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Abstract

We study the “gap” between the length of a theorem and the smallest length of its
proof in a given formal system T. To this aim, we define and study f-short and f-long
proofs in T, where f is a computable function. The results show that formalisation
comes with a price tag, and a long proof does not guarantee a theorem’s non-triviality
or importance. Applications to proof-assistants are briefly discussed.

Key Words: Proof length, proof-assistant.

2010 Mathematics Subject Classification: Primary 03B22, 03B35; Sec-
ondary 00A30, 03A10.

1 Introduction
According to Spencer [24],
Long proofs are an anathema to mathematicians.

Godel’s seminal length-of-proof paper [15] was “re-discovered” after its English transla-
tion [16, p. 396-399] and led to studies of theorems with long proofs, see [20, 21], and more
generally, to Blum’s (abstract) computational complexity theory [2].

But, what is a “long proof”? First, we note that the original proof of a theorem tends
to be unnecessarily long (and sometimes not entirely correct), but shorter and better proofs
emerge in time. For example, Abel-Ruffini Theorem, stating the impossibility of finding
a solution in radicals to polynomial equations of degree five or higher with arbitrary real
coefficients, was initially 500 pages long (Ruffini’s proof). Still, later, Abel obtained a mere
9-page proof.

Second, as every sufficiently complex formal system, for example, a system which in-
cludes Peano arithmetic (PA), proves infinitely many theorems, we can easily deduce:

Fact 1 (Norwood [19]). Assume that the formal theory T based on a finite alphabet proves
infinitely many theorems. Then, for every positive integer N, there exist infinitely many
theorems in T whose smallest proof lengths are larger than N.
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2 Notation

By N denote the set of non-negative integers. Fix a formal axiomatic theory with negation
T based on a finite alphabet. The formula =S is the negation of S.

A formula (sentence) S is a theorem of T, written, ll S, if there exists a proof 7 in T
for S, written, l% S.

Consider the following symbol-length measure: the proof-length of the proof 7 is the
length of m (as a word on the finite alphabet of T) and is denoted by |7|. The minimum-
length proof of S is the shortest proof of S if S is provable in T

7(S) = mf{|o] | |5 S}. (1)

If there is more than one proof 7 satisfying the first condition in (1), then 7(S) is the
lexicographically first such proof.

The following properties of a formal theory T are used in what follows:

e T is computably enumerable if the set of proofs (hence, theorems) in T is computably
enumerable.

e T is rich enough! if a certain amount of elementary arithmetic can be carried out in
it.

o T is consistent if there is no sentence S in T such that - S and + —=S.

In what follows, we will use Turing machines M operating with words on a finite alpha-
bet [23, 11]. We will assume that the space complexity of the Turing machine T, spacer,
satisfies the following natural condition: spacer(x) > |z|, for every input x. A decider is a
Turing machine that stops on every input and returns either 0 or 1.

The set ¥* is the free monoid under concatenation generated by the finite set X; its
elements are called words. If u € ¥*, by |u| we denote the length of the word u and by u>*
the set {uv | v € £*}.

3 Prerequisites
A famous result on Turing machines refers to the
Halting Problem: Given a pair (M, ), decide whether M halts on x.

There are no resource limitations on the amount of memory or time required for the
decider’s execution. The decider is a Turing machine that stops in finite time and gives the
correct answer for all possible pairs (M, x). The undecidability of the Halting Problem [9,
p. 70-71] is arguably the most important result in computability theory:

Theorem 1 (Halting Theorem). No decider solves the Halting Problem.

IThe minimal amount of arithmetic required will be clear in each case.
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Corollary 1. There exists a computably enumerable set that is incomputable.

A special class of computably enumerable but incomputable sets is the class of creative
sets, i.e. computably enumerable sets such that every other computably enumerable set
can be one-one reduced to it. All creative sets are recursively isomorphic [22]. The set
of theorems of many interesting formal theories, including PA and Zermelo-Fraenkel set
theory with choice (ZFC), are creative [22].

A more interesting result than Fact 1 was proved by Hartmanis [18] for the class of
formal systems whose theorems form a creative set. Hartmanis proof-length is the amount
of tape used by Turing machines to accept the theorems of a formal system. This measure
is justified by the fact that for any reasonable formal system, one can design a Turing
machine which, for any given sentence in the system, successively checks all possible proofs
of increasing length until it finds a proof of the given sentence or never halts if the input is
not provable in the system.

Theorem 2 (Hartmanis [18]). Fiz a formal theory T whose set of theorems is creative,
a Turing machine M that enumerates the theorems of T and Hartmanis proof-length with
respect to M. Then, one can effectively find infinite subsets of “trivially true” theorems
which require as long proofs in T as the hardest theorems of T.

The proof consists in constructing a decidable infinite set of theorems S in T TrivialTrue
such that their shortest Hartmanis proof-length proofs in T grow faster than any computable
function (of the length of the theorems to be proved). The theorems S € TrivialTrue are
called “trivially true” because there is a decider for TrivialTrue which decides the question
S’ € TrivialTrue with computably bounded space. The proofs in T of the theorems in
TrivialTrue can be algorithmically generated by enumerating all proofs in T and selecting
those whose corresponding theorems are in TrivialTrue. Theorem 2 shows that their short-
est Hartmanis proof-length proofs in T grow faster than any computable function (of the
length of the theorems to be proved).

4 Results

We start with a stronger form of Spencer Theorem [24]:

Theorem 3. Assume T is a computably enumerable, rich enough and consistent formal
theory and f : N — N a computable function. Then there exist an incomputable set of
theorems I in T such that for every S € I:

7 (S) = f(ISD). (2)

Proof. Assume by absurdity the existence of a computable function f as in the statement
of the Theorem 3 such that for every theorem S in T we have

7w (S) < f(ISD)- 3)

Under this assumption, we show that the set of theorems in T is computable, which
contradicts Godel’s First Incompleteness Theorem [5] for T. Indeed, the following algorithm
decides membership in the set of theorems of T. Given a formula S in T
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1. Calculate f(|S]).

2. Enumerate the finite set of proofs o with |o| < f(|S]).

3. If for some proof o we have I% S, then return “yes” and stop; otherwise, return “no”
and stop.

This algorithm stops in finite time and returns the correct answer “yes”. In case no
proof o proves S, then S is not a theorem of T because by (3) every theorem has a proof
|7 (S)] < f(]S]), hence the “no” answer is also correct.

Finally the set

{8 |F=S.17(S)| = £(1S)} (4)

is incomputable because otherwise the set {5 | ll S} would be computable as the comple-
ment of the set (4) is computable, contradicting again Godel’s First Incompleteness Theo-
rem [5] for T. O

Remark 1. Note the difference between the following two sets: a) {o | l% S, for some S},

and b) {5 | l% S, for some o}. The first set is computable, but, in the context of Theorem 3,
the second one is not.

Remark 2. Theorem 3 applies to PA, ZFC, the first-order theory of the rational numbers
with addition, multiplication and equality, and the first-order theory of groups. In contrast,
Presburger arithmetic, the first-order theory of the natural numbers in the signature with
equality and addition, the first-order theory of Euclidean geometry and the first-order theory
of Abelian groups are each decidable. Hence Theorem 3 does not work.

Next, we give a simple affirmative answer to the following open question [19, p. 112]:

It remains, however, an open and interesting question whether the ratio of the
[minimum-] length of proofs to the size of theorems is unbounded.

Corollary 2. Assume T is a computably enumerable, Tich enough and consistent formal
theory. Then, for every positive integer N there exists a theorem S in T such that |7 (S)| >
N x |S].

Proof. Let f(n) = n%. By Theorem 3, there exists an incomputable set of theorems I
(depending on f) such that for each S € I, |7(S)| > f(|S|) = |S|?. Giving a positive integer
N we can choose S € I with |S| > N (because I is incomputable, hence infinite) so that
|7(S)| > N x |S]. O

Corollary 3. Assume T is a computably enumerable, rich enough and consistent formal
theory. Then, for every positive integer N, the set.

{8 |F=5.17(S)| > N x |S]} (5)

s incomputable.
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Proof. The complement of the set (5) is computable, so by the Gédel’s First Incompleteness
Theorem [5] for T, the set (5) is computably enumerable and incomputable. O

Consider a formal theory T over a finite alphabet ¥ containing the symbol —. In T we
fix two sets: P; is a non-empty computable set of sentences not starting with — and its set
of negations P, = {5 | S € P}, and define two sets of sentences in P; provable in T:

Prov, = {S S | = S},PIOVQ = {S S ‘ - —‘S}

Theorem 4 ([5]). Let T be a computably enumerable, rich enough and consistent formal
theory such that Provy is not computable. Then, there exist infinitely many sentences S in
Py such that S and =S are not provable in T.

The sentence “N(P,v)” says that the Turing machine P never halts on input v. So,
for every Turing machine P and word v, “N(P,v)” is a perfectly definite sentence which is
either true (if P never halts) or false (if P eventually halts). The falsity of “N(P,v)” can
always be proved by exhibiting the sequence of Turing machine instructions run by P on v
which leads to termination. However, due to Theorem 1, when “N(P,v)” is true, no finite
sequence of instructions suffices to demonstrate it.

The sentence “N(P,v)” can be formalised in a sufficiently complicated formal theory
T like PA or ZFC. In such a T we choose P; to be the set of sentences “N(P,v)”. By
Theorem 1, the set Prov; is computably enumerable but not computable; in fact Prov; is
creative. Hence, by Theorem 2 we get:

Corollary 4. One can effectively construct infinite subsets of “trivially true” sentences
“N(P,v)” that require as long proofs as the hardest theorems of T.

Let f : N — N be a computable non-decreasing function. For example, f(n) = n+logn.
We say that a proof 7 for S is f-shortif |7| < f(]S]); otherwise, 7 is f-long.

Theorem 3 shows the existence of an incomputable set of theorems with f-long proofs
in T. Is this set “small”?

The proof of Hartmanis Theorem 2 shows that the sets of “trivially true” theorems,
which require as long proofs in T as the hardest theorems of T contain an open set in the
prefix topology of words on ¥* [7, 3] (the open sets are unions of sets uX*). Theorems 5
and 6 prove a similar result in terms of minimal-length proofs.

Theorem 5. Assume {S | l% S} is creative, and f : N — N is a computable function.

Then we can effectively find an infinite computable subset L C {S | l% S} which can be
accepted by a Turing machine M such that for every S € L we have:

[w(S)| = f(spacey(:5))- (6)

Proof. We use the following Turing machine T" accepting {S | l% S}t. On input S C ¥*
the machine 7" enumerates in length-lexicographical order all proofs 7 in T and accepts S
as soon as 7 is a proof for S. Then, using a suitably large tape alphabet ¥/ D 3, we can
construct T in such a way that spacer(S) = |7 (S)| ([26]).

Corollary 4 in [18] shows the existence of L and M as in the statement of Theorem. 0
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Theorem 6. Let L C X* be an infinite computable set. Then there is a computable bijection
Yr : X* = X such that (L) contains an open subset uX*.

Proof. If ¥* \ L is finite the assertion is obvious.
If ¥*\ L is infinite, let u € ¥*, |u| > 0, and fix the computable bijections f : N — L,
g: N =X\ L, hy : N = uX* and h, : N — X* \ uX*, respectively.

Define the function vy, : ¥* — ¥* as follows:
(a) if w € L then set ¥ (w) = h,(f~1(w)), and
(b) if w ¢ L then set ¢r(w) = h(g~ (w)).

By construction, the function 1y, is a computable bijection and by (a), ¥ (L) = uX*. O

The set of theorems in a formal theory T is computably enumerable; hence by Theorem 6
contains, in some suitable topology, a non-empty open subset; hence it is not “small”.

Finally, we prove an analogue of Theorem 3 for theorems with long statements and short
proofs:

Theorem 7. Assume T is a computably enumerable, rich enough and consistent formal
theory. Then, there exist an infinite computable set of theorems in T with n + log n-short

proofs.

Proof. Consider the theorem S, = “2!% is even”, where z is a non-empty binary word. The
proof m “As 217 is a positive power of 2, hence it is even” has |7|+ constant j |S,|+log | S,/
whenever |z| is long enough. By varying = we get a computable set whose elements S, have
the required property. O

5 Proof-assistants
The sentence [1]
This statement has no proof in PA that contains fewer than N symbols.

can be formulated in PA (using Godel’s method [14]) but cannot be proved with less than
N symbols if PA is consistent. If we take an integer N larger than the number of particles
of ordinary matter in the Universe, crudely estimated to 10%°, this proof cannot be written
down even if one could write one symbol on each particle.

From an arithmetical point of view, the above sentence is not particularly interesting.
Can we give relevant examples of theorems with long proofs?? The answer is affirmative.

The results presented above show that formalising mathematics comes with price tags,
which include unprovable statements and the existence of infinite sets of “trivially true” the-
orems that have very long proofs. Therefore, it is essential to search various formalisations
and to explore new axioms [12].

2Examples of interesting theorems with long proofs can be found in [27].
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A seemingly naive question is: Can brute-force-proof-search be improved to become
a helpful tool? The answer is related, at least in part, to the problem of “automating”
mathematics.

Fix a formal theory for a part of mathematics, A. There are at least three interpretations
of “automating A”:

a) We can write an algorithm that decides whether an arbitrary statement in A can be
proved or not in A.

b) We can write an algorithm that finds proofs for all provable sentences in A.

¢) An economically-viable algorithm can perform the human activity of proving theorems
in A.

The alternative a) is valid for some A (like the propositional calculus) but false for more
complex theories, like PA or ZFC for the whole mathematics, because of the Halting Theo-
rem. The weaker interpretation b) is true because it does not require an algorithm to decide
the provability status within A of an arbitrary sentence. Indeed, a brute-force algorithm
can find proof for every sentence which is provable A. Such an algorithm is highly inefficient
and impractical when proofs are very long. However, this is not a limitation affecting the
working mathematician because humans cannot even read, even less understand, “too long”
mathematical sentences.

Brute-force-proof-searches show that b) is possible, which is one reason for developing
proof-assistants.

From b), we naturally arrive at c¢), which can be discussed from three points of view:
computational complexity, economics, and epistemology.

Following Godel [13], if P=NP, then there is a polynomial-time algorithm that given a
first-order sentence and a positive integer n (in unary), decides whether the sentence has
size n proof in ZFC. It may seem that under this hypothesis, there is no computational
complexity obstacle to answering the question c) affirmatively. However, this is not true
because the distinction between P and NP is mathematically, but not practically, meaning-
ful: P=NP only implies that problems that can be verified in polynomial time can also be
solved in polynomial time; however, polynomial-time algorithms are not necessarily practi-
cal [10]. A quadratic time algorithm can check very long proofs; in fact, proofs longer than
any proof a human can write; hence, if the algorithm does not find an answer, then the
sentence is practically /humanly impossible to prove.

Is it enough to know that something follows from some axioms and rules of inference,
or is a proof something that provides deeper insight? Understanding is a crucial point
in mathematics, so what kind of statements could be “humanly interesting”? What is the
meaning of such a sentence? Is a practical prover epistemologically viable, too? Fortunately,
proof-assistants are not ordinary algorithms working “in their world”, but algorithms used
in human-machine cooperation, in which understanding is essential and achievable [4, 8, 25].

Incompleteness can be proved by reduction to the Halting Theorem, so one possibility
of improvement is to use approximate solutions to the Halting Problem. Anytime algo-
rithms trade execution time for quality of results [17]. Instead of correctness, an anytime
algorithm returns a result together with a “quality measure” which evaluates how close
the obtained outcome is to the result returned if the algorithm ran until completion. An
efficient statistical algorithm for solving the Halting Theorem is in [6].
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