observe that k is coprime to m, since k ≡ 2 mod m and m is
odd. Besides, for an odd m ≥ 3 the inverse of k modulo m is ℓ = m+1

2 ∈ {1, . . . ,m − 1}.
One may check that in this case too we have λ ≤ 1. Therefore it suffices to ask p to satisfy

p > max{L∗(f(X))
m+1

2 , L∗(f(X))
1
2 , L∗(f(X))

m−1
2 } = L∗(f(X))

m+1
2 ,

which completes the proof.

Proof of Theorem 5. The proof combines the ideas in the proofs of Theorem 2 and The-
orem 4. Our assumption on p implies that p > |q|n−ℓ|bn|mnL∗(f(λX))ℓ, so

pk|q| > |q|(n−ℓ)k+1|bn|mnkL∗(f(λX))ℓk

= [λm|q|(n−ℓ)k+1|bn|mnkL∗(f(λX))ℓk−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).
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Recalling that λ = (|q|
(n−ℓ)k+1

m |a0|
ℓk−1
m |bn|nk)−1, we deduce that the quantity in the square

brackets above is equal to (
L∗(f(λX))

|a0|

)ℓk−1

,

which is at least 1, as L∗(f(λX)) ≥ |a0|, and the exponent ℓk − 1 is nonnegative.
We will consider now the situation mentioned in Remark 2. So let us assume now that

λ = (|q|
k+2
2m |a0|

(n−1)k−2
2m |bn|

nk
2 )−1.

The hypothesis on the magnitude of p also implies that p > |q| 12 |bn|
mn
2 L∗(f(λX))

n−1
2 , so

pk|q| > |q| k2+1|bn|
mnk

2 L∗(f(λX))
(n−1)k

2

= [λm|q| k2+1|bn|
mnk

2 L∗(f(λX))
(n−1)k

2 −1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

Here the quantity in the square brackets above is equal to(
L∗(f(λX))

|a0|

) (n−1)k
2 −1

,

which is at least 1 if the exponent (n−1)k
2 − 1 is nonnegative. This is obviously true for

n ≥ 3, as k ≥ 1, but also holds for n = 2, provided k ≥ 2 (the irreducibility of f ◦ g in the
case that n = 1 is obvious, as f was assumed to be irreducible).

Finally, assume that

λ = (|q|
(n−1)k+2

2m |a0|
k−2
2m |bn|

nk
2 )−1.

Since p also satisfies the inequality p > |q|n−1
2 |bn|

mn
2 L∗(f(λX))

1
2 , we deduce that

pk|q| > |q|
(n−1)k+2

2 |bn|
mnk

2 L∗(f(λX))
k
2

= [λm|q|
(n−1)k+2

2 |bn|
mnk

2 L∗(f(λX))
k
2−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

Here the quantity in the square brackets above is equal to(
L∗(f(λX))

|a0|

) k
2−1

,

which is at least 1 if k ≥ 2.
We have thus checked that in each of the above three cases we have

pk|q| > |a0|λ−m + · · ·+ |am−1|λ−1,

so here too we may still conclude that all the roots θ1, . . . , θm of f lie in the open disk
{|z| < λ}, and then deduce that

|R(gm, F1)| ≤
|q|mn|bn|m

2n

pδ
·
(
L∗(f(λX))

|q|

)r

. (3.2)
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Recall from the proof of Theorem 2 that both δ and r are positive multiples of m. In
particular we may write r = mr′ for some integer r′ ∈ {1, . . . , n− 1}, as m ≤ r ≤ mn−m.
We again distinguish three cases:

Case 1: δ = m. Observe that in this case, from the equality αmn − kmr′ = −m we
obtain αn−kr′ = −1, which implies after reduction modulo n that kr′ ≡ 1 (mod n). Thus
r′ must be precisely ℓ, which shows that r = mℓ. In this case we deduce by (3.2) that

|R(gm, F1)| ≤ |q|mn|bn|m
2n

pm
·
(
L∗(f(λX))

|q|

)mℓ

=
1

pm
· |q|mn−mℓ|bn|m

2nL∗(f(λX))mℓ,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|n−ℓ|bn|mnL∗(f(λX))ℓ.
Case 2: δ ≥ 2m and |q| > L∗(f(λX)). Since r ≥ m, in this case we deduce by (3.2)

that

|R(gm, F1)| ≤
|q|mn|bn|m

2n

p2m
·
(
L∗(f(λX))

|q|

)m

,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|n−1
2 |bn|

mn
2 L∗(f(λX))

1
2 .

Case 3: δ ≥ 2m and |q| ≤ L∗(f(λX)). In this third case, since r ≤ mn−m, we deduce
by (3.2) that

|R(gm, F1)| ≤ |q|mn|bn|m
2n

p2m
·
(
L∗(f(λX))

|q|

)mn−m

=
|q|m · |bn|m

2nL∗(f(λX))mn−m

p2m
,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q| 12 |bn|
mn
2 L∗(f(λX))

n−1
2 .

Summarizing, we conclude that |R(gm, F1)| < 1 if

p > max{|q|n−ℓ|bn|mnL∗(f(λX))ℓ, |q|
n−1
2 |bn|

mn
2 L∗(f(λX))

1
2 ,

|q| 12 |bn|
mn
2 L∗(f(λX))

n−1
2 },

which completes the proof of the theorem.

Proof of Corollary 11. By Corollary 9, f must be irreducible over Q. One applies then
Theorem 5 with ℓ = |bn| = |q| = 1.

4 The case that only the residue class of k modulo mn
is known

In this section we will provide some lower bounds on p for the case that no information on
the inverse ℓ of k modulo mn (or modulo n) is available, but instead, the remainder of the
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Euclidean division of k by mn (or by n) is known. This will actually allow us to find upper
and lower bounds for ℓ, which will still serve our purpose to properly estimate the possible
degrees of the hypothetical factors of f ◦ g. We mention here that, as the lower bounds
on p depend on many parameters, in our analysis we will content ourselves with improving
them without excessively complicating their expressions.

For the proof of the results in this section we need the following basic lemma, that
provides some useful information on the inverse of an integer modulo n.

Lemma 1. Let a, b and n ≥ 2 be integers with 0 < a, b < n and ab ≡ 1 (mod n). Then

n− 1

n− a
≤ b ≤ n− n− 1

a
. (4.1)

Moreover, if (a, b) ̸= (1, 1), then we also have

b ≥ n+ 1

a
, (4.2)

while if (a, b) ̸= (n− 1, n− 1), then we also have

b ≤ n− n+ 1

n− a
. (4.3)

Proof. Since ab ≡ 1 (mod n), there exists a nonnegative integer c such that ab − 1 = cn.
As b < n we deduce that cn < an − 1, so c < a − 1

n . Thus c ≤ a − 1, which implies that
ab − 1 ≤ n(a − 1). Therefore ab ≤ n(a − 1) + 1, which leads to the right inequality in
(4.1). Interchanging now the roles of a and b in the inequality ab ≤ n(a − 1) + 1 yields
ab ≤ n(b− 1) + 1, which gives the left inequality in (4.1).

If we assume now that (a, b) ̸= (1, 1), then our integer c must be positive, so b = cn+1
a ≥

n+1
a . Finally, if we assume that (a, b) ̸= (n− 1, n− 1), then changing (a, b) to (n− a, n− b)

and using (4.2) yields n− b ≥ n+1
n−a , which proves (4.3).

Remark 3. Notice that the integer c above is the inverse of −n modulo a lying in the set
{1, . . . , a− 1}. We also note that one may slightly improve the inequalities in Lemma 1 by
considering the ceiling function for the lower bounds on b, and the floor function for the
upper bounds on b. However, to avoid the excessive complication of the formulas in our
following results, we will not make use of the floor and ceiling functions. Moreover, to keep
the restrictions on k to a minimum, in our following results we will mostly use the first part
of Lemma 1, namely inequalities (4.1).

The main feature of the results in this section is that they do not require knowing the
precise value of the inverse ℓ of k modulo mn (or modulo n). Instead, they rely on bounding
ℓ from below and from above, thus requiring information on two suitable integers A and B
such that A ≤ ℓ ≤ B. In this regard, the results in our previous section correspond to the
case that A = B = ℓ.

Theorem 6. Let f(X) = a0 + a1X + · · ·+ amXm and g(X) = b0 + b1X + · · ·+ bnX
n be

non-constant polynomials with integer coefficients, with a0ambn ̸= 0. Assume that am =
pkq with p a prime number, q an integer, and k a positive integer coprime to mn. Let
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ℓ ∈ {1, . . . ,mn− 1} be the inverse of k modulo mn, let A,B ∈ {1, . . . ,mn− 1} be such that
A ≤ ℓ ≤ B, and let

λ := max
{
|q|

(mn−A)k+1
m |a0|

Ak−1
m |bn|mnk, |q|

(mn−B)k+1
m |a0|

Bk−1
m |bn|mnk

}−1

.

If p > max
{
|q|mn−A|bn|m

2nL∗(f(λX))A, |q|mn−B |bn|m
2nL∗(f(λX))B ,

|q|
mn−1

2 |bn|
m2n

2 L∗(f(λX))
1
2 , |q| 12 |bn|

m2n
2 L∗(f(λX))

mn−1
2

}
,

then the polynomial f ◦ g is irreducible over Q.

In particular, for g(X) = X one obtains the following irreducibility citerion for polyno-
mials with integer coefficients.

Corollary 12. Let f(X) = a0 + a1X + · · · + amXm be a non-constant polynomial with
integer coefficients, with a0am ̸= 0. Assume that am = pkq with p a prime number, q an
integer, and k a positive integer coprime to m. Let ℓ ∈ {1, . . . ,m − 1} be the inverse of k
modulo m, let A,B ∈ {1, . . . ,m− 1} be such that A ≤ ℓ ≤ B, and let

λ := max
{
|q|

(m−A)k+1
m |a0|

Ak−1
m , |q|

(m−B)k+1
m |a0|

Bk−1
m

}−1

.

If p > max
{
|q|m−AL∗(f(λX))A, |q|m−BL∗(f(λX))B ,

|q|
m−1

2 L∗(f(λX))
1
2 , |q| 12L∗(f(λX))

m−1
2

}
,

then f is irreducible over Q.

As in previous section, we can improve the conditions on p and k if we know that f is
irreducible:

Theorem 7. Let f(X) = a0 + a1X + · · · + amXm and g(X) = b0 + b1X + · · · + bnX
n

be non-constant polynomials with integer coefficients, with a0ambn ̸= 0, f irreducible over
Q. Assume that am = pkq with p a prime number, q an integer, and k a positive integer
coprime to n. Let ℓ ∈ {1, . . . , n− 1} be the inverse of k modulo n, let A,B ∈ {1, . . . , n− 1}
be such that A ≤ ℓ ≤ B, and let

λ := max
{
|q|

(n−A)k+1
m |a0|

Ak−1
m |bn|nk, |q|

(n−B)k+1
m |a0|

Bk−1
m |bn|nk

}−1

.

If p > max
{
|q|n−A|bn|mnL∗(f(λX))A, |q|n−B |bn|mnL∗(f(λX))B ,

|q|
n−1
2 |bn|

mn
2 L∗(f(λX))

1
2 , |q| 12 |bn|

mn
2 L∗(f(λX))

n−1
2

}
,

then the polynomial f ◦ g is irreducible over Q.
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We mention here that one may decrease the values of λ in Theorem 6 and Theorem 7
by using the same additional terms that appear in Remark 1 and Remark 2, respectively.

To get rid of the condition that f is irreducible over Q, and to obtain sharper irre-
ducibility conditions than those provided by Theorem 6, one may easily combine Theorem
7 and Corollary 12. We also mention that these general results become effective whenever
we can produce explicit expressions for A and B. In this respect, one may use Lemma 1,
for instance, provided the remainder k′ of the Euclidean division of k by mn (or by n) is
known. Consider the case of Theorem 7, for instance. If ℓ ∈ {1, . . . , n− 1} is the inverse of
k modulo n, in view of (4.1) one may take

A =
n− 1

n− k′
and B = n− n− 1

k′
.

Moreover, if k ̸≡ 1 (mod n), then we may also take A = n+1
k′ , which is more efficient for

small values of k′, while if k ̸≡ −1 (mod n), then we may also use B = n− n+1
n−k′ , which is

more efficient for large values of k′.
We will only present here some simple irreducibility criteria that make use of Lemma 1.

We will first state two simple instances of Corollary 12.

Corollary 13. Let f(X) = a0+a1X+· · ·+amXm be a polynomial with integer coefficients,
of degree m ≥ 3, with a0 ̸= 0. Assume that am = pk, where p is a prime number, and k is
a positive integer coprime to m, k ̸≡ 1 (mod m). Let k′ be the remainder of the Euclidean

division of k by m. If p > (|a0|+ |a1|+ · · ·+ |am−1|)m−m−1
k′ , then f is irreducible over Q.

Corollary 14. Let f(X) = a0+a1X+· · ·+amXm be a polynomial with integer coefficients,
of degree m ≥ 3, with a0 ̸= 0. Assume that am = pk, where p is a prime number, and k is a
positive integer coprime to m, k ̸≡ −1 (mod m). Let k′ be the remainder of the Euclidean

division of k by m. If p > (|a0|+ |a1|+ · · ·+ |am−1|)m− m+1
m−k′ , then f is irreducible over Q.

The following three results are direct consequences of Theorem 7, and are obtained by
taking |q| = |bn| = 1.

Corollary 15. Let f(X) = a0 + a1X + · · · + amXm and g(X) = b0 + b1X + · · · + bnX
n

be polynomials with integer coefficients, of degrees m ≥ 1 and n ≥ 3, with a0 ̸= 0, |bn| = 1,
and f irreducible over Q. Assume that am = pk with p a prime number and k ≡ 1 (mod n).

If p > (|a0|+ |a1|+ · · ·+ |am−1|)
n−1
2 , then f ◦ g is irreducible over Q.

For the case when |q| = |bn| = 1, but k ̸≡ 1 (mod n), we have the following result.

Corollary 16. Let f(X) = a0 + a1X + · · · + amXm and g(X) = b0 + b1X + · · · + bnX
n

be polynomials with integer coefficients, of degrees m ≥ 1 and n ≥ 3, with a0 ̸= 0, |bn| = 1,
and f irreducible over Q. Assume that am = pk with p a prime number and k a positive
integer coprime to n, k ̸≡ 1 (mod n). Let k′ be the remainder of the Euclidean division of

k by n. If p > (|a0|+ |a1|+ · · ·+ |am−1|)n−
n−1
k′ , then f ◦ g is irreducible over Q.

For the case when |q| = |bn| = 1, but k ̸≡ −1 (mod n), we have the following result.

Corollary 17. Let f(X) = a0 + a1X + · · · + amXm and g(X) = b0 + b1X + · · · + bnX
n

be polynomials with integer coefficients, of degrees m ≥ 1 and n ≥ 3, with a0 ̸= 0, |bn| = 1,
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and f irreducible over Q. Assume that am = pk with p a prime number and k a positive
integer coprime to n, k ̸≡ −1 (mod n). Let k′ be the remainder of the Euclidean division

of k by n. If p > (|a0|+ |a1|+ · · ·+ |am−1|)n−
n+1
n−k′ , then f ◦ g is irreducible over Q.

To obtain results where the irreducibility of f is not apriori required, the reader may
suitably combine one of Corollary 9, Corollary 13 and Corollary 14, with one of our last
three results. For the sake of completeness, we will provide proofs for the results in this
section too, even though they are much alike those presented in our previous sections.

Proof of Theorem 6. Here too the assumption on p implies that both q and bn are not
divisible by p. The proof follows the lines of the proof of Theorem 1.

Assume that λ = (|q|
(mn−A)k+1

m |a0|
Ak−1

m |bn|mnk)−1. Our assumption on the magnitude

of p implies that p > |q|mn−A|bn|m
2nL∗(f(λX))A, so

pk|q| > |q|(mn−A)k+1|bn|m
2nkL∗(f(λX))Ak

= [λm|q|(mn−A)k+1|bn|m
2nkL∗(f(λX))Ak−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

In this case the quantity in the square brackets above is equal to(
L∗(f(λX))

|a0|

)Ak−1

,

which is at least 1, since the exponent Ak − 1 is nonnegative.

Assume now that λ = (|q|
(mn−B)k+1

m |a0|
Bk−1

m |bn|mnk)−1. Our assumption on the magni-

tude of p also implies that p > |q|mn−B |bn|m
2nL∗(f(λX))B , so

pk|q| > |q|(mn−B)k+1|bn|m
2nkL∗(f(λX))Bk

= [λm|q|(mn−B)k+1|bn|m
2nkL∗(f(λX))Bk−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

In this case the quantity in the square brackets above is equal to(
L∗(f(λX))

|a0|

)Bk−1

,

which is also at least 1, since the exponent Bk − 1 is nonnegative too.
We have thus checked that in each of the above two cases we have

pk|q| > |a0|λ−m + · · ·+ |am−1|λ−1.

We may therefore still conclude that all the roots θ1, . . . , θm of f lie in the open disk
{|z| < λ}, and then deduce that

|R(gm, F1)| ≤
|q|mn|bn|m

2n

pδ
·
(
L∗(f(λX))

|q|

)r

. (4.4)

Observe now that if δ = 1, then by reducing modulo mn the equality αmn − kr = −1 we
obtain kr ≡ 1 (mod mn), so r = ℓ, and hence

A ≤ r ≤ B. (4.5)
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We distinguish now four cases:
Case 1: δ = 1 and |q| > L∗(f(λX)). In this case we deduce by (4.4) and the left

inequality in (4.5) that

|R(gm, F1)| ≤ |q|mn|bn|m
2n

p
·
(
L∗(f(λX))

|q|

)A

=
1

p
· |q|mn−A|bn|m

2nL∗(f(λX))A,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|mn−A|bn|m
2nL∗(f(λX))A.

Case 2: δ = 1 and |q| ≤ L∗(f(λX)). In this second case, by (4.4) and the right
inequality in (4.5) one obtains

|R(gm, F1)| ≤ |q|mn|bn|m
2n

p
·
(
L∗(f(λX))

|q|

)B

=
1

p
· |q|mn−B |bn|m

2nL∗(f(λX))B ,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|mn−B |bn|m
2nL∗(f(λX))B .

Case 3: δ ≥ 2 and |q| > L∗(f(λX)). As r ≥ 1, in this case we deduce by (4.4) that

|R(gm, F1)| ≤
|q|mn|bn|m

2n

p2
· L

∗(f(λX))

|q|
,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|mn−1
2 |bn|

m2n
2 L∗(f(λX))

1
2 .

Case 4: δ ≥ 2 and |q| ≤ L∗(f(λX)). Here, as r ≤ mn− 1, we deduce by (4.4) that

|R(gm, F1)| ≤ |q|mn|bn|m
2n

p2
·
(
L∗(f(λX))

|q|

)mn−1

=
|q| · |bn|m

2nL∗(f(λX))mn−1

p2
,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q| 12 |bn|
m2n

2 L∗(f(λX))
mn−1

2 .
Summarizing, we conclude that |R(gm, F1)| < 1 if

p > max{|q|mn−A|bn|m
2nL∗(f(λX))A, |q|mn−B |bn|m

2nL∗(f(λX))B ,

|q|
mn−1

2 |bn|
m2n

2 L∗(f(λX))
1
2 , |q| 12 |bn|

m2n
2 L∗(f(λX))

mn−1
2 },

which completes the proof of the theorem.

Proof of Theorem 7. The proof combines the ideas in the proofs of Theorem 2 and The-

orem 6. Assume that λ = (|q|
(n−A)k+1

m |a0|
Ak−1

m |bn|nk)−1. Our assumption on the magnitude
of p implies that p > |q|n−A|bn|mnL∗(f(λX))A, so

pk|q| > |q|(n−A)k+1|bn|mnkL∗(f(λX))Ak

= [λm|q|(n−A)k+1|bn|mnkL∗(f(λX))Ak−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).
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In this case the quantity in the square brackets above is equal to(
L∗(f(λX))

|a0|

)Ak−1

,

which is at least 1, since the exponent Ak − 1 is nonnegative.

Assume now that λ = (|q|
(n−B)k+1

m |a0|
Bk−1

m |bn|nk)−1. Our assumption on the magnitude
of p also implies that p > |q|n−B |bn|mnL∗(f(λX))B , so

pk|q| > |q|(n−B)k+1|bn|mnkL∗(f(λX))Bk

= [λm|q|(n−B)k+1|bn|mnkL∗(f(λX))Bk−1] · (|a0|λ−m + · · ·+ |am−1|λ−1).

In this case the quantity in the square brackets above is equal to(
L∗(f(λX))

|a0|

)Bk−1

,

which is also at least 1, since the exponent Bk − 1 is nonnegative too.
We have thus checked that in each of the above two cases we have

pk|q| > |a0|λ−m + · · ·+ |am−1|λ−1,

so here too we may still conclude that all the roots θ1, . . . , θm of f lie in the open disk
{|z| < λ}, and then deduce that

|R(gm, F1)| ≤
|q|mn|bn|m

2n

pδ
·
(
L∗(f(λX))

|q|

)r

. (4.6)

Recall from the proof of Theorem 2 that both δ and r are positive multiples of m. In
particular we may write r = mr′ for some integer r′ ∈ {1, . . . , n− 1}, as m ≤ r ≤ mn−m.
We again distinguish four cases:

Case 1: δ = m and |q| > L∗(f(λX)). Observe that in this case, from the equality
αmn− kmr′ = −m we obtain αn− kr′ = −1, which implies after reduction modulo n that
kr′ ≡ 1 (mod n). Thus r′ must be precisely ℓ, which shows that r = mℓ. This implies that

mA ≤ r ≤ mB. (4.7)

In this case we deduce by (4.6) and the left inequality in (4.7) that

|R(gm, F1)| ≤ |q|mn|bn|m
2n

pm
·
(
L∗(f(λX))

|q|

)mA

=
1

pm
· |q|mn−mA|bn|m

2nL∗(f(λX))mA,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|n−A|bn|mnL∗(f(λX))A.
Case 2: δ = m and |q| ≤ L∗(f(λX)). In this second case, by (4.6) and the right

inequality in (4.7) one obtains

|R(gm, F1)| ≤ |q|mn|bn|m
2n

pm
·
(
L∗(f(λX))

|q|

)mB

=
1

pm
· |q|mn−mB |bn|m

2nL∗(f(λX))mB ,
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which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|n−B |bn|mnL∗(f(λX))B .
Case 3: δ ≥ 2m and |q| > L∗(f(λX)). Since r ≥ m, in this case we deduce by (4.6)

that

|R(gm, F1)| ≤
|q|mn|bn|m

2n

p2m
·
(
L∗(f(λX))

|q|

)m

,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q|n−1
2 |bn|

mn
2 L∗(f(λX))

1
2 .

Case 4: δ ≥ 2m and |q| ≤ L∗(f(λX)). In this fourth case, since r ≤ mn − m, we
deduce by (4.6) that

|R(gm, F1)| ≤ |q|mn|bn|m
2n

p2m
·
(
L∗(f(λX))

|q|

)mn−m

=
|q|m · |bn|m

2nL∗(f(λX))mn−m

p2m
,

which gives the desired contradiction |R(gm, F1)| < 1 if p > |q| 12 |bn|
mn
2 L∗(f(λX))

n−1
2 .

Summarizing, we conclude that |R(gm, F1)| < 1 if

p > max{|q|n−A|bn|mnL∗(f(λX))A, |q|n−B |bn|mnL∗(f(λX))B ,

|q|
n−1
2 |bn|

mn
2 L∗(f(λX))

1
2 , |q| 12 |bn|

mn
2 L∗(f(λX))

n−1
2 },

which completes the proof of the theorem.

Proof of Corollary 13. If we take |q| = 1 in Corollary 12, we obtain

λ = max{|a0|
Ak−1

m , |a0|
Bk−1

m }−1 =
1

|a0|
Bk−1

m

≤ 1,

so it suffices to ask p to satisfy p > L∗(f(X))max{A,B, 12 ,
m−1

2 }. Here k′ ≥ 2, so the bound
B = m − m−1

k′ in Lemma 1 is at least m−1
2 . Therefore, since λ ≤ 1 it suffices to assume

that p > (|a0|+ |a1|+ · · ·+ |am−1|)m−m−1
k′ .

Proof of Corollary 14. Here k′ ≤ m − 2, so by Lemma 1 we may take B = m − m+1
m−k′ .

Note that the fact that k′ ≤ m− 2 forces B to be at least m−1
2 . Thus, as λ ≤ 1 it suffices

to impose the condition p > (|a0|+ |a1|+ · · ·+ |am−1|)m− m+1
m−k′ .

Proof of Corollary 15. We will use Theorem 7. Note that for |q| = |bn| = 1 we have

λ = max{|a0|
Ak−1

m , |a0|
Bk−1

m }−1 =
1

|a0|
Bk−1

m

≤ 1,

so it suffices to ask p to satisfy p > L∗(f(X))max{A,B, 12 ,
n−1
2 }. For k′ = 1 the bounds

A = n−1
n−k′ and B = n− n−1

k′ in Lemma 1 are both equal to 1. Therefore, as n ≥ 3, it suffices

to ask p to satisfy p > (|a0|+ |a1|+ · · ·+ |am−1|)
n−1
2 .
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Proof of Corollary 16. In this case k′ ≥ 2, so the upper bound B = n − n−1
k′ is at least

n−1
2 . Since λ ≤ 1, it suffices to assume that p > (|a0|+ |a1|+ · · ·+ |am−1|)n−

n−1
k′ .

Proof of Corollary 17. Here k′ ≤ n − 2, so the upper bound B = n − n+1
n−k′ in Lemma 1

is at least n−1
2 . Since λ ≤ 1, it will be sufficient to assume that p satisfies the inequality

p > (|a0|+ |a1|+ · · ·+ |am−1|)n−
n+1
n−k′ .

We will end with some examples.

5 Examples

1) Let f(X) = 1+a1X+· · ·+am−1X
m−1+pkqXm be a polynomial with integer coefficients,

of degree m ≥ 2, with p a prime number, q an integer with |q| ≥ 2, and k a positive integer
coprime to m. If p > 2|q|m−1 and k > 2 log|q|(|a1|+ · · ·+ |am−1|), then f is irreducible.

To prove this, we use Corollary 4 with a0 = 1 and deduce that k must satisfy the
inequality

k > log
|q|

m−1
m

(|a1|+ · · ·+ |am−1|) =
m

m− 1
· log|q|(|a1|+ · · ·+ |am−1|).

This obviously holds, as m
m−1 ≤ 2, so f must be irreducible.

2) For every prime number p, the polynomial f(X) = 2p6+X−X2+3X3−X4+X5 is
irreducible. It suffices to prove that the reciprocalX5f( 1

X ) = 2p6X5+X4−X3+3X2−X+1
is irreducible. We will use Corollary 8. In our case q = 2, m = 5, ℓ = 1 and |a0| = 1, so
λ = 1

2
4·6+1

5

= 1
25 . Thus L∗(f(λX)) = 1 + λ + 3λ2 + λ3 + λ4 < 2λ2 + 1

1−λ < 1.04. The

condition on p reads p > max{24L∗(f(λX)), 22L∗(f(λX))
1
2 , 2

1
2L∗(f(λX))2}, so to conclude

that f is irreducible it suffices to ask p to satisfy p > 24 · 1.04 = 16.64, that is p ≥ 17. For
the remaining values of p, we used the function ispolirreducible of pari/gp to check that
f is irreducible.

3) Let f(X) = a0+a1X+ · · ·+amXm and g(X) = b0+b1X+ · · ·+bnX
n be polynomials

with integer coefficients, of degrees m and n respectively, with a0 ̸= 0, |bn| = 1 and
n ≥ m ≥ 3. Assume that |ai| ≤ 1 for i = 0, . . . ,m − 1 and am = pkq with p a prime
number, q an integer with |q| ≥ 2, and k a positive integer congruent to 1 modulo mn. If
p > 2|q|n−1, then f ◦ g is irreducible over Q. To prove this, we first check the irreducibility
conditions for f in Corollary 8. Since |a0| = ℓ = 1, we see that

λ =
1

|q|
(m−1)k+1

m

≤ 1

|q|
≤ 1

2
,

which shows that

L∗(f(λX)) ≤ 1 +
1

2
+ · · ·+ 1

2m−1
< 2.

The condition on the magnitude of p reduces to

p > max{|q|m−1L∗(f(λX)), |q|
m−1

2 L∗(f(λX))
1
2 , |q| 12L∗(f(λX))

m−1
2 }

= |q|m−1L∗(f(λX)),
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as |q| ≥ 2 > L∗(f(λX)). To conclude that f is irreducible over Q it is therefore sufficient
to ask p to satisfy the inequality p > 2|q|m−1. We check now the conditions in Theorem 5.
Since |bn| = |a0| = ℓ = 1, we see that here

λ =
1

|q|
(n−1)k+1

m

≤ 1

|q| n
m

≤ 1

|q|
≤ 1

2
,

as n ≥ m, so in this case too we have L∗(f(λX)) < 2. The condition on p reduces to

p > max{|q|n−1L∗(f(λX)), |q|
n−1
2 L∗(f(λX))

1
2 , |q| 12L∗(f(λX))

n−1
2 }

= |q|n−1L∗(f(λX)),

again since |q| ≥ 2 > L∗(f(λX)). To conclude that f ◦ g is irreducible over Q it is therefore
sufficient to ask p > 2|q|n−1, which also implies our previous condition p > 2|q|m−1, as
n ≥ m.

4) For every monic polynomial g(X) ∈ Z[X] of degree n ≥ 3, every positive integer a,
and every prime number p > 3n−1, the polynomial 1 + 2g(X) + pan−1g(X)2 is irreducible
over Q. To check this, we write this polynomial as f ◦g(X) with f(X) = 1+2X+pan−1X2,
and we observe that f is irreducible over Q, having negative discriminant. Here k = an−1,
so k′ = n − 1. By Corollary 16 we then conclude that f ◦ g is irreducible over Q if

p > (1 + 2)n−
n−1
n−1 = 3n−1.
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[49] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Band II, 3rd ed.
Berlin, Springer (1964).
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für Polynome, Acta Math. Acad. Sci. Hung., 7, 151–157 (1956).
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